diff --git a/configs/generate.yaml b/configs/generate.yaml
deleted file mode 100644
index 74445c9f9220ae64c73a305f0b5d34b3f5971d60..0000000000000000000000000000000000000000
--- a/configs/generate.yaml
+++ /dev/null
@@ -1,99 +0,0 @@
-# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion).
-# See more details in LICENSE.
-
-model:
- base_learning_rate: 1.0e-04
- target: ldm.models.diffusion.ddpm_edit.LatentDiffusion
- params:
- linear_start: 0.00085
- linear_end: 0.0120
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- first_stage_key: edited
- cond_stage_key: edit
- # image_size: 64
- # image_size: 32
- image_size: 16
- channels: 4
- cond_stage_trainable: false # Note: different from the one we trained before
- conditioning_key: hybrid
- monitor: val/loss_simple_ema
- scale_factor: 0.18215
- use_ema: true
- load_ema: true
-
- scheduler_config: # 10000 warmup steps
- target: ldm.lr_scheduler.LambdaLinearScheduler
- params:
- warm_up_steps: [ 0 ]
- cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
- f_start: [ 1.e-6 ]
- f_max: [ 1. ]
- f_min: [ 1. ]
-
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 32 # unused
- in_channels: 8
- out_channels: 4
- model_channels: 320
- attention_resolutions: [ 4, 2, 1 ]
- num_res_blocks: 2
- channel_mult: [ 1, 2, 4, 4 ]
- num_heads: 8
- use_spatial_transformer: True
- transformer_depth: 1
- context_dim: 768
- use_checkpoint: True
- legacy: False
-
- first_stage_config:
- target: ldm.models.autoencoder.AutoencoderKL
- params:
- embed_dim: 4
- monitor: val/rec_loss
- ddconfig:
- double_z: true
- z_channels: 4
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
-
- cond_stage_config:
- target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
-
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 128
- num_workers: 1
- wrap: false
- validation:
- target: edit_dataset.EditDataset
- params:
- path: data/clip-filtered-dataset
- cache_dir: data/
- cache_name: data_10k
- split: val
- min_text_sim: 0.2
- min_image_sim: 0.75
- min_direction_sim: 0.2
- max_samples_per_prompt: 1
- min_resize_res: 512
- max_resize_res: 512
- crop_res: 512
- output_as_edit: False
- real_input: True
diff --git a/configs/train.yaml b/configs/train.yaml
deleted file mode 100644
index e958636a9d68fe0cf4f9e8873b9300361aa55b2e..0000000000000000000000000000000000000000
--- a/configs/train.yaml
+++ /dev/null
@@ -1,113 +0,0 @@
-# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion).
-# See more details in LICENSE.
-
-model:
- base_learning_rate: 1.0e-04
- target: ldm.models.diffusion.ddpm_edit.LatentDiffusion
- params:
- ckpt_path: stable_diffusion/models/ldm/stable-diffusion-v1/v1-5-pruned-emaonly.ckpt
- linear_start: 0.00085
- linear_end: 0.0120
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- first_stage_key: edited
- cond_stage_key: edit
- image_size: 32
- channels: 4
- cond_stage_trainable: false # Note: different from the one we trained before
- conditioning_key: hybrid
- monitor: val/loss_simple_ema
- scale_factor: 0.18215
- use_ema: true
- load_ema: false
-
- scheduler_config: # 10000 warmup steps
- target: ldm.lr_scheduler.LambdaLinearScheduler
- params:
- warm_up_steps: [ 0 ]
- cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
- f_start: [ 1.e-6 ]
- f_max: [ 1. ]
- f_min: [ 1. ]
-
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 32 # unused
- in_channels: 8
- out_channels: 4
- model_channels: 320
- attention_resolutions: [ 4, 2, 1 ]
- num_res_blocks: 2
- channel_mult: [ 1, 2, 4, 4 ]
- num_heads: 8
- use_spatial_transformer: True
- transformer_depth: 1
- context_dim: 768
- use_checkpoint: True
- legacy: False
-
- first_stage_config:
- target: ldm.models.autoencoder.AutoencoderKL
- params:
- embed_dim: 4
- monitor: val/rec_loss
- ddconfig:
- double_z: true
- z_channels: 4
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
-
- cond_stage_config:
- target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
-
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 32
- num_workers: 2
- train:
- target: edit_dataset.EditDataset
- params:
- path: data/clip-filtered-dataset
- split: train
- min_resize_res: 256
- max_resize_res: 256
- crop_res: 256
- flip_prob: 0.5
- validation:
- target: edit_dataset.EditDataset
- params:
- path: data/clip-filtered-dataset
- split: val
- min_resize_res: 256
- max_resize_res: 256
- crop_res: 256
-
-lightning:
- callbacks:
- image_logger:
- target: main.ImageLogger
- params:
- batch_frequency: 2000
- max_images: 2
- increase_log_steps: False
-
- trainer:
- max_epochs: 2000
- benchmark: True
- accumulate_grad_batches: 4
- check_val_every_n_epoch: 4
diff --git a/dataset_creation/generate_img_dataset.py b/dataset_creation/generate_img_dataset.py
deleted file mode 100644
index 5d9a2b06cb6af17542446f71845a1b4f907ad0e6..0000000000000000000000000000000000000000
--- a/dataset_creation/generate_img_dataset.py
+++ /dev/null
@@ -1,315 +0,0 @@
-import argparse
-import json
-import sys
-from pathlib import Path
-
-import k_diffusion
-import numpy as np
-import torch
-import torch.nn as nn
-from einops import rearrange, repeat
-from omegaconf import OmegaConf
-from PIL import Image
-from pytorch_lightning import seed_everything
-from tqdm import tqdm
-
-sys.path.append("./")
-sys.path.append("./stable_diffusion")
-
-from ldm.modules.attention import CrossAttention
-from ldm.util import instantiate_from_config
-from metrics.clip_similarity import ClipSimilarity
-
-
-################################################################################
-# Modified K-diffusion Euler ancestral sampler with prompt-to-prompt.
-# https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py
-
-
-def append_dims(x, target_dims):
- """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
- dims_to_append = target_dims - x.ndim
- if dims_to_append < 0:
- raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
- return x[(...,) + (None,) * dims_to_append]
-
-
-def to_d(x, sigma, denoised):
- """Converts a denoiser output to a Karras ODE derivative."""
- return (x - denoised) / append_dims(sigma, x.ndim)
-
-
-def get_ancestral_step(sigma_from, sigma_to):
- """Calculates the noise level (sigma_down) to step down to and the amount
- of noise to add (sigma_up) when doing an ancestral sampling step."""
- sigma_up = min(sigma_to, (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5)
- sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
- return sigma_down, sigma_up
-
-
-def sample_euler_ancestral(model, x, sigmas, prompt2prompt_threshold=0.0, **extra_args):
- """Ancestral sampling with Euler method steps."""
- s_in = x.new_ones([x.shape[0]])
- for i in range(len(sigmas) - 1):
- prompt_to_prompt = prompt2prompt_threshold > i / (len(sigmas) - 2)
- for m in model.modules():
- if isinstance(m, CrossAttention):
- m.prompt_to_prompt = prompt_to_prompt
- denoised = model(x, sigmas[i] * s_in, **extra_args)
- sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
- d = to_d(x, sigmas[i], denoised)
- # Euler method
- dt = sigma_down - sigmas[i]
- x = x + d * dt
- if sigmas[i + 1] > 0:
- # Make noise the same across all samples in batch.
- x = x + torch.randn_like(x[:1]) * sigma_up
- return x
-
-
-################################################################################
-
-
-def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
- print(f"Loading model from {ckpt}")
- pl_sd = torch.load(ckpt, map_location="cpu")
- if "global_step" in pl_sd:
- print(f"Global Step: {pl_sd['global_step']}")
- sd = pl_sd["state_dict"]
- if vae_ckpt is not None:
- print(f"Loading VAE from {vae_ckpt}")
- vae_sd = torch.load(vae_ckpt, map_location="cpu")["state_dict"]
- sd = {
- k: vae_sd[k[len("first_stage_model.") :]] if k.startswith("first_stage_model.") else v
- for k, v in sd.items()
- }
- model = instantiate_from_config(config.model)
- m, u = model.load_state_dict(sd, strict=False)
- if len(m) > 0 and verbose:
- print("missing keys:")
- print(m)
- if len(u) > 0 and verbose:
- print("unexpected keys:")
- print(u)
- return model
-
-
-class CFGDenoiser(nn.Module):
- def __init__(self, model):
- super().__init__()
- self.inner_model = model
-
- def forward(self, x, sigma, uncond, cond, cfg_scale):
- x_in = torch.cat([x] * 2)
- sigma_in = torch.cat([sigma] * 2)
- cond_in = torch.cat([uncond, cond])
- uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
- return uncond + (cond - uncond) * cfg_scale
-
-
-def to_pil(image: torch.Tensor) -> Image.Image:
- image = 255.0 * rearrange(image.cpu().numpy(), "c h w -> h w c")
- image = Image.fromarray(image.astype(np.uint8))
- return image
-
-
-def main():
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--out_dir",
- type=str,
- required=True,
- help="Path to output dataset directory.",
- )
- parser.add_argument(
- "--prompts_file",
- type=str,
- required=True,
- help="Path to prompts .jsonl file.",
- )
- parser.add_argument(
- "--ckpt",
- type=str,
- default="stable_diffusion/models/ldm/stable-diffusion-v1/v1-5-pruned-emaonly.ckpt",
- help="Path to stable diffusion checkpoint.",
- )
- parser.add_argument(
- "--vae-ckpt",
- type=str,
- default="stable_diffusion/models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt",
- help="Path to vae checkpoint.",
- )
- parser.add_argument(
- "--steps",
- type=int,
- default=100,
- help="Number of sampling steps.",
- )
- parser.add_argument(
- "--n-samples",
- type=int,
- default=100,
- help="Number of samples to generate per prompt (before CLIP filtering).",
- )
- parser.add_argument(
- "--max-out-samples",
- type=int,
- default=4,
- help="Max number of output samples to save per prompt (after CLIP filtering).",
- )
- parser.add_argument(
- "--n-partitions",
- type=int,
- default=1,
- help="Number of total partitions.",
- )
- parser.add_argument(
- "--partition",
- type=int,
- default=0,
- help="Partition index.",
- )
- parser.add_argument(
- "--min-p2p",
- type=float,
- default=0.1,
- help="Min prompt2prompt threshold (portion of denoising for which to fix self attention maps).",
- )
- parser.add_argument(
- "--max-p2p",
- type=float,
- default=0.9,
- help="Max prompt2prompt threshold (portion of denoising for which to fix self attention maps).",
- )
- parser.add_argument(
- "--min-cfg",
- type=float,
- default=7.5,
- help="Min classifier free guidance scale.",
- )
- parser.add_argument(
- "--max-cfg",
- type=float,
- default=15,
- help="Max classifier free guidance scale.",
- )
- parser.add_argument(
- "--clip-threshold",
- type=float,
- default=0.2,
- help="CLIP threshold for text-image similarity of each image.",
- )
- parser.add_argument(
- "--clip-dir-threshold",
- type=float,
- default=0.2,
- help="Directional CLIP threshold for similarity of change between pairs of text and pairs of images.",
- )
- parser.add_argument(
- "--clip-img-threshold",
- type=float,
- default=0.7,
- help="CLIP threshold for image-image similarity.",
- )
- opt = parser.parse_args()
-
- global_seed = torch.randint(1 << 32, ()).item()
- print(f"Global seed: {global_seed}")
- seed_everything(global_seed)
-
- model = load_model_from_config(
- OmegaConf.load("stable_diffusion/configs/stable-diffusion/v1-inference.yaml"),
- ckpt=opt.ckpt,
- vae_ckpt=opt.vae_ckpt,
- )
- model.cuda().eval()
- model_wrap = k_diffusion.external.CompVisDenoiser(model)
-
- clip_similarity = ClipSimilarity().cuda()
-
- out_dir = Path(opt.out_dir)
- out_dir.mkdir(exist_ok=True, parents=True)
-
- with open(opt.prompts_file) as fp:
- prompts = [json.loads(line) for line in fp]
-
- print(f"Partition index {opt.partition} ({opt.partition + 1} / {opt.n_partitions})")
- prompts = np.array_split(list(enumerate(prompts)), opt.n_partitions)[opt.partition]
-
- with torch.no_grad(), torch.autocast("cuda"), model.ema_scope():
- uncond = model.get_learned_conditioning(2 * [""])
- sigmas = model_wrap.get_sigmas(opt.steps)
-
- for i, prompt in tqdm(prompts, desc="Prompts"):
- prompt_dir = out_dir.joinpath(f"{i:07d}")
- prompt_dir.mkdir(exist_ok=True)
-
- with open(prompt_dir.joinpath("prompt.json"), "w") as fp:
- json.dump(prompt, fp)
-
- cond = model.get_learned_conditioning([prompt["caption"], prompt["output"]])
- results = {}
-
- with tqdm(total=opt.n_samples, desc="Samples") as progress_bar:
-
- while len(results) < opt.n_samples:
- seed = torch.randint(1 << 32, ()).item()
- if seed in results:
- continue
- torch.manual_seed(seed)
-
- x = torch.randn(1, 4, 512 // 8, 512 // 8, device="cuda") * sigmas[0]
- x = repeat(x, "1 ... -> n ...", n=2)
-
- model_wrap_cfg = CFGDenoiser(model_wrap)
- p2p_threshold = opt.min_p2p + torch.rand(()).item() * (opt.max_p2p - opt.min_p2p)
- cfg_scale = opt.min_cfg + torch.rand(()).item() * (opt.max_cfg - opt.min_cfg)
- extra_args = {"cond": cond, "uncond": uncond, "cfg_scale": cfg_scale}
- samples_ddim = sample_euler_ancestral(model_wrap_cfg, x, sigmas, p2p_threshold, **extra_args)
- x_samples_ddim = model.decode_first_stage(samples_ddim)
- x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
-
- x0 = x_samples_ddim[0]
- x1 = x_samples_ddim[1]
-
- clip_sim_0, clip_sim_1, clip_sim_dir, clip_sim_image = clip_similarity(
- x0[None], x1[None], [prompt["caption"]], [prompt["output"]]
- )
-
- results[seed] = dict(
- image_0=to_pil(x0),
- image_1=to_pil(x1),
- p2p_threshold=p2p_threshold,
- cfg_scale=cfg_scale,
- clip_sim_0=clip_sim_0[0].item(),
- clip_sim_1=clip_sim_1[0].item(),
- clip_sim_dir=clip_sim_dir[0].item(),
- clip_sim_image=clip_sim_image[0].item(),
- )
-
- progress_bar.update()
-
- # CLIP filter to get best samples for each prompt.
- metadata = [
- (result["clip_sim_dir"], seed)
- for seed, result in results.items()
- if result["clip_sim_image"] >= opt.clip_img_threshold
- and result["clip_sim_dir"] >= opt.clip_dir_threshold
- and result["clip_sim_0"] >= opt.clip_threshold
- and result["clip_sim_1"] >= opt.clip_threshold
- ]
- metadata.sort(reverse=True)
- for _, seed in metadata[: opt.max_out_samples]:
- result = results[seed]
- image_0 = result.pop("image_0")
- image_1 = result.pop("image_1")
- image_0.save(prompt_dir.joinpath(f"{seed}_0.jpg"), quality=100)
- image_1.save(prompt_dir.joinpath(f"{seed}_1.jpg"), quality=100)
- with open(prompt_dir.joinpath(f"metadata.jsonl"), "a") as fp:
- fp.write(f"{json.dumps(dict(seed=seed, **result))}\n")
-
- print("Done.")
-
-
-if __name__ == "__main__":
- main()
diff --git a/dataset_creation/generate_txt_dataset.py b/dataset_creation/generate_txt_dataset.py
deleted file mode 100644
index a7d32a53b5effa541cfa8e83ee69869083dce80e..0000000000000000000000000000000000000000
--- a/dataset_creation/generate_txt_dataset.py
+++ /dev/null
@@ -1,113 +0,0 @@
-from __future__ import annotations
-
-import json
-import time
-from argparse import ArgumentParser
-from pathlib import Path
-from typing import Optional
-
-import datasets
-import numpy as np
-import openai
-from tqdm.auto import tqdm
-
-
-DELIMITER_0 = "\n##\n"
-DELIMITER_1 = "\n%%\n"
-STOP = "\nEND"
-
-
-def generate(
- openai_model: str,
- caption: str,
- num_retries: int = 3,
- max_tokens: int = 256,
- temperature: float = 0.7,
- top_p: float = 1.0,
- frequency_penalty: float = 0.1,
- presence_penalty: float = 0.0,
- sleep_on_error: float = 1.0,
-) -> Optional[tuple[str, str]]:
- for _ in range(1 + num_retries):
- try:
- response = openai.Completion.create(
- model=openai_model,
- prompt=caption + DELIMITER_0,
- temperature=temperature,
- max_tokens=max_tokens,
- top_p=top_p,
- frequency_penalty=frequency_penalty,
- presence_penalty=presence_penalty,
- stop=[STOP],
- )
- except Exception as e:
- print(e)
- time.sleep(sleep_on_error)
- continue
- output = response["choices"][0]["text"].split(DELIMITER_1)
- if len(output) == 2:
- instruction, edited_caption = output
- results = openai.Moderation.create([instruction, edited_caption])["results"]
- if results[0]["flagged"] or results[1]["flagged"]:
- continue
- if caption.strip().strip(".!?").lower() != edited_caption.strip().strip(".!?").lower():
- return instruction, edited_caption
-
-
-def main(openai_model: str, num_samples: int, num_partitions: int, partition: int, seed: int):
- dataset = datasets.load_dataset("ChristophSchuhmann/improved_aesthetics_6.5plus", split="train")
- # Other datasets we considered that may be worth trying:
- # dataset = datasets.load_dataset("ChristophSchuhmann/MS_COCO_2017_URL_TEXT", split="train")
- # dataset = datasets.load_dataset("laion/laion-coco", split="train")
-
- np.random.seed(seed)
- permutation = np.array_split(np.random.permutation(len(dataset)), num_partitions)[partition]
- dataset = dataset[permutation]
- captions = dataset["TEXT"]
- urls = dataset["URL"]
- output_path = f"data/dataset=laion-aesthetics-6.5_model={openai_model}_samples={num_samples}_partition={partition}.jsonl" # fmt: skip
- print(f"Prompt file path: {output_path}")
-
- count = 0
- caption_set = set()
- url_set = set()
-
- if Path(output_path).exists():
- with open(output_path, "r") as f:
- for line in tqdm(f, desc="Resuming from existing prompts"):
- prompt = json.loads(line)
- if prompt["caption"] not in caption_set and prompt["url"] not in url_set:
- caption_set.add(prompt["caption"])
- url_set.add(prompt["url"])
- count += 1
-
- with open(output_path, "a") as fp:
- with tqdm(total=num_samples - count, desc="Generating instructions and edited captions") as progress_bar:
- for caption, url in zip(captions, urls):
- if caption in caption_set or url in url_set:
- continue
- if openai.Moderation.create(caption)["results"][0]["flagged"]:
- continue
- edit_output = generate(openai_model, caption)
- if edit_output is not None:
- edit, output = edit_output
- fp.write(f"{json.dumps(dict(caption=caption, edit=edit, output=output, url=url))}\n")
- count += 1
- progress_bar.update()
- caption_set.add(caption)
- url_set.add(url)
- if count == num_samples:
- break
-
-
-if __name__ == "__main__":
- parser = ArgumentParser()
- parser.add_argument("--openai-api-key", required=True, type=str)
- parser.add_argument("--openai-model", required=True, type=str)
- parser.add_argument("--num-samples", default=10000, type=int)
- parser.add_argument("--num-partitions", default=1, type=int)
- parser.add_argument("--partition", default=0, type=int)
- parser.add_argument("--seed", default=0, type=int)
- args = parser.parse_args()
- openai.api_key = args.openai_api_key
- main(args.openai_model, args.num_samples, args.num_partitions, args.partition, args.seed)
diff --git a/dataset_creation/prepare_dataset.py b/dataset_creation/prepare_dataset.py
deleted file mode 100644
index 59d78bd56475ffc980756995c6de220e037c3426..0000000000000000000000000000000000000000
--- a/dataset_creation/prepare_dataset.py
+++ /dev/null
@@ -1,29 +0,0 @@
-import json
-from argparse import ArgumentParser
-from pathlib import Path
-
-from tqdm.auto import tqdm
-
-
-def main():
- parser = ArgumentParser()
- parser.add_argument("dataset_dir")
- args = parser.parse_args()
- dataset_dir = Path(args.dataset_dir)
-
- seeds = []
- with tqdm(desc="Listing dataset image seeds") as progress_bar:
- for prompt_dir in dataset_dir.iterdir():
- if prompt_dir.is_dir():
- prompt_seeds = [image_path.name.split("_")[0] for image_path in sorted(prompt_dir.glob("*_0.jpg"))]
- if len(prompt_seeds) > 0:
- seeds.append((prompt_dir.name, prompt_seeds))
- progress_bar.update()
- seeds.sort()
-
- with open(dataset_dir.joinpath("seeds.json"), "w") as f:
- json.dump(seeds, f)
-
-
-if __name__ == "__main__":
- main()
diff --git a/dataset_creation/prepare_for_gpt.py b/dataset_creation/prepare_for_gpt.py
deleted file mode 100644
index 3051ed3e2710f21d3e866bd9fec45ed7955a2c4e..0000000000000000000000000000000000000000
--- a/dataset_creation/prepare_for_gpt.py
+++ /dev/null
@@ -1,25 +0,0 @@
-import json
-from argparse import ArgumentParser
-
-from generate_txt_dataset import DELIMITER_0, DELIMITER_1, STOP
-
-
-def main(input_path: str, output_path: str):
- with open(input_path) as f:
- prompts = [json.loads(l) for l in f]
-
- with open(output_path, "w") as f:
- for prompt in prompts:
- prompt_for_gpt = {
- "prompt": f"{prompt['input']}{DELIMITER_0}",
- "completion": f"{prompt['edit']}{DELIMITER_1}{prompt['output']}{STOP}",
- }
- f.write(f"{json.dumps(prompt_for_gpt)}\n")
-
-
-if __name__ == "__main__":
- parser = ArgumentParser()
- parser.add_argument("--input-path", required=True, type=str)
- parser.add_argument("--output-path", required=True, type=str)
- args = parser.parse_args()
- main(args.input_path, args.output_path)
diff --git a/edit_cli.py b/edit_cli.py
deleted file mode 100644
index 5147ef9185b2f9ea53d499b642415a78c568700f..0000000000000000000000000000000000000000
--- a/edit_cli.py
+++ /dev/null
@@ -1,128 +0,0 @@
-from __future__ import annotations
-
-import math
-import random
-import sys
-from argparse import ArgumentParser
-
-import einops
-import k_diffusion as K
-import numpy as np
-import torch
-import torch.nn as nn
-from einops import rearrange
-from omegaconf import OmegaConf
-from PIL import Image, ImageOps
-from torch import autocast
-
-sys.path.append("./stable_diffusion")
-
-from stable_diffusion.ldm.util import instantiate_from_config
-
-
-class CFGDenoiser(nn.Module):
- def __init__(self, model):
- super().__init__()
- self.inner_model = model
-
- def forward(self, z, sigma, cond, uncond, text_cfg_scale, image_cfg_scale):
- cfg_z = einops.repeat(z, "1 ... -> n ...", n=3)
- cfg_sigma = einops.repeat(sigma, "1 ... -> n ...", n=3)
- cfg_cond = {
- "c_crossattn": [torch.cat([cond["c_crossattn"][0], uncond["c_crossattn"][0], uncond["c_crossattn"][0]])],
- "c_concat": [torch.cat([cond["c_concat"][0], cond["c_concat"][0], uncond["c_concat"][0]])],
- }
- out_cond, out_img_cond, out_uncond = self.inner_model(cfg_z, cfg_sigma, cond=cfg_cond).chunk(3)
- return out_uncond + text_cfg_scale * (out_cond - out_img_cond) + image_cfg_scale * (out_img_cond - out_uncond)
-
-
-def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
- print(f"Loading model from {ckpt}")
- pl_sd = torch.load(ckpt, map_location="cpu")
- if "global_step" in pl_sd:
- print(f"Global Step: {pl_sd['global_step']}")
- sd = pl_sd["state_dict"]
- if vae_ckpt is not None:
- print(f"Loading VAE from {vae_ckpt}")
- vae_sd = torch.load(vae_ckpt, map_location="cpu")["state_dict"]
- sd = {
- k: vae_sd[k[len("first_stage_model.") :]] if k.startswith("first_stage_model.") else v
- for k, v in sd.items()
- }
- model = instantiate_from_config(config.model)
- m, u = model.load_state_dict(sd, strict=False)
- if len(m) > 0 and verbose:
- print("missing keys:")
- print(m)
- if len(u) > 0 and verbose:
- print("unexpected keys:")
- print(u)
- return model
-
-
-def main():
- parser = ArgumentParser()
- parser.add_argument("--resolution", default=512, type=int)
- parser.add_argument("--steps", default=100, type=int)
- parser.add_argument("--config", default="configs/generate.yaml", type=str)
- parser.add_argument("--ckpt", default="checkpoints/instruct-pix2pix-00-22000.ckpt", type=str)
- parser.add_argument("--vae-ckpt", default=None, type=str)
- parser.add_argument("--input", required=True, type=str)
- parser.add_argument("--output", required=True, type=str)
- parser.add_argument("--edit", required=True, type=str)
- parser.add_argument("--cfg-text", default=7.5, type=float)
- parser.add_argument("--cfg-image", default=1.5, type=float)
- parser.add_argument("--seed", type=int)
- args = parser.parse_args()
-
- config = OmegaConf.load(args.config)
- model = load_model_from_config(config, args.ckpt, args.vae_ckpt)
- model.eval().cuda()
- model_wrap = K.external.CompVisDenoiser(model)
- model_wrap_cfg = CFGDenoiser(model_wrap)
- null_token = model.get_learned_conditioning([""])
-
- seed = random.randint(0, 100000) if args.seed is None else args.seed
- input_image = Image.open(args.input).convert("RGB")
- width, height = input_image.size
- factor = args.resolution / max(width, height)
- factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
- width = int((width * factor) // 64) * 64
- height = int((height * factor) // 64) * 64
- input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
-
- if args.edit == "":
- input_image.save(args.output)
- return
-
- with torch.no_grad(), autocast("cuda"), model.ema_scope():
- cond = {}
- cond["c_crossattn"] = [model.get_learned_conditioning([args.edit])]
- input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
- input_image = rearrange(input_image, "h w c -> 1 c h w").to(model.device)
- cond["c_concat"] = [model.encode_first_stage(input_image).mode()]
-
- uncond = {}
- uncond["c_crossattn"] = [null_token]
- uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])]
-
- sigmas = model_wrap.get_sigmas(args.steps)
-
- extra_args = {
- "cond": cond,
- "uncond": uncond,
- "text_cfg_scale": args.cfg_text,
- "image_cfg_scale": args.cfg_image,
- }
- torch.manual_seed(seed)
- z = torch.randn_like(cond["c_concat"][0]) * sigmas[0]
- z = K.sampling.sample_euler_ancestral(model_wrap_cfg, z, sigmas, extra_args=extra_args)
- x = model.decode_first_stage(z)
- x = torch.clamp((x + 1.0) / 2.0, min=0.0, max=1.0)
- x = 255.0 * rearrange(x, "1 c h w -> h w c")
- edited_image = Image.fromarray(x.type(torch.uint8).cpu().numpy())
- edited_image.save(args.output)
-
-
-if __name__ == "__main__":
- main()
diff --git a/edit_dataset.py b/edit_dataset.py
deleted file mode 100644
index 66d5915e79b02fe433858e2090d87f1e6c771f0b..0000000000000000000000000000000000000000
--- a/edit_dataset.py
+++ /dev/null
@@ -1,121 +0,0 @@
-from __future__ import annotations
-
-import json
-import math
-from pathlib import Path
-from typing import Any
-
-import numpy as np
-import torch
-import torchvision
-from einops import rearrange
-from PIL import Image
-from torch.utils.data import Dataset
-
-
-class EditDataset(Dataset):
- def __init__(
- self,
- path: str,
- split: str = "train",
- splits: tuple[float, float, float] = (0.9, 0.05, 0.05),
- min_resize_res: int = 256,
- max_resize_res: int = 256,
- crop_res: int = 256,
- flip_prob: float = 0.0,
- ):
- assert split in ("train", "val", "test")
- assert sum(splits) == 1
- self.path = path
- self.min_resize_res = min_resize_res
- self.max_resize_res = max_resize_res
- self.crop_res = crop_res
- self.flip_prob = flip_prob
-
- with open(Path(self.path, "seeds.json")) as f:
- self.seeds = json.load(f)
-
- split_0, split_1 = {
- "train": (0.0, splits[0]),
- "val": (splits[0], splits[0] + splits[1]),
- "test": (splits[0] + splits[1], 1.0),
- }[split]
-
- idx_0 = math.floor(split_0 * len(self.seeds))
- idx_1 = math.floor(split_1 * len(self.seeds))
- self.seeds = self.seeds[idx_0:idx_1]
-
- def __len__(self) -> int:
- return len(self.seeds)
-
- def __getitem__(self, i: int) -> dict[str, Any]:
- name, seeds = self.seeds[i]
- propt_dir = Path(self.path, name)
- seed = seeds[torch.randint(0, len(seeds), ()).item()]
- with open(propt_dir.joinpath("prompt.json")) as fp:
- prompt = json.load(fp)["edit"]
-
- image_0 = Image.open(propt_dir.joinpath(f"{seed}_0.jpg"))
- image_1 = Image.open(propt_dir.joinpath(f"{seed}_1.jpg"))
-
- reize_res = torch.randint(self.min_resize_res, self.max_resize_res + 1, ()).item()
- image_0 = image_0.resize((reize_res, reize_res), Image.Resampling.LANCZOS)
- image_1 = image_1.resize((reize_res, reize_res), Image.Resampling.LANCZOS)
-
- image_0 = rearrange(2 * torch.tensor(np.array(image_0)).float() / 255 - 1, "h w c -> c h w")
- image_1 = rearrange(2 * torch.tensor(np.array(image_1)).float() / 255 - 1, "h w c -> c h w")
-
- crop = torchvision.transforms.RandomCrop(self.crop_res)
- flip = torchvision.transforms.RandomHorizontalFlip(float(self.flip_prob))
- image_0, image_1 = flip(crop(torch.cat((image_0, image_1)))).chunk(2)
-
- return dict(edited=image_1, edit=dict(c_concat=image_0, c_crossattn=prompt))
-
-
-class EditDatasetEval(Dataset):
- def __init__(
- self,
- path: str,
- split: str = "train",
- splits: tuple[float, float, float] = (0.9, 0.05, 0.05),
- res: int = 256,
- ):
- assert split in ("train", "val", "test")
- assert sum(splits) == 1
- self.path = path
- self.res = res
-
- with open(Path(self.path, "seeds.json")) as f:
- self.seeds = json.load(f)
-
- split_0, split_1 = {
- "train": (0.0, splits[0]),
- "val": (splits[0], splits[0] + splits[1]),
- "test": (splits[0] + splits[1], 1.0),
- }[split]
-
- idx_0 = math.floor(split_0 * len(self.seeds))
- idx_1 = math.floor(split_1 * len(self.seeds))
- self.seeds = self.seeds[idx_0:idx_1]
-
- def __len__(self) -> int:
- return len(self.seeds)
-
- def __getitem__(self, i: int) -> dict[str, Any]:
- name, seeds = self.seeds[i]
- propt_dir = Path(self.path, name)
- seed = seeds[torch.randint(0, len(seeds), ()).item()]
- with open(propt_dir.joinpath("prompt.json")) as fp:
- prompt = json.load(fp)
- edit = prompt["edit"]
- input_prompt = prompt["input"]
- output_prompt = prompt["output"]
-
- image_0 = Image.open(propt_dir.joinpath(f"{seed}_0.jpg"))
-
- reize_res = torch.randint(self.res, self.res + 1, ()).item()
- image_0 = image_0.resize((reize_res, reize_res), Image.Resampling.LANCZOS)
-
- image_0 = rearrange(2 * torch.tensor(np.array(image_0)).float() / 255 - 1, "h w c -> c h w")
-
- return dict(image_0=image_0, input_prompt=input_prompt, edit=edit, output_prompt=output_prompt)
diff --git a/environment.yaml b/environment.yaml
deleted file mode 100644
index b1d1b3670c957db5d3aef2e12fc2544a94ae7a81..0000000000000000000000000000000000000000
--- a/environment.yaml
+++ /dev/null
@@ -1,38 +0,0 @@
-# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion).
-# See more details in LICENSE.
-
-name: ip2p
-channels:
- - pytorch
- - defaults
-dependencies:
- - python=3.8.5
- - pip=20.3
- - cudatoolkit=11.3
- - pytorch=1.11.0
- - torchvision=0.12.0
- - numpy=1.19.2
- - pip:
- - albumentations==0.4.3
- - datasets==2.8.0
- - diffusers
- - opencv-python==4.1.2.30
- - pudb==2019.2
- - invisible-watermark
- - imageio==2.9.0
- - imageio-ffmpeg==0.4.2
- - pytorch-lightning==1.4.2
- - omegaconf==2.1.1
- - test-tube>=0.7.5
- - streamlit>=0.73.1
- - einops==0.3.0
- - torch-fidelity==0.3.0
- - transformers==4.19.2
- - torchmetrics==0.6.0
- - kornia==0.6
- - -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
- - -e git+https://github.com/openai/CLIP.git@main#egg=clip
- - openai
- - gradio
- - seaborn
- - git+https://github.com/crowsonkb/k-diffusion.git
diff --git a/imgs/dataset.jpg b/imgs/dataset.jpg
deleted file mode 100644
index 7a81ea8aeaf80901a4053fdbcec0bdf200f4efb3..0000000000000000000000000000000000000000
Binary files a/imgs/dataset.jpg and /dev/null differ
diff --git a/imgs/edit_app.jpg b/imgs/edit_app.jpg
deleted file mode 100644
index 0669d06a79e631510b957645c3eaa5c592677132..0000000000000000000000000000000000000000
Binary files a/imgs/edit_app.jpg and /dev/null differ
diff --git a/imgs/prompt_app.jpg b/imgs/prompt_app.jpg
deleted file mode 100644
index bbfdea52bdce8eb5cf8b2a0add8c9d07edd32856..0000000000000000000000000000000000000000
Binary files a/imgs/prompt_app.jpg and /dev/null differ
diff --git a/main.py b/main.py
deleted file mode 100644
index 264da7cc40560a59eafc30365defb815c09d55f1..0000000000000000000000000000000000000000
--- a/main.py
+++ /dev/null
@@ -1,799 +0,0 @@
-import argparse, os, sys, datetime, glob
-import numpy as np
-import time
-import torch
-import torchvision
-import pytorch_lightning as pl
-import json
-import pickle
-
-from packaging import version
-from omegaconf import OmegaConf
-from torch.utils.data import DataLoader, Dataset
-from functools import partial
-from PIL import Image
-
-import torch.distributed as dist
-from pytorch_lightning import seed_everything
-from pytorch_lightning.trainer import Trainer
-from pytorch_lightning.callbacks import ModelCheckpoint, Callback, LearningRateMonitor
-from pytorch_lightning.utilities.distributed import rank_zero_only
-from pytorch_lightning.utilities import rank_zero_info
-from pytorch_lightning.plugins import DDPPlugin
-
-sys.path.append("./stable_diffusion")
-
-from ldm.data.base import Txt2ImgIterableBaseDataset
-from ldm.util import instantiate_from_config
-
-
-def get_parser(**parser_kwargs):
- def str2bool(v):
- if isinstance(v, bool):
- return v
- if v.lower() in ("yes", "true", "t", "y", "1"):
- return True
- elif v.lower() in ("no", "false", "f", "n", "0"):
- return False
- else:
- raise argparse.ArgumentTypeError("Boolean value expected.")
-
- parser = argparse.ArgumentParser(**parser_kwargs)
- parser.add_argument(
- "-n",
- "--name",
- type=str,
- const=True,
- default="",
- nargs="?",
- help="postfix for logdir",
- )
- parser.add_argument(
- "-r",
- "--resume",
- type=str,
- const=True,
- default="",
- nargs="?",
- help="resume from logdir or checkpoint in logdir",
- )
- parser.add_argument(
- "-b",
- "--base",
- nargs="*",
- metavar="base_config.yaml",
- help="paths to base configs. Loaded from left-to-right. "
- "Parameters can be overwritten or added with command-line options of the form `--key value`.",
- default=list(),
- )
- parser.add_argument(
- "-t",
- "--train",
- type=str2bool,
- const=True,
- default=False,
- nargs="?",
- help="train",
- )
- parser.add_argument(
- "--no-test",
- type=str2bool,
- const=True,
- default=False,
- nargs="?",
- help="disable test",
- )
- parser.add_argument(
- "-p",
- "--project",
- help="name of new or path to existing project"
- )
- parser.add_argument(
- "-d",
- "--debug",
- type=str2bool,
- nargs="?",
- const=True,
- default=False,
- help="enable post-mortem debugging",
- )
- parser.add_argument(
- "-s",
- "--seed",
- type=int,
- default=23,
- help="seed for seed_everything",
- )
- parser.add_argument(
- "-f",
- "--postfix",
- type=str,
- default="",
- help="post-postfix for default name",
- )
- parser.add_argument(
- "-l",
- "--logdir",
- type=str,
- default="logs",
- help="directory for logging dat shit",
- )
- parser.add_argument(
- "--scale_lr",
- action="store_true",
- default=False,
- help="scale base-lr by ngpu * batch_size * n_accumulate",
- )
- return parser
-
-
-def nondefault_trainer_args(opt):
- parser = argparse.ArgumentParser()
- parser = Trainer.add_argparse_args(parser)
- args = parser.parse_args([])
- return sorted(k for k in vars(args) if getattr(opt, k) != getattr(args, k))
-
-
-class WrappedDataset(Dataset):
- """Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset"""
-
- def __init__(self, dataset):
- self.data = dataset
-
- def __len__(self):
- return len(self.data)
-
- def __getitem__(self, idx):
- return self.data[idx]
-
-
-def worker_init_fn(_):
- worker_info = torch.utils.data.get_worker_info()
-
- dataset = worker_info.dataset
- worker_id = worker_info.id
-
- if isinstance(dataset, Txt2ImgIterableBaseDataset):
- split_size = dataset.num_records // worker_info.num_workers
- # reset num_records to the true number to retain reliable length information
- dataset.sample_ids = dataset.valid_ids[worker_id * split_size:(worker_id + 1) * split_size]
- current_id = np.random.choice(len(np.random.get_state()[1]), 1)
- return np.random.seed(np.random.get_state()[1][current_id] + worker_id)
- else:
- return np.random.seed(np.random.get_state()[1][0] + worker_id)
-
-
-class DataModuleFromConfig(pl.LightningDataModule):
- def __init__(self, batch_size, train=None, validation=None, test=None, predict=None,
- wrap=False, num_workers=None, shuffle_test_loader=False, use_worker_init_fn=False,
- shuffle_val_dataloader=False):
- super().__init__()
- self.batch_size = batch_size
- self.dataset_configs = dict()
- self.num_workers = num_workers if num_workers is not None else batch_size * 2
- self.use_worker_init_fn = use_worker_init_fn
- if train is not None:
- self.dataset_configs["train"] = train
- self.train_dataloader = self._train_dataloader
- if validation is not None:
- self.dataset_configs["validation"] = validation
- self.val_dataloader = partial(self._val_dataloader, shuffle=shuffle_val_dataloader)
- if test is not None:
- self.dataset_configs["test"] = test
- self.test_dataloader = partial(self._test_dataloader, shuffle=shuffle_test_loader)
- if predict is not None:
- self.dataset_configs["predict"] = predict
- self.predict_dataloader = self._predict_dataloader
- self.wrap = wrap
-
- def prepare_data(self):
- for data_cfg in self.dataset_configs.values():
- instantiate_from_config(data_cfg)
-
- def setup(self, stage=None):
- self.datasets = dict(
- (k, instantiate_from_config(self.dataset_configs[k]))
- for k in self.dataset_configs)
- if self.wrap:
- for k in self.datasets:
- self.datasets[k] = WrappedDataset(self.datasets[k])
-
- def _train_dataloader(self):
- is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
- if is_iterable_dataset or self.use_worker_init_fn:
- init_fn = worker_init_fn
- else:
- init_fn = None
- return DataLoader(self.datasets["train"], batch_size=self.batch_size,
- num_workers=self.num_workers, shuffle=False if is_iterable_dataset else True,
- worker_init_fn=init_fn, persistent_workers=True)
-
- def _val_dataloader(self, shuffle=False):
- if isinstance(self.datasets['validation'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
- init_fn = worker_init_fn
- else:
- init_fn = None
- return DataLoader(self.datasets["validation"],
- batch_size=self.batch_size,
- num_workers=self.num_workers,
- worker_init_fn=init_fn,
- shuffle=shuffle, persistent_workers=True)
-
- def _test_dataloader(self, shuffle=False):
- is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
- if is_iterable_dataset or self.use_worker_init_fn:
- init_fn = worker_init_fn
- else:
- init_fn = None
-
- # do not shuffle dataloader for iterable dataset
- shuffle = shuffle and (not is_iterable_dataset)
-
- return DataLoader(self.datasets["test"], batch_size=self.batch_size,
- num_workers=self.num_workers, worker_init_fn=init_fn, shuffle=shuffle, persistent_workers=True)
-
- def _predict_dataloader(self, shuffle=False):
- if isinstance(self.datasets['predict'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
- init_fn = worker_init_fn
- else:
- init_fn = None
- return DataLoader(self.datasets["predict"], batch_size=self.batch_size,
- num_workers=self.num_workers, worker_init_fn=init_fn, persistent_workers=True)
-
-
-class SetupCallback(Callback):
- def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config):
- super().__init__()
- self.resume = resume
- self.now = now
- self.logdir = logdir
- self.ckptdir = ckptdir
- self.cfgdir = cfgdir
- self.config = config
- self.lightning_config = lightning_config
-
- def on_keyboard_interrupt(self, trainer, pl_module):
- if trainer.global_rank == 0:
- print("Summoning checkpoint.")
- ckpt_path = os.path.join(self.ckptdir, "last.ckpt")
- trainer.save_checkpoint(ckpt_path)
-
- def on_pretrain_routine_start(self, trainer, pl_module):
- if trainer.global_rank == 0:
- # Create logdirs and save configs
- # os.makedirs(self.logdir, exist_ok=True)
- # os.makedirs(self.ckptdir, exist_ok=True)
- # os.makedirs(self.cfgdir, exist_ok=True)
-
- if "callbacks" in self.lightning_config:
- if 'metrics_over_trainsteps_checkpoint' in self.lightning_config['callbacks']:
- os.makedirs(os.path.join(self.ckptdir, 'trainstep_checkpoints'), exist_ok=True)
- print("Project config")
- print(OmegaConf.to_yaml(self.config))
- OmegaConf.save(self.config,
- os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)))
-
- print("Lightning config")
- print(OmegaConf.to_yaml(self.lightning_config))
- OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}),
- os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)))
-
-def get_world_size():
- if not dist.is_available():
- return 1
- if not dist.is_initialized():
- return 1
- return dist.get_world_size()
-
-def all_gather(data):
- """
- Run all_gather on arbitrary picklable data (not necessarily tensors)
- Args:
- data: any picklable object
- Returns:
- list[data]: list of data gathered from each rank
- """
- world_size = get_world_size()
- if world_size == 1:
- return [data]
-
- # serialized to a Tensor
- origin_size = None
- if not isinstance(data, torch.Tensor):
- buffer = pickle.dumps(data)
- storage = torch.ByteStorage.from_buffer(buffer)
- tensor = torch.ByteTensor(storage).to("cuda")
- else:
- origin_size = data.size()
- tensor = data.reshape(-1)
-
- tensor_type = tensor.dtype
-
- # obtain Tensor size of each rank
- local_size = torch.LongTensor([tensor.numel()]).to("cuda")
- size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)]
- dist.all_gather(size_list, local_size)
- size_list = [int(size.item()) for size in size_list]
- max_size = max(size_list)
-
- # receiving Tensor from all ranks
- # we pad the tensor because torch all_gather does not support
- # gathering tensors of different shapes
- tensor_list = []
- for _ in size_list:
- tensor_list.append(torch.FloatTensor(size=(max_size,)).cuda().to(tensor_type))
- if local_size != max_size:
- padding = torch.FloatTensor(size=(max_size - local_size,)).cuda().to(tensor_type)
- tensor = torch.cat((tensor, padding), dim=0)
- dist.all_gather(tensor_list, tensor)
-
- data_list = []
- for size, tensor in zip(size_list, tensor_list):
- if origin_size is None:
- buffer = tensor.cpu().numpy().tobytes()[:size]
- data_list.append(pickle.loads(buffer))
- else:
- buffer = tensor[:size]
- data_list.append(buffer)
-
- if origin_size is not None:
- new_shape = [-1] + list(origin_size[1:])
- resized_list = []
- for data in data_list:
- # suppose the difference of tensor size exist in first dimension
- data = data.reshape(new_shape)
- resized_list.append(data)
-
- return resized_list
- else:
- return data_list
-
-class ImageLogger(Callback):
- def __init__(self, batch_frequency, max_images, clamp=True, increase_log_steps=True,
- rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
- log_images_kwargs=None):
- super().__init__()
- self.rescale = rescale
- self.batch_freq = batch_frequency
- self.max_images = max_images
- self.logger_log_images = {
- pl.loggers.TestTubeLogger: self._testtube,
- }
- self.log_steps = [2 ** n for n in range(6, int(np.log2(self.batch_freq)) + 1)]
- if not increase_log_steps:
- self.log_steps = [self.batch_freq]
- self.clamp = clamp
- self.disabled = disabled
- self.log_on_batch_idx = log_on_batch_idx
- self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
- self.log_first_step = log_first_step
-
- @rank_zero_only
- def _testtube(self, pl_module, images, batch_idx, split):
- for k in images:
- grid = torchvision.utils.make_grid(images[k])
- grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
-
- tag = f"{split}/{k}"
- pl_module.logger.experiment.add_image(
- tag, grid,
- global_step=pl_module.global_step)
-
- @rank_zero_only
- def log_local(self, save_dir, split, images, prompts,
- global_step, current_epoch, batch_idx):
- root = os.path.join(save_dir, "images", split)
- names = {"reals": "before", "inputs": "after", "reconstruction": "before-vq", "samples": "after-gen"}
- # print(root)
- for k in images:
- grid = torchvision.utils.make_grid(images[k], nrow=8)
- if self.rescale:
- grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
- grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
- grid = grid.numpy()
- grid = (grid * 255).astype(np.uint8)
- filename = "gs-{:06}_e-{:06}_b-{:06}_{}.png".format(
- global_step,
- current_epoch,
- batch_idx,
- names[k])
- path = os.path.join(root, filename)
- os.makedirs(os.path.split(path)[0], exist_ok=True)
- # print(path)
- Image.fromarray(grid).save(path)
-
- filename = "gs-{:06}_e-{:06}_b-{:06}_prompt.json".format(
- global_step,
- current_epoch,
- batch_idx)
- path = os.path.join(root, filename)
- with open(path, "w") as f:
- for p in prompts:
- f.write(f"{json.dumps(p)}\n")
-
- def log_img(self, pl_module, batch, batch_idx, split="train"):
- check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
- if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0
- hasattr(pl_module, "log_images") and
- callable(pl_module.log_images) and
- self.max_images > 0) or (split == "val" and batch_idx == 0):
- logger = type(pl_module.logger)
-
- is_train = pl_module.training
- if is_train:
- pl_module.eval()
-
- with torch.no_grad():
- images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)
-
- prompts = batch["edit"]["c_crossattn"][:self.max_images]
- prompts = [p for ps in all_gather(prompts) for p in ps]
-
- for k in images:
- N = min(images[k].shape[0], self.max_images)
- images[k] = images[k][:N]
- images[k] = torch.cat(all_gather(images[k][:N]))
- if isinstance(images[k], torch.Tensor):
- images[k] = images[k].detach().cpu()
- if self.clamp:
- images[k] = torch.clamp(images[k], -1., 1.)
-
- self.log_local(pl_module.logger.save_dir, split, images, prompts,
- pl_module.global_step, pl_module.current_epoch, batch_idx)
-
- logger_log_images = self.logger_log_images.get(logger, lambda *args, **kwargs: None)
- logger_log_images(pl_module, images, pl_module.global_step, split)
-
- if is_train:
- pl_module.train()
-
- def check_frequency(self, check_idx):
- if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and (
- check_idx > 0 or self.log_first_step):
- if len(self.log_steps) > 0:
- self.log_steps.pop(0)
- return True
- return False
-
- def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
- if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
- self.log_img(pl_module, batch, batch_idx, split="train")
-
- def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
- if not self.disabled and pl_module.global_step > 0:
- self.log_img(pl_module, batch, batch_idx, split="val")
- if hasattr(pl_module, 'calibrate_grad_norm'):
- if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0:
- self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
-
-
-class CUDACallback(Callback):
- # see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py
- def on_train_epoch_start(self, trainer, pl_module):
- # Reset the memory use counter
- torch.cuda.reset_peak_memory_stats(trainer.root_gpu)
- torch.cuda.synchronize(trainer.root_gpu)
- self.start_time = time.time()
-
- def on_train_epoch_end(self, trainer, pl_module, outputs):
- torch.cuda.synchronize(trainer.root_gpu)
- max_memory = torch.cuda.max_memory_allocated(trainer.root_gpu) / 2 ** 20
- epoch_time = time.time() - self.start_time
-
- try:
- max_memory = trainer.training_type_plugin.reduce(max_memory)
- epoch_time = trainer.training_type_plugin.reduce(epoch_time)
-
- rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds")
- rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB")
- except AttributeError:
- pass
-
-
-if __name__ == "__main__":
- # custom parser to specify config files, train, test and debug mode,
- # postfix, resume.
- # `--key value` arguments are interpreted as arguments to the trainer.
- # `nested.key=value` arguments are interpreted as config parameters.
- # configs are merged from left-to-right followed by command line parameters.
-
- # model:
- # base_learning_rate: float
- # target: path to lightning module
- # params:
- # key: value
- # data:
- # target: main.DataModuleFromConfig
- # params:
- # batch_size: int
- # wrap: bool
- # train:
- # target: path to train dataset
- # params:
- # key: value
- # validation:
- # target: path to validation dataset
- # params:
- # key: value
- # test:
- # target: path to test dataset
- # params:
- # key: value
- # lightning: (optional, has sane defaults and can be specified on cmdline)
- # trainer:
- # additional arguments to trainer
- # logger:
- # logger to instantiate
- # modelcheckpoint:
- # modelcheckpoint to instantiate
- # callbacks:
- # callback1:
- # target: importpath
- # params:
- # key: value
-
- now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
-
- # add cwd for convenience and to make classes in this file available when
- # running as `python main.py`
- # (in particular `main.DataModuleFromConfig`)
- sys.path.append(os.getcwd())
-
- parser = get_parser()
- parser = Trainer.add_argparse_args(parser)
-
- opt, unknown = parser.parse_known_args()
-
- assert opt.name
- cfg_fname = os.path.split(opt.base[0])[-1]
- cfg_name = os.path.splitext(cfg_fname)[0]
- nowname = f"{cfg_name}_{opt.name}"
- logdir = os.path.join(opt.logdir, nowname)
- ckpt = os.path.join(logdir, "checkpoints", "last.ckpt")
- resume = False
-
- if os.path.isfile(ckpt):
- opt.resume_from_checkpoint = ckpt
- base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))
- opt.base = base_configs + opt.base
- _tmp = logdir.split("/")
- nowname = _tmp[-1]
- resume = True
-
- ckptdir = os.path.join(logdir, "checkpoints")
- cfgdir = os.path.join(logdir, "configs")
-
- os.makedirs(logdir, exist_ok=True)
- os.makedirs(ckptdir, exist_ok=True)
- os.makedirs(cfgdir, exist_ok=True)
-
- try:
- # init and save configs
- configs = [OmegaConf.load(cfg) for cfg in opt.base]
- cli = OmegaConf.from_dotlist(unknown)
- config = OmegaConf.merge(*configs, cli)
-
- if resume:
- # By default, when finetuning from Stable Diffusion, we load the EMA-only checkpoint to initialize all weights.
- # If resuming InstructPix2Pix from a finetuning checkpoint, instead load both EMA and non-EMA weights.
- config.model.params.load_ema = True
-
- lightning_config = config.pop("lightning", OmegaConf.create())
- # merge trainer cli with config
- trainer_config = lightning_config.get("trainer", OmegaConf.create())
- # default to ddp
- trainer_config["accelerator"] = "ddp"
- for k in nondefault_trainer_args(opt):
- trainer_config[k] = getattr(opt, k)
- if not "gpus" in trainer_config:
- del trainer_config["accelerator"]
- cpu = True
- else:
- gpuinfo = trainer_config["gpus"]
- print(f"Running on GPUs {gpuinfo}")
- cpu = False
- trainer_opt = argparse.Namespace(**trainer_config)
- lightning_config.trainer = trainer_config
-
- # model
- model = instantiate_from_config(config.model)
-
- # trainer and callbacks
- trainer_kwargs = dict()
-
- # default logger configs
- default_logger_cfgs = {
- "wandb": {
- "target": "pytorch_lightning.loggers.WandbLogger",
- "params": {
- "name": nowname,
- "save_dir": logdir,
- "id": nowname,
- }
- },
- "testtube": {
- "target": "pytorch_lightning.loggers.TestTubeLogger",
- "params": {
- "name": "testtube",
- "save_dir": logdir,
- }
- },
- }
- default_logger_cfg = default_logger_cfgs["wandb"]
- if "logger" in lightning_config:
- logger_cfg = lightning_config.logger
- else:
- logger_cfg = OmegaConf.create()
- logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
- trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
-
- # modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to
- # specify which metric is used to determine best models
- default_modelckpt_cfg = {
- "target": "pytorch_lightning.callbacks.ModelCheckpoint",
- "params": {
- "dirpath": ckptdir,
- "filename": "{epoch:06}",
- "verbose": True,
- "save_last": True,
- }
- }
-
- if "modelcheckpoint" in lightning_config:
- modelckpt_cfg = lightning_config.modelcheckpoint
- else:
- modelckpt_cfg = OmegaConf.create()
- modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
- print(f"Merged modelckpt-cfg: \n{modelckpt_cfg}")
- if version.parse(pl.__version__) < version.parse('1.4.0'):
- trainer_kwargs["checkpoint_callback"] = instantiate_from_config(modelckpt_cfg)
-
- # add callback which sets up log directory
- default_callbacks_cfg = {
- "setup_callback": {
- "target": "main.SetupCallback",
- "params": {
- "resume": opt.resume,
- "now": now,
- "logdir": logdir,
- "ckptdir": ckptdir,
- "cfgdir": cfgdir,
- "config": config,
- "lightning_config": lightning_config,
- }
- },
- "image_logger": {
- "target": "main.ImageLogger",
- "params": {
- "batch_frequency": 750,
- "max_images": 4,
- "clamp": True
- }
- },
- "learning_rate_logger": {
- "target": "main.LearningRateMonitor",
- "params": {
- "logging_interval": "step",
- # "log_momentum": True
- }
- },
- "cuda_callback": {
- "target": "main.CUDACallback"
- },
- }
- if version.parse(pl.__version__) >= version.parse('1.4.0'):
- default_callbacks_cfg.update({'checkpoint_callback': modelckpt_cfg})
-
- if "callbacks" in lightning_config:
- callbacks_cfg = lightning_config.callbacks
- else:
- callbacks_cfg = OmegaConf.create()
-
- print(
- 'Caution: Saving checkpoints every n train steps without deleting. This might require some free space.')
- default_metrics_over_trainsteps_ckpt_dict = {
- 'metrics_over_trainsteps_checkpoint': {
- "target": 'pytorch_lightning.callbacks.ModelCheckpoint',
- 'params': {
- "dirpath": os.path.join(ckptdir, 'trainstep_checkpoints'),
- "filename": "{epoch:06}-{step:09}",
- "verbose": True,
- 'save_top_k': -1,
- 'every_n_train_steps': 1000,
- 'save_weights_only': True
- }
- }
- }
- default_callbacks_cfg.update(default_metrics_over_trainsteps_ckpt_dict)
-
- callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
- if 'ignore_keys_callback' in callbacks_cfg and hasattr(trainer_opt, 'resume_from_checkpoint'):
- callbacks_cfg.ignore_keys_callback.params['ckpt_path'] = trainer_opt.resume_from_checkpoint
- elif 'ignore_keys_callback' in callbacks_cfg:
- del callbacks_cfg['ignore_keys_callback']
-
- trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
-
- trainer = Trainer.from_argparse_args(trainer_opt, plugins=DDPPlugin(find_unused_parameters=False), **trainer_kwargs)
- trainer.logdir = logdir ###
-
- # data
- data = instantiate_from_config(config.data)
- # NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
- # calling these ourselves should not be necessary but it is.
- # lightning still takes care of proper multiprocessing though
- data.prepare_data()
- data.setup()
- print("#### Data #####")
- for k in data.datasets:
- print(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}")
-
- # configure learning rate
- bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
- if not cpu:
- ngpu = len(lightning_config.trainer.gpus.strip(",").split(','))
- else:
- ngpu = 1
- if 'accumulate_grad_batches' in lightning_config.trainer:
- accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
- else:
- accumulate_grad_batches = 1
- print(f"accumulate_grad_batches = {accumulate_grad_batches}")
- lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
- if opt.scale_lr:
- model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
- print(
- "Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format(
- model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr))
- else:
- model.learning_rate = base_lr
- print("++++ NOT USING LR SCALING ++++")
- print(f"Setting learning rate to {model.learning_rate:.2e}")
-
-
- # allow checkpointing via USR1
- def melk(*args, **kwargs):
- # run all checkpoint hooks
- if trainer.global_rank == 0:
- print("Summoning checkpoint.")
- ckpt_path = os.path.join(ckptdir, "last.ckpt")
- trainer.save_checkpoint(ckpt_path)
-
-
- def divein(*args, **kwargs):
- if trainer.global_rank == 0:
- import pudb;
- pudb.set_trace()
-
-
- import signal
-
- signal.signal(signal.SIGUSR1, melk)
- signal.signal(signal.SIGUSR2, divein)
-
- # run
- if opt.train:
- try:
- trainer.fit(model, data)
- except Exception:
- melk()
- raise
- if not opt.no_test and not trainer.interrupted:
- trainer.test(model, data)
- except Exception:
- if opt.debug and trainer.global_rank == 0:
- try:
- import pudb as debugger
- except ImportError:
- import pdb as debugger
- debugger.post_mortem()
- raise
- finally:
- # move newly created debug project to debug_runs
- if opt.debug and not opt.resume and trainer.global_rank == 0:
- dst, name = os.path.split(logdir)
- dst = os.path.join(dst, "debug_runs", name)
- os.makedirs(os.path.split(dst)[0], exist_ok=True)
- os.rename(logdir, dst)
- if trainer.global_rank == 0:
- print(trainer.profiler.summary())
diff --git a/metrics/clip_similarity.py b/metrics/clip_similarity.py
deleted file mode 100644
index c69d8f6b2053b62ceeb640f8486aabd0684b0115..0000000000000000000000000000000000000000
--- a/metrics/clip_similarity.py
+++ /dev/null
@@ -1,47 +0,0 @@
-from __future__ import annotations
-
-import clip
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-from einops import rearrange
-
-
-class ClipSimilarity(nn.Module):
- def __init__(self, name: str = "ViT-L/14"):
- super().__init__()
- assert name in ("RN50", "RN101", "RN50x4", "RN50x16", "RN50x64", "ViT-B/32", "ViT-B/16", "ViT-L/14", "ViT-L/14@336px") # fmt: skip
- self.size = {"RN50x4": 288, "RN50x16": 384, "RN50x64": 448, "ViT-L/14@336px": 336}.get(name, 224)
-
- self.model, _ = clip.load(name, device="cpu", download_root="./")
- self.model.eval().requires_grad_(False)
-
- self.register_buffer("mean", torch.tensor((0.48145466, 0.4578275, 0.40821073)))
- self.register_buffer("std", torch.tensor((0.26862954, 0.26130258, 0.27577711)))
-
- def encode_text(self, text: list[str]) -> torch.Tensor:
- text = clip.tokenize(text, truncate=True).to(next(self.parameters()).device)
- text_features = self.model.encode_text(text)
- text_features = text_features / text_features.norm(dim=1, keepdim=True)
- return text_features
-
- def encode_image(self, image: torch.Tensor) -> torch.Tensor: # Input images in range [0, 1].
- image = F.interpolate(image.float(), size=self.size, mode="bicubic", align_corners=False)
- image = image - rearrange(self.mean, "c -> 1 c 1 1")
- image = image / rearrange(self.std, "c -> 1 c 1 1")
- image_features = self.model.encode_image(image)
- image_features = image_features / image_features.norm(dim=1, keepdim=True)
- return image_features
-
- def forward(
- self, image_0: torch.Tensor, image_1: torch.Tensor, text_0: list[str], text_1: list[str]
- ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
- image_features_0 = self.encode_image(image_0)
- image_features_1 = self.encode_image(image_1)
- text_features_0 = self.encode_text(text_0)
- text_features_1 = self.encode_text(text_1)
- sim_0 = F.cosine_similarity(image_features_0, text_features_0)
- sim_1 = F.cosine_similarity(image_features_1, text_features_1)
- sim_direction = F.cosine_similarity(image_features_1 - image_features_0, text_features_1 - text_features_0)
- sim_image = F.cosine_similarity(image_features_0, image_features_1)
- return sim_0, sim_1, sim_direction, sim_image
diff --git a/metrics/compute_metrics.py b/metrics/compute_metrics.py
deleted file mode 100644
index 0e48dd940739db16c791f0f2a5a48a1b9214f434..0000000000000000000000000000000000000000
--- a/metrics/compute_metrics.py
+++ /dev/null
@@ -1,235 +0,0 @@
-from __future__ import annotations
-
-import math
-import random
-import sys
-from argparse import ArgumentParser
-
-import einops
-import k_diffusion as K
-import numpy as np
-import torch
-import torch.nn as nn
-from tqdm.auto import tqdm
-from einops import rearrange
-from omegaconf import OmegaConf
-from PIL import Image, ImageOps
-from torch import autocast
-
-import json
-import matplotlib.pyplot as plt
-import seaborn
-from pathlib import Path
-
-sys.path.append("./")
-
-from clip_similarity import ClipSimilarity
-from edit_dataset import EditDatasetEval
-
-sys.path.append("./stable_diffusion")
-
-from ldm.util import instantiate_from_config
-
-
-class CFGDenoiser(nn.Module):
- def __init__(self, model):
- super().__init__()
- self.inner_model = model
-
- def forward(self, z, sigma, cond, uncond, text_cfg_scale, image_cfg_scale):
- cfg_z = einops.repeat(z, "1 ... -> n ...", n=3)
- cfg_sigma = einops.repeat(sigma, "1 ... -> n ...", n=3)
- cfg_cond = {
- "c_crossattn": [torch.cat([cond["c_crossattn"][0], uncond["c_crossattn"][0], uncond["c_crossattn"][0]])],
- "c_concat": [torch.cat([cond["c_concat"][0], cond["c_concat"][0], uncond["c_concat"][0]])],
- }
- out_cond, out_img_cond, out_uncond = self.inner_model(cfg_z, cfg_sigma, cond=cfg_cond).chunk(3)
- return out_uncond + text_cfg_scale * (out_cond - out_img_cond) + image_cfg_scale * (out_img_cond - out_uncond)
-
-
-def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
- print(f"Loading model from {ckpt}")
- pl_sd = torch.load(ckpt, map_location="cpu")
- if "global_step" in pl_sd:
- print(f"Global Step: {pl_sd['global_step']}")
- sd = pl_sd["state_dict"]
- if vae_ckpt is not None:
- print(f"Loading VAE from {vae_ckpt}")
- vae_sd = torch.load(vae_ckpt, map_location="cpu")["state_dict"]
- sd = {
- k: vae_sd[k[len("first_stage_model.") :]] if k.startswith("first_stage_model.") else v
- for k, v in sd.items()
- }
- model = instantiate_from_config(config.model)
- m, u = model.load_state_dict(sd, strict=False)
- if len(m) > 0 and verbose:
- print("missing keys:")
- print(m)
- if len(u) > 0 and verbose:
- print("unexpected keys:")
- print(u)
- return model
-
-class ImageEditor(nn.Module):
- def __init__(self, config, ckpt, vae_ckpt=None):
- super().__init__()
-
- config = OmegaConf.load(config)
- self.model = load_model_from_config(config, ckpt, vae_ckpt)
- self.model.eval().cuda()
- self.model_wrap = K.external.CompVisDenoiser(self.model)
- self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
- self.null_token = self.model.get_learned_conditioning([""])
-
- def forward(
- self,
- image: torch.Tensor,
- edit: str,
- scale_txt: float = 7.5,
- scale_img: float = 1.0,
- steps: int = 100,
- ) -> torch.Tensor:
- assert image.dim() == 3
- assert image.size(1) % 64 == 0
- assert image.size(2) % 64 == 0
- with torch.no_grad(), autocast("cuda"), self.model.ema_scope():
- cond = {
- "c_crossattn": [self.model.get_learned_conditioning([edit])],
- "c_concat": [self.model.encode_first_stage(image[None]).mode()],
- }
- uncond = {
- "c_crossattn": [self.model.get_learned_conditioning([""])],
- "c_concat": [torch.zeros_like(cond["c_concat"][0])],
- }
- extra_args = {
- "uncond": uncond,
- "cond": cond,
- "image_cfg_scale": scale_img,
- "text_cfg_scale": scale_txt,
- }
- sigmas = self.model_wrap.get_sigmas(steps)
- x = torch.randn_like(cond["c_concat"][0]) * sigmas[0]
- x = K.sampling.sample_euler_ancestral(self.model_wrap_cfg, x, sigmas, extra_args=extra_args)
- x = self.model.decode_first_stage(x)[0]
- return x
-
-
-def compute_metrics(config,
- model_path,
- vae_ckpt,
- data_path,
- output_path,
- scales_img,
- scales_txt,
- num_samples = 5000,
- split = "test",
- steps = 50,
- res = 512,
- seed = 0):
- editor = ImageEditor(config, model_path, vae_ckpt).cuda()
- clip_similarity = ClipSimilarity().cuda()
-
-
-
- outpath = Path(output_path, f"n={num_samples}_p={split}_s={steps}_r={res}_e={seed}.jsonl")
- Path(output_path).mkdir(parents=True, exist_ok=True)
-
- for scale_txt in scales_txt:
- for scale_img in scales_img:
- dataset = EditDatasetEval(
- path=data_path,
- split=split,
- res=res
- )
- assert num_samples <= len(dataset)
- print(f'Processing t={scale_txt}, i={scale_img}')
- torch.manual_seed(seed)
- perm = torch.randperm(len(dataset))
- count = 0
- i = 0
-
- sim_0_avg = 0
- sim_1_avg = 0
- sim_direction_avg = 0
- sim_image_avg = 0
- count = 0
-
- pbar = tqdm(total=num_samples)
- while count < num_samples:
-
- idx = perm[i].item()
- sample = dataset[idx]
- i += 1
-
- gen = editor(sample["image_0"].cuda(), sample["edit"], scale_txt=scale_txt, scale_img=scale_img, steps=steps)
-
- sim_0, sim_1, sim_direction, sim_image = clip_similarity(
- sample["image_0"][None].cuda(), gen[None].cuda(), [sample["input_prompt"]], [sample["output_prompt"]]
- )
- sim_0_avg += sim_0.item()
- sim_1_avg += sim_1.item()
- sim_direction_avg += sim_direction.item()
- sim_image_avg += sim_image.item()
- count += 1
- pbar.update(count)
- pbar.close()
-
- sim_0_avg /= count
- sim_1_avg /= count
- sim_direction_avg /= count
- sim_image_avg /= count
-
- with open(outpath, "a") as f:
- f.write(f"{json.dumps(dict(sim_0=sim_0_avg, sim_1=sim_1_avg, sim_direction=sim_direction_avg, sim_image=sim_image_avg, num_samples=num_samples, split=split, scale_txt=scale_txt, scale_img=scale_img, steps=steps, res=res, seed=seed))}\n")
- return outpath
-
-def plot_metrics(metrics_file, output_path):
-
- with open(metrics_file, 'r') as f:
- data = [json.loads(line) for line in f]
-
- plt.rcParams.update({'font.size': 11.5})
- seaborn.set_style("darkgrid")
- plt.figure(figsize=(20.5* 0.7, 10.8* 0.7), dpi=200)
-
- x = [d["sim_direction"] for d in data]
- y = [d["sim_image"] for d in data]
-
- plt.plot(x, y, marker='o', linewidth=2, markersize=4)
-
- plt.xlabel("CLIP Text-Image Direction Similarity", labelpad=10)
- plt.ylabel("CLIP Image Similarity", labelpad=10)
-
- plt.savefig(Path(output_path) / Path("plot.pdf"), bbox_inches="tight")
-
-def main():
- parser = ArgumentParser()
- parser.add_argument("--resolution", default=512, type=int)
- parser.add_argument("--steps", default=100, type=int)
- parser.add_argument("--config", default="configs/generate.yaml", type=str)
- parser.add_argument("--output_path", default="analysis/", type=str)
- parser.add_argument("--ckpt", default="checkpoints/instruct-pix2pix-00-22000.ckpt", type=str)
- parser.add_argument("--dataset", default="data/clip-filtered-dataset/", type=str)
- parser.add_argument("--vae-ckpt", default=None, type=str)
- args = parser.parse_args()
-
- scales_img = [1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2]
- scales_txt = [7.5]
-
- metrics_file = compute_metrics(
- args.config,
- args.ckpt,
- args.vae_ckpt,
- args.dataset,
- args.output_path,
- scales_img,
- scales_txt
- steps = args.steps
- )
-
- plot_metrics(metrics_file, args.output_path)
-
-
-
-if __name__ == "__main__":
- main()
diff --git a/prompt_app.py b/prompt_app.py
deleted file mode 100644
index 4c796d71b34b4a39b7c1ddfc930ca37c9b8c4aca..0000000000000000000000000000000000000000
--- a/prompt_app.py
+++ /dev/null
@@ -1,55 +0,0 @@
-from __future__ import annotations
-
-from argparse import ArgumentParser
-
-import datasets
-import gradio as gr
-import numpy as np
-import openai
-
-from dataset_creation.generate_txt_dataset import generate
-
-
-def main(openai_model: str):
- dataset = datasets.load_dataset("ChristophSchuhmann/improved_aesthetics_6.5plus", split="train")
- captions = dataset[np.random.permutation(len(dataset))]["TEXT"]
- index = 0
-
- def click_random():
- nonlocal index
- output = captions[index]
- index = (index + 1) % len(captions)
- return output
-
- def click_generate(input: str):
- if input == "":
- raise gr.Error("Input caption is missing!")
- edit_output = generate(openai_model, input)
- if edit_output is None:
- return "Failed :(", "Failed :("
- return edit_output
-
- with gr.Blocks(css="footer {visibility: hidden}") as demo:
- txt_input = gr.Textbox(lines=3, label="Input Caption", interactive=True, placeholder="Type image caption here...") # fmt: skip
- txt_edit = gr.Textbox(lines=1, label="GPT-3 Instruction", interactive=False)
- txt_output = gr.Textbox(lines=3, label="GPT3 Edited Caption", interactive=False)
-
- with gr.Row():
- clear_btn = gr.Button("Clear")
- random_btn = gr.Button("Random Input")
- generate_btn = gr.Button("Generate Instruction + Edited Caption")
-
- clear_btn.click(fn=lambda: ("", "", ""), inputs=[], outputs=[txt_input, txt_edit, txt_output])
- random_btn.click(fn=click_random, inputs=[], outputs=[txt_input])
- generate_btn.click(fn=click_generate, inputs=[txt_input], outputs=[txt_edit, txt_output])
-
- demo.launch(share=True)
-
-
-if __name__ == "__main__":
- parser = ArgumentParser()
- parser.add_argument("--openai-api-key", required=True, type=str)
- parser.add_argument("--openai-model", required=True, type=str)
- args = parser.parse_args()
- openai.api_key = args.openai_api_key
- main(args.openai_model)
diff --git a/requirements.txt b/requirements.txt
index 9ea500b9411311d229cb235c81e1df74060d2564..595e234acb4eb1ea242098159703d5ae7dcfa385 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,27 +1,6 @@
+-f --extra-index-url https://download.pytorch.org/whl/cu116
torch
-torchvision==0.12.0
-numpy==1.19.2
-albumentations==0.4.3
-datasets==2.8.0
-diffusers
-opencv-python==4.1.2.30
-pudb==2019.2
-invisible-watermark
-imageio==2.9.0
-imageio-ffmpeg==0.4.2
-pytorch-lightning==1.4.2
-omegaconf==2.1.1
-test-tube>=0.7.5
-streamlit>=0.73.1
-einops==0.3.0
-torch-fidelity==0.3.0
+torchvision
+numpy
transformers
-torchmetrics==0.6.0
-kornia==0.6
--e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
--e git+https://github.com/openai/CLIP.git@main#egg=clip
-huggingface-hub
-openai
-seaborn
-git+https://github.com/crowsonkb/k-diffusion.git
git+https://github.com/huggingface/diffusers
diff --git a/scripts/download_checkpoints.sh b/scripts/download_checkpoints.sh
deleted file mode 100644
index 67d3a5d7901fc38b84870d1a23ec18ef766b5174..0000000000000000000000000000000000000000
--- a/scripts/download_checkpoints.sh
+++ /dev/null
@@ -1,7 +0,0 @@
-#!/bin/bash
-
-SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
-
-mkdir -p $SCRIPT_DIR/../checkpoints
-
-curl http://instruct-pix2pix.eecs.berkeley.edu/instruct-pix2pix-00-22000.ckpt -o $SCRIPT_DIR/../checkpoints/instruct-pix2pix-00-22000.ckpt
diff --git a/scripts/download_data.sh b/scripts/download_data.sh
deleted file mode 100644
index 921f3c536cefcd685b832c7163c5c6d06064a87a..0000000000000000000000000000000000000000
--- a/scripts/download_data.sh
+++ /dev/null
@@ -1,27 +0,0 @@
-#!/bin/bash
-
-# Make data folder relative to script location
-SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
-
-mkdir -p $SCRIPT_DIR/../data
-
-# Copy text datasets
-wget -q --show-progress http://instruct-pix2pix.eecs.berkeley.edu/gpt-generated-prompts.jsonl -O $SCRIPT_DIR/../data/gpt-generated-prompts.jsonl
-wget -q --show-progress http://instruct-pix2pix.eecs.berkeley.edu/human-written-prompts.jsonl -O $SCRIPT_DIR/../data/human-written-prompts.jsonl
-
-# If dataset name isn't provided, exit.
-if [ -z $1 ]
-then
- exit 0
-fi
-
-# Copy dataset files
-mkdir $SCRIPT_DIR/../data/$1
-wget -A zip,json -R "index.html*" -q --show-progress -r --no-parent http://instruct-pix2pix.eecs.berkeley.edu/$1/ -nd -P $SCRIPT_DIR/../data/$1/
-
-# Unzip to folders
-unzip $SCRIPT_DIR/../data/$1/\*.zip -d $SCRIPT_DIR/../data/$1/
-
-# Cleanup
-rm -f $SCRIPT_DIR/../data/$1/*.zip
-rm -f $SCRIPT_DIR/../data/$1/*.html
diff --git a/scripts/download_pretrained_sd.sh b/scripts/download_pretrained_sd.sh
deleted file mode 100644
index 189105fecca79403ebb6439368e65dc00b6321ab..0000000000000000000000000000000000000000
--- a/scripts/download_pretrained_sd.sh
+++ /dev/null
@@ -1,7 +0,0 @@
-#!/bin/bash
-
-SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
-
-mkdir -p $SCRIPT_DIR/../stable_diffusion/models/ldm/stable-diffusion-v1
-curl -L https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt -o $SCRIPT_DIR/../stable_diffusion/models/ldm/stable-diffusion-v1/v1-5-pruned-emaonly.ckpt
-curl -L https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt -o $SCRIPT_DIR/../stable_diffusion/models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
diff --git a/stable_diffusion/LICENSE b/stable_diffusion/LICENSE
deleted file mode 100644
index 0e609df0d8cd3b5d11a1ea962a56b604b70846a5..0000000000000000000000000000000000000000
--- a/stable_diffusion/LICENSE
+++ /dev/null
@@ -1,82 +0,0 @@
-Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors
-
-CreativeML Open RAIL-M
-dated August 22, 2022
-
-Section I: PREAMBLE
-
-Multimodal generative models are being widely adopted and used, and have the potential to transform the way artists, among other individuals, conceive and benefit from AI or ML technologies as a tool for content creation.
-
-Notwithstanding the current and potential benefits that these artifacts can bring to society at large, there are also concerns about potential misuses of them, either due to their technical limitations or ethical considerations.
-
-In short, this license strives for both the open and responsible downstream use of the accompanying model. When it comes to the open character, we took inspiration from open source permissive licenses regarding the grant of IP rights. Referring to the downstream responsible use, we added use-based restrictions not permitting the use of the Model in very specific scenarios, in order for the licensor to be able to enforce the license in case potential misuses of the Model may occur. At the same time, we strive to promote open and responsible research on generative models for art and content generation.
-
-Even though downstream derivative versions of the model could be released under different licensing terms, the latter will always have to include - at minimum - the same use-based restrictions as the ones in the original license (this license). We believe in the intersection between open and responsible AI development; thus, this License aims to strike a balance between both in order to enable responsible open-science in the field of AI.
-
-This License governs the use of the model (and its derivatives) and is informed by the model card associated with the model.
-
-NOW THEREFORE, You and Licensor agree as follows:
-
-1. Definitions
-
-- "License" means the terms and conditions for use, reproduction, and Distribution as defined in this document.
-- "Data" means a collection of information and/or content extracted from the dataset used with the Model, including to train, pretrain, or otherwise evaluate the Model. The Data is not licensed under this License.
-- "Output" means the results of operating a Model as embodied in informational content resulting therefrom.
-- "Model" means any accompanying machine-learning based assemblies (including checkpoints), consisting of learnt weights, parameters (including optimizer states), corresponding to the model architecture as embodied in the Complementary Material, that have been trained or tuned, in whole or in part on the Data, using the Complementary Material.
-- "Derivatives of the Model" means all modifications to the Model, works based on the Model, or any other model which is created or initialized by transfer of patterns of the weights, parameters, activations or output of the Model, to the other model, in order to cause the other model to perform similarly to the Model, including - but not limited to - distillation methods entailing the use of intermediate data representations or methods based on the generation of synthetic data by the Model for training the other model.
-- "Complementary Material" means the accompanying source code and scripts used to define, run, load, benchmark or evaluate the Model, and used to prepare data for training or evaluation, if any. This includes any accompanying documentation, tutorials, examples, etc, if any.
-- "Distribution" means any transmission, reproduction, publication or other sharing of the Model or Derivatives of the Model to a third party, including providing the Model as a hosted service made available by electronic or other remote means - e.g. API-based or web access.
-- "Licensor" means the copyright owner or entity authorized by the copyright owner that is granting the License, including the persons or entities that may have rights in the Model and/or distributing the Model.
-- "You" (or "Your") means an individual or Legal Entity exercising permissions granted by this License and/or making use of the Model for whichever purpose and in any field of use, including usage of the Model in an end-use application - e.g. chatbot, translator, image generator.
-- "Third Parties" means individuals or legal entities that are not under common control with Licensor or You.
-- "Contribution" means any work of authorship, including the original version of the Model and any modifications or additions to that Model or Derivatives of the Model thereof, that is intentionally submitted to Licensor for inclusion in the Model by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Model, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."
-- "Contributor" means Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Model.
-
-Section II: INTELLECTUAL PROPERTY RIGHTS
-
-Both copyright and patent grants apply to the Model, Derivatives of the Model and Complementary Material. The Model and Derivatives of the Model are subject to additional terms as described in Section III.
-
-2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare, publicly display, publicly perform, sublicense, and distribute the Complementary Material, the Model, and Derivatives of the Model.
-3. Grant of Patent License. Subject to the terms and conditions of this License and where and as applicable, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this paragraph) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Model and the Complementary Material, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Model to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Model and/or Complementary Material or a Contribution incorporated within the Model and/or Complementary Material constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for the Model and/or Work shall terminate as of the date such litigation is asserted or filed.
-
-Section III: CONDITIONS OF USAGE, DISTRIBUTION AND REDISTRIBUTION
-
-4. Distribution and Redistribution. You may host for Third Party remote access purposes (e.g. software-as-a-service), reproduce and distribute copies of the Model or Derivatives of the Model thereof in any medium, with or without modifications, provided that You meet the following conditions:
-Use-based restrictions as referenced in paragraph 5 MUST be included as an enforceable provision by You in any type of legal agreement (e.g. a license) governing the use and/or distribution of the Model or Derivatives of the Model, and You shall give notice to subsequent users You Distribute to, that the Model or Derivatives of the Model are subject to paragraph 5. This provision does not apply to the use of Complementary Material.
-You must give any Third Party recipients of the Model or Derivatives of the Model a copy of this License;
-You must cause any modified files to carry prominent notices stating that You changed the files;
-You must retain all copyright, patent, trademark, and attribution notices excluding those notices that do not pertain to any part of the Model, Derivatives of the Model.
-You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions - respecting paragraph 4.a. - for use, reproduction, or Distribution of Your modifications, or for any such Derivatives of the Model as a whole, provided Your use, reproduction, and Distribution of the Model otherwise complies with the conditions stated in this License.
-5. Use-based restrictions. The restrictions set forth in Attachment A are considered Use-based restrictions. Therefore You cannot use the Model and the Derivatives of the Model for the specified restricted uses. You may use the Model subject to this License, including only for lawful purposes and in accordance with the License. Use may include creating any content with, finetuning, updating, running, training, evaluating and/or reparametrizing the Model. You shall require all of Your users who use the Model or a Derivative of the Model to comply with the terms of this paragraph (paragraph 5).
-6. The Output You Generate. Except as set forth herein, Licensor claims no rights in the Output You generate using the Model. You are accountable for the Output you generate and its subsequent uses. No use of the output can contravene any provision as stated in the License.
-
-Section IV: OTHER PROVISIONS
-
-7. Updates and Runtime Restrictions. To the maximum extent permitted by law, Licensor reserves the right to restrict (remotely or otherwise) usage of the Model in violation of this License, update the Model through electronic means, or modify the Output of the Model based on updates. You shall undertake reasonable efforts to use the latest version of the Model.
-8. Trademarks and related. Nothing in this License permits You to make use of Licensors’ trademarks, trade names, logos or to otherwise suggest endorsement or misrepresent the relationship between the parties; and any rights not expressly granted herein are reserved by the Licensors.
-9. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Model and the Complementary Material (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Model, Derivatives of the Model, and the Complementary Material and assume any risks associated with Your exercise of permissions under this License.
-10. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Model and the Complementary Material (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.
-11. Accepting Warranty or Additional Liability. While redistributing the Model, Derivatives of the Model and the Complementary Material thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.
-12. If any provision of this License is held to be invalid, illegal or unenforceable, the remaining provisions shall be unaffected thereby and remain valid as if such provision had not been set forth herein.
-
-END OF TERMS AND CONDITIONS
-
-
-
-
-Attachment A
-
-Use Restrictions
-
-You agree not to use the Model or Derivatives of the Model:
-- In any way that violates any applicable national, federal, state, local or international law or regulation;
-- For the purpose of exploiting, harming or attempting to exploit or harm minors in any way;
-- To generate or disseminate verifiably false information and/or content with the purpose of harming others;
-- To generate or disseminate personal identifiable information that can be used to harm an individual;
-- To defame, disparage or otherwise harass others;
-- For fully automated decision making that adversely impacts an individual’s legal rights or otherwise creates or modifies a binding, enforceable obligation;
-- For any use intended to or which has the effect of discriminating against or harming individuals or groups based on online or offline social behavior or known or predicted personal or personality characteristics;
-- To exploit any of the vulnerabilities of a specific group of persons based on their age, social, physical or mental characteristics, in order to materially distort the behavior of a person pertaining to that group in a manner that causes or is likely to cause that person or another person physical or psychological harm;
-- For any use intended to or which has the effect of discriminating against individuals or groups based on legally protected characteristics or categories;
-- To provide medical advice and medical results interpretation;
-- To generate or disseminate information for the purpose to be used for administration of justice, law enforcement, immigration or asylum processes, such as predicting an individual will commit fraud/crime commitment (e.g. by text profiling, drawing causal relationships between assertions made in documents, indiscriminate and arbitrarily-targeted use).
diff --git a/stable_diffusion/README.md b/stable_diffusion/README.md
deleted file mode 100644
index c9e6c3bb13a18fc5fc0f31ab819bf6eccda81bf0..0000000000000000000000000000000000000000
--- a/stable_diffusion/README.md
+++ /dev/null
@@ -1,215 +0,0 @@
-# Stable Diffusion
-*Stable Diffusion was made possible thanks to a collaboration with [Stability AI](https://stability.ai/) and [Runway](https://runwayml.com/) and builds upon our previous work:*
-
-[**High-Resolution Image Synthesis with Latent Diffusion Models**](https://ommer-lab.com/research/latent-diffusion-models/)
-[Robin Rombach](https://github.com/rromb)\*,
-[Andreas Blattmann](https://github.com/ablattmann)\*,
-[Dominik Lorenz](https://github.com/qp-qp)\,
-[Patrick Esser](https://github.com/pesser),
-[Björn Ommer](https://hci.iwr.uni-heidelberg.de/Staff/bommer)
-_[CVPR '22 Oral](https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html) |
-[GitHub](https://github.com/CompVis/latent-diffusion) | [arXiv](https://arxiv.org/abs/2112.10752) | [Project page](https://ommer-lab.com/research/latent-diffusion-models/)_
-
-![txt2img-stable2](assets/stable-samples/txt2img/merged-0006.png)
-[Stable Diffusion](#stable-diffusion-v1) is a latent text-to-image diffusion
-model.
-Thanks to a generous compute donation from [Stability AI](https://stability.ai/) and support from [LAION](https://laion.ai/), we were able to train a Latent Diffusion Model on 512x512 images from a subset of the [LAION-5B](https://laion.ai/blog/laion-5b/) database.
-Similar to Google's [Imagen](https://arxiv.org/abs/2205.11487),
-this model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts.
-With its 860M UNet and 123M text encoder, the model is relatively lightweight and runs on a GPU with at least 10GB VRAM.
-See [this section](#stable-diffusion-v1) below and the [model card](https://huggingface.co/CompVis/stable-diffusion).
-
-
-## Requirements
-A suitable [conda](https://conda.io/) environment named `ldm` can be created
-and activated with:
-
-```
-conda env create -f environment.yaml
-conda activate ldm
-```
-
-You can also update an existing [latent diffusion](https://github.com/CompVis/latent-diffusion) environment by running
-
-```
-conda install pytorch torchvision -c pytorch
-pip install transformers==4.19.2 diffusers invisible-watermark
-pip install -e .
-```
-
-
-## Stable Diffusion v1
-
-Stable Diffusion v1 refers to a specific configuration of the model
-architecture that uses a downsampling-factor 8 autoencoder with an 860M UNet
-and CLIP ViT-L/14 text encoder for the diffusion model. The model was pretrained on 256x256 images and
-then finetuned on 512x512 images.
-
-*Note: Stable Diffusion v1 is a general text-to-image diffusion model and therefore mirrors biases and (mis-)conceptions that are present
-in its training data.
-Details on the training procedure and data, as well as the intended use of the model can be found in the corresponding [model card](Stable_Diffusion_v1_Model_Card.md).*
-
-The weights are available via [the CompVis organization at Hugging Face](https://huggingface.co/CompVis) under [a license which contains specific use-based restrictions to prevent misuse and harm as informed by the model card, but otherwise remains permissive](LICENSE). While commercial use is permitted under the terms of the license, **we do not recommend using the provided weights for services or products without additional safety mechanisms and considerations**, since there are [known limitations and biases](Stable_Diffusion_v1_Model_Card.md#limitations-and-bias) of the weights, and research on safe and ethical deployment of general text-to-image models is an ongoing effort. **The weights are research artifacts and should be treated as such.**
-
-[The CreativeML OpenRAIL M license](LICENSE) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based.
-
-### Weights
-
-We currently provide the following checkpoints:
-
-- `sd-v1-1.ckpt`: 237k steps at resolution `256x256` on [laion2B-en](https://huggingface.co/datasets/laion/laion2B-en).
- 194k steps at resolution `512x512` on [laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution) (170M examples from LAION-5B with resolution `>= 1024x1024`).
-- `sd-v1-2.ckpt`: Resumed from `sd-v1-1.ckpt`.
- 515k steps at resolution `512x512` on [laion-aesthetics v2 5+](https://laion.ai/blog/laion-aesthetics/) (a subset of laion2B-en with estimated aesthetics score `> 5.0`, and additionally
-filtered to images with an original size `>= 512x512`, and an estimated watermark probability `< 0.5`. The watermark estimate is from the [LAION-5B](https://laion.ai/blog/laion-5b/) metadata, the aesthetics score is estimated using the [LAION-Aesthetics Predictor V2](https://github.com/christophschuhmann/improved-aesthetic-predictor)).
-- `sd-v1-3.ckpt`: Resumed from `sd-v1-2.ckpt`. 195k steps at resolution `512x512` on "laion-aesthetics v2 5+" and 10\% dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598).
-- `sd-v1-4.ckpt`: Resumed from `sd-v1-2.ckpt`. 225k steps at resolution `512x512` on "laion-aesthetics v2 5+" and 10\% dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598).
-
-Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0,
-5.0, 6.0, 7.0, 8.0) and 50 PLMS sampling
-steps show the relative improvements of the checkpoints:
-![sd evaluation results](assets/v1-variants-scores.jpg)
-
-
-
-### Text-to-Image with Stable Diffusion
-![txt2img-stable2](assets/stable-samples/txt2img/merged-0005.png)
-![txt2img-stable2](assets/stable-samples/txt2img/merged-0007.png)
-
-Stable Diffusion is a latent diffusion model conditioned on the (non-pooled) text embeddings of a CLIP ViT-L/14 text encoder.
-We provide a [reference script for sampling](#reference-sampling-script), but
-there also exists a [diffusers integration](#diffusers-integration), which we
-expect to see more active community development.
-
-#### Reference Sampling Script
-
-We provide a reference sampling script, which incorporates
-
-- a [Safety Checker Module](https://github.com/CompVis/stable-diffusion/pull/36),
- to reduce the probability of explicit outputs,
-- an [invisible watermarking](https://github.com/ShieldMnt/invisible-watermark)
- of the outputs, to help viewers [identify the images as machine-generated](scripts/tests/test_watermark.py).
-
-After [obtaining the `stable-diffusion-v1-*-original` weights](#weights), link them
-```
-mkdir -p models/ldm/stable-diffusion-v1/
-ln -s models/ldm/stable-diffusion-v1/model.ckpt
-```
-and sample with
-```
-python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --plms
-```
-
-By default, this uses a guidance scale of `--scale 7.5`, [Katherine Crowson's implementation](https://github.com/CompVis/latent-diffusion/pull/51) of the [PLMS](https://arxiv.org/abs/2202.09778) sampler,
-and renders images of size 512x512 (which it was trained on) in 50 steps. All supported arguments are listed below (type `python scripts/txt2img.py --help`).
-
-
-```commandline
-usage: txt2img.py [-h] [--prompt [PROMPT]] [--outdir [OUTDIR]] [--skip_grid] [--skip_save] [--ddim_steps DDIM_STEPS] [--plms] [--laion400m] [--fixed_code] [--ddim_eta DDIM_ETA]
- [--n_iter N_ITER] [--H H] [--W W] [--C C] [--f F] [--n_samples N_SAMPLES] [--n_rows N_ROWS] [--scale SCALE] [--from-file FROM_FILE] [--config CONFIG] [--ckpt CKPT]
- [--seed SEED] [--precision {full,autocast}]
-
-optional arguments:
- -h, --help show this help message and exit
- --prompt [PROMPT] the prompt to render
- --outdir [OUTDIR] dir to write results to
- --skip_grid do not save a grid, only individual samples. Helpful when evaluating lots of samples
- --skip_save do not save individual samples. For speed measurements.
- --ddim_steps DDIM_STEPS
- number of ddim sampling steps
- --plms use plms sampling
- --laion400m uses the LAION400M model
- --fixed_code if enabled, uses the same starting code across samples
- --ddim_eta DDIM_ETA ddim eta (eta=0.0 corresponds to deterministic sampling
- --n_iter N_ITER sample this often
- --H H image height, in pixel space
- --W W image width, in pixel space
- --C C latent channels
- --f F downsampling factor
- --n_samples N_SAMPLES
- how many samples to produce for each given prompt. A.k.a. batch size
- --n_rows N_ROWS rows in the grid (default: n_samples)
- --scale SCALE unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))
- --from-file FROM_FILE
- if specified, load prompts from this file
- --config CONFIG path to config which constructs model
- --ckpt CKPT path to checkpoint of model
- --seed SEED the seed (for reproducible sampling)
- --precision {full,autocast}
- evaluate at this precision
-```
-Note: The inference config for all v1 versions is designed to be used with EMA-only checkpoints.
-For this reason `use_ema=False` is set in the configuration, otherwise the code will try to switch from
-non-EMA to EMA weights. If you want to examine the effect of EMA vs no EMA, we provide "full" checkpoints
-which contain both types of weights. For these, `use_ema=False` will load and use the non-EMA weights.
-
-
-#### Diffusers Integration
-
-A simple way to download and sample Stable Diffusion is by using the [diffusers library](https://github.com/huggingface/diffusers/tree/main#new--stable-diffusion-is-now-fully-compatible-with-diffusers):
-```py
-# make sure you're logged in with `huggingface-cli login`
-from torch import autocast
-from diffusers import StableDiffusionPipeline
-
-pipe = StableDiffusionPipeline.from_pretrained(
- "CompVis/stable-diffusion-v1-4",
- use_auth_token=True
-).to("cuda")
-
-prompt = "a photo of an astronaut riding a horse on mars"
-with autocast("cuda"):
- image = pipe(prompt)["sample"][0]
-
-image.save("astronaut_rides_horse.png")
-```
-
-
-### Image Modification with Stable Diffusion
-
-By using a diffusion-denoising mechanism as first proposed by [SDEdit](https://arxiv.org/abs/2108.01073), the model can be used for different
-tasks such as text-guided image-to-image translation and upscaling. Similar to the txt2img sampling script,
-we provide a script to perform image modification with Stable Diffusion.
-
-The following describes an example where a rough sketch made in [Pinta](https://www.pinta-project.com/) is converted into a detailed artwork.
-```
-python scripts/img2img.py --prompt "A fantasy landscape, trending on artstation" --init-img --strength 0.8
-```
-Here, strength is a value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.
-Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input. See the following example.
-
-**Input**
-
-![sketch-in](assets/stable-samples/img2img/sketch-mountains-input.jpg)
-
-**Outputs**
-
-![out3](assets/stable-samples/img2img/mountains-3.png)
-![out2](assets/stable-samples/img2img/mountains-2.png)
-
-This procedure can, for example, also be used to upscale samples from the base model.
-
-
-## Comments
-
-- Our codebase for the diffusion models builds heavily on [OpenAI's ADM codebase](https://github.com/openai/guided-diffusion)
-and [https://github.com/lucidrains/denoising-diffusion-pytorch](https://github.com/lucidrains/denoising-diffusion-pytorch).
-Thanks for open-sourcing!
-
-- The implementation of the transformer encoder is from [x-transformers](https://github.com/lucidrains/x-transformers) by [lucidrains](https://github.com/lucidrains?tab=repositories).
-
-
-## BibTeX
-
-```
-@misc{rombach2021highresolution,
- title={High-Resolution Image Synthesis with Latent Diffusion Models},
- author={Robin Rombach and Andreas Blattmann and Dominik Lorenz and Patrick Esser and Björn Ommer},
- year={2021},
- eprint={2112.10752},
- archivePrefix={arXiv},
- primaryClass={cs.CV}
-}
-```
-
-
diff --git a/stable_diffusion/Stable_Diffusion_v1_Model_Card.md b/stable_diffusion/Stable_Diffusion_v1_Model_Card.md
deleted file mode 100644
index ad76ad2ee6da62ad21c8a92e9082a31b272740f3..0000000000000000000000000000000000000000
--- a/stable_diffusion/Stable_Diffusion_v1_Model_Card.md
+++ /dev/null
@@ -1,144 +0,0 @@
-# Stable Diffusion v1 Model Card
-This model card focuses on the model associated with the Stable Diffusion model, available [here](https://github.com/CompVis/stable-diffusion).
-
-## Model Details
-- **Developed by:** Robin Rombach, Patrick Esser
-- **Model type:** Diffusion-based text-to-image generation model
-- **Language(s):** English
-- **License:** [Proprietary](LICENSE)
-- **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([CLIP ViT-L/14](https://arxiv.org/abs/2103.00020)) as suggested in the [Imagen paper](https://arxiv.org/abs/2205.11487).
-- **Resources for more information:** [GitHub Repository](https://github.com/CompVis/stable-diffusion), [Paper](https://arxiv.org/abs/2112.10752).
-- **Cite as:**
-
- @InProceedings{Rombach_2022_CVPR,
- author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn},
- title = {High-Resolution Image Synthesis With Latent Diffusion Models},
- booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
- month = {June},
- year = {2022},
- pages = {10684-10695}
- }
-
-# Uses
-
-## Direct Use
-The model is intended for research purposes only. Possible research areas and
-tasks include
-
-- Safe deployment of models which have the potential to generate harmful content.
-- Probing and understanding the limitations and biases of generative models.
-- Generation of artworks and use in design and other artistic processes.
-- Applications in educational or creative tools.
-- Research on generative models.
-
-Excluded uses are described below.
-
- ### Misuse, Malicious Use, and Out-of-Scope Use
-_Note: This section is taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), but applies in the same way to Stable Diffusion v1_.
-
-The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes.
-
-#### Out-of-Scope Use
-The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
-
-#### Misuse and Malicious Use
-Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to:
-
-- Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc.
-- Intentionally promoting or propagating discriminatory content or harmful stereotypes.
-- Impersonating individuals without their consent.
-- Sexual content without consent of the people who might see it.
-- Mis- and disinformation
-- Representations of egregious violence and gore
-- Sharing of copyrighted or licensed material in violation of its terms of use.
-- Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use.
-
-## Limitations and Bias
-
-### Limitations
-
-- The model does not achieve perfect photorealism
-- The model cannot render legible text
-- The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere”
-- Faces and people in general may not be generated properly.
-- The model was trained mainly with English captions and will not work as well in other languages.
-- The autoencoding part of the model is lossy
-- The model was trained on a large-scale dataset
- [LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material
- and is not fit for product use without additional safety mechanisms and
- considerations.
-- No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data.
- The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images.
-
-### Bias
-While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
-Stable Diffusion v1 was primarily trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/),
-which consists of images that are limited to English descriptions.
-Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for.
-This affects the overall output of the model, as white and western cultures are often set as the default. Further, the
-ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts.
-Stable Diffusion v1 mirrors and exacerbates biases to such a degree that viewer discretion must be advised irrespective of the input or its intent.
-
-
-## Training
-
-**Training Data**
-The model developers used the following dataset for training the model:
-
-- LAION-5B and subsets thereof (see next section)
-
-**Training Procedure**
-Stable Diffusion v1 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training,
-
-- Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4
-- Text prompts are encoded through a ViT-L/14 text-encoder.
-- The non-pooled output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention.
-- The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet.
-
-We currently provide the following checkpoints:
-
-- `sd-v1-1.ckpt`: 237k steps at resolution `256x256` on [laion2B-en](https://huggingface.co/datasets/laion/laion2B-en).
- 194k steps at resolution `512x512` on [laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution) (170M examples from LAION-5B with resolution `>= 1024x1024`).
-- `sd-v1-2.ckpt`: Resumed from `sd-v1-1.ckpt`.
- 515k steps at resolution `512x512` on [laion-aesthetics v2 5+](https://laion.ai/blog/laion-aesthetics/) (a subset of laion2B-en with estimated aesthetics score `> 5.0`, and additionally
-filtered to images with an original size `>= 512x512`, and an estimated watermark probability `< 0.5`. The watermark estimate is from the [LAION-5B](https://laion.ai/blog/laion-5b/) metadata, the aesthetics score is estimated using the [LAION-Aesthetics Predictor V2](https://github.com/christophschuhmann/improved-aesthetic-predictor)).
-- `sd-v1-3.ckpt`: Resumed from `sd-v1-2.ckpt`. 195k steps at resolution `512x512` on "laion-aesthetics v2 5+" and 10\% dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598).
-- `sd-v1-4.ckpt`: Resumed from `sd-v1-2.ckpt`. 225k steps at resolution `512x512` on "laion-aesthetics v2 5+" and 10\% dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598).
-
-- **Hardware:** 32 x 8 x A100 GPUs
-- **Optimizer:** AdamW
-- **Gradient Accumulations**: 2
-- **Batch:** 32 x 8 x 2 x 4 = 2048
-- **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant
-
-## Evaluation Results
-Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0,
-5.0, 6.0, 7.0, 8.0) and 50 PLMS sampling
-steps show the relative improvements of the checkpoints:
-
-![pareto](assets/v1-variants-scores.jpg)
-
-Evaluated using 50 PLMS steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores.
-
-## Environmental Impact
-
-**Stable Diffusion v1** **Estimated Emissions**
-Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.
-
-- **Hardware Type:** A100 PCIe 40GB
-- **Hours used:** 150000
-- **Cloud Provider:** AWS
-- **Compute Region:** US-east
-- **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 11250 kg CO2 eq.
-
-## Citation
- @InProceedings{Rombach_2022_CVPR,
- author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn},
- title = {High-Resolution Image Synthesis With Latent Diffusion Models},
- booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
- month = {June},
- year = {2022},
- pages = {10684-10695}
- }
-
-*This model card was written by: Robin Rombach and Patrick Esser and is based on the [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
diff --git a/stable_diffusion/assets/a-painting-of-a-fire.png b/stable_diffusion/assets/a-painting-of-a-fire.png
deleted file mode 100644
index 3d3b9bde4852fbd1b6a0dd88b53a2d7611c2ec73..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/a-painting-of-a-fire.png and /dev/null differ
diff --git a/stable_diffusion/assets/a-photograph-of-a-fire.png b/stable_diffusion/assets/a-photograph-of-a-fire.png
deleted file mode 100644
index e246bc1a0d7b1261be9dac7fb8f5e1f7f487fcd0..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/a-photograph-of-a-fire.png and /dev/null differ
diff --git a/stable_diffusion/assets/a-shirt-with-a-fire-printed-on-it.png b/stable_diffusion/assets/a-shirt-with-a-fire-printed-on-it.png
deleted file mode 100644
index aa68f188a8ab325808b44077526e5b3d44209eaf..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/a-shirt-with-a-fire-printed-on-it.png and /dev/null differ
diff --git a/stable_diffusion/assets/a-shirt-with-the-inscription-'fire'.png b/stable_diffusion/assets/a-shirt-with-the-inscription-'fire'.png
deleted file mode 100644
index f058b97df860faeccc661cc6209d862872487887..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/a-shirt-with-the-inscription-'fire'.png and /dev/null differ
diff --git a/stable_diffusion/assets/a-watercolor-painting-of-a-fire.png b/stable_diffusion/assets/a-watercolor-painting-of-a-fire.png
deleted file mode 100644
index e4ebe136773e12fe35a9d010ad2541bccd670afc..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/a-watercolor-painting-of-a-fire.png and /dev/null differ
diff --git a/stable_diffusion/assets/birdhouse.png b/stable_diffusion/assets/birdhouse.png
deleted file mode 100644
index 872d49c0e2c16de6b2c303cedf4b5ec85851aeae..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/birdhouse.png and /dev/null differ
diff --git a/stable_diffusion/assets/fire.png b/stable_diffusion/assets/fire.png
deleted file mode 100644
index 64c24feae84669ce3c0df564ca44c25d2b40ea13..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/fire.png and /dev/null differ
diff --git a/stable_diffusion/assets/inpainting.png b/stable_diffusion/assets/inpainting.png
deleted file mode 100644
index d6b9ef85fe7cc74c258b40e2f0be4932f93cbee9..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/inpainting.png and /dev/null differ
diff --git a/stable_diffusion/assets/modelfigure.png b/stable_diffusion/assets/modelfigure.png
deleted file mode 100644
index 6b1d3e6b9d59fd8d38468e7bce47c903a4e1c932..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/modelfigure.png and /dev/null differ
diff --git a/stable_diffusion/assets/rdm-preview.jpg b/stable_diffusion/assets/rdm-preview.jpg
deleted file mode 100644
index 3838b0f6bb71a092c8ea1739c5d577fd4ba4ac0a..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/rdm-preview.jpg and /dev/null differ
diff --git a/stable_diffusion/assets/reconstruction1.png b/stable_diffusion/assets/reconstruction1.png
deleted file mode 100644
index 0752799ccc98c2555218d48ede6fcc42bc4693e2..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/reconstruction1.png and /dev/null differ
diff --git a/stable_diffusion/assets/reconstruction2.png b/stable_diffusion/assets/reconstruction2.png
deleted file mode 100644
index b8e7a36c1f00bf60ce0e7e24c2a1f8e0e04b23d7..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/reconstruction2.png and /dev/null differ
diff --git a/stable_diffusion/assets/results.gif.REMOVED.git-id b/stable_diffusion/assets/results.gif.REMOVED.git-id
deleted file mode 100644
index e88786e57a6ed704f7068cfa04b61bc5cfc63732..0000000000000000000000000000000000000000
--- a/stable_diffusion/assets/results.gif.REMOVED.git-id
+++ /dev/null
@@ -1 +0,0 @@
-82b6590e670a32196093cc6333ea19e6547d07de
\ No newline at end of file
diff --git a/stable_diffusion/assets/rick.jpeg b/stable_diffusion/assets/rick.jpeg
deleted file mode 100644
index 995486061ba50bd0ae2e213c72de87a27326632f..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/rick.jpeg and /dev/null differ
diff --git a/stable_diffusion/assets/stable-samples/img2img/mountains-1.png b/stable_diffusion/assets/stable-samples/img2img/mountains-1.png
deleted file mode 100644
index d01b8350743e3bd4fdf653d1563ee7d5c2153323..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/stable-samples/img2img/mountains-1.png and /dev/null differ
diff --git a/stable_diffusion/assets/stable-samples/img2img/mountains-2.png b/stable_diffusion/assets/stable-samples/img2img/mountains-2.png
deleted file mode 100644
index e9f4e708535f0e5b53372a3a39e6aa31dce383fd..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/stable-samples/img2img/mountains-2.png and /dev/null differ
diff --git a/stable_diffusion/assets/stable-samples/img2img/mountains-3.png b/stable_diffusion/assets/stable-samples/img2img/mountains-3.png
deleted file mode 100644
index 017de3012c2f03e4f87cce21b4d3342713b9ae95..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/stable-samples/img2img/mountains-3.png and /dev/null differ
diff --git a/stable_diffusion/assets/stable-samples/img2img/sketch-mountains-input.jpg b/stable_diffusion/assets/stable-samples/img2img/sketch-mountains-input.jpg
deleted file mode 100644
index 79d652b8003bbcd1d0c0ba2d984dbbe299ac5916..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/stable-samples/img2img/sketch-mountains-input.jpg and /dev/null differ
diff --git a/stable_diffusion/assets/stable-samples/img2img/upscaling-in.png.REMOVED.git-id b/stable_diffusion/assets/stable-samples/img2img/upscaling-in.png.REMOVED.git-id
deleted file mode 100644
index 92769a564f95353f356723ed9ec252a92f3ab762..0000000000000000000000000000000000000000
--- a/stable_diffusion/assets/stable-samples/img2img/upscaling-in.png.REMOVED.git-id
+++ /dev/null
@@ -1 +0,0 @@
-501c31c21751664957e69ce52cad1818b6d2f4ce
\ No newline at end of file
diff --git a/stable_diffusion/assets/stable-samples/img2img/upscaling-out.png.REMOVED.git-id b/stable_diffusion/assets/stable-samples/img2img/upscaling-out.png.REMOVED.git-id
deleted file mode 100644
index a2d084ba587dd4e74789f80e1c298d58f841314a..0000000000000000000000000000000000000000
--- a/stable_diffusion/assets/stable-samples/img2img/upscaling-out.png.REMOVED.git-id
+++ /dev/null
@@ -1 +0,0 @@
-1c4bb25a779f34d86b2d90e584ac67af91bb1303
\ No newline at end of file
diff --git a/stable_diffusion/assets/stable-samples/txt2img/000002025.png b/stable_diffusion/assets/stable-samples/txt2img/000002025.png
deleted file mode 100644
index 66891c142e9cfe3e0b0193d16b5a45d7b72a7d8a..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/stable-samples/txt2img/000002025.png and /dev/null differ
diff --git a/stable_diffusion/assets/stable-samples/txt2img/000002035.png b/stable_diffusion/assets/stable-samples/txt2img/000002035.png
deleted file mode 100644
index c707c130932a13fae76584324368fedc33faeba4..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/stable-samples/txt2img/000002035.png and /dev/null differ
diff --git a/stable_diffusion/assets/stable-samples/txt2img/merged-0005.png.REMOVED.git-id b/stable_diffusion/assets/stable-samples/txt2img/merged-0005.png.REMOVED.git-id
deleted file mode 100644
index 077f39776bc8c196e882a57cacc6e7b62c884a03..0000000000000000000000000000000000000000
--- a/stable_diffusion/assets/stable-samples/txt2img/merged-0005.png.REMOVED.git-id
+++ /dev/null
@@ -1 +0,0 @@
-ca0a1af206555f0f208a1ab879e95efedc1b1c5b
\ No newline at end of file
diff --git a/stable_diffusion/assets/stable-samples/txt2img/merged-0006.png.REMOVED.git-id b/stable_diffusion/assets/stable-samples/txt2img/merged-0006.png.REMOVED.git-id
deleted file mode 100644
index 7ef20e4e5e0d85104320b1b4e20d9679039095a8..0000000000000000000000000000000000000000
--- a/stable_diffusion/assets/stable-samples/txt2img/merged-0006.png.REMOVED.git-id
+++ /dev/null
@@ -1 +0,0 @@
-999f3703230580e8c89e9081abd6a1f8f50896d4
\ No newline at end of file
diff --git a/stable_diffusion/assets/stable-samples/txt2img/merged-0007.png.REMOVED.git-id b/stable_diffusion/assets/stable-samples/txt2img/merged-0007.png.REMOVED.git-id
deleted file mode 100644
index 8fbb31f3c6294c6dc625fcc173efefda6e3d4f4a..0000000000000000000000000000000000000000
--- a/stable_diffusion/assets/stable-samples/txt2img/merged-0007.png.REMOVED.git-id
+++ /dev/null
@@ -1 +0,0 @@
-af390acaf601283782d6f479d4cade4d78e30b26
\ No newline at end of file
diff --git a/stable_diffusion/assets/the-earth-is-on-fire,-oil-on-canvas.png b/stable_diffusion/assets/the-earth-is-on-fire,-oil-on-canvas.png
deleted file mode 100644
index 90797208da649c0fd48825800411a0a99161128c..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/the-earth-is-on-fire,-oil-on-canvas.png and /dev/null differ
diff --git a/stable_diffusion/assets/txt2img-convsample.png b/stable_diffusion/assets/txt2img-convsample.png
deleted file mode 100644
index 255c265864692d1b65cbd1aae84c5e0590a38e71..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/txt2img-convsample.png and /dev/null differ
diff --git a/stable_diffusion/assets/txt2img-preview.png.REMOVED.git-id b/stable_diffusion/assets/txt2img-preview.png.REMOVED.git-id
deleted file mode 100644
index 61a349bd4de776be6a457158fc7bb6804f85fd0c..0000000000000000000000000000000000000000
--- a/stable_diffusion/assets/txt2img-preview.png.REMOVED.git-id
+++ /dev/null
@@ -1 +0,0 @@
-51ee1c235dfdc63d4c41de7d303d03730e43c33c
\ No newline at end of file
diff --git a/stable_diffusion/assets/v1-variants-scores.jpg b/stable_diffusion/assets/v1-variants-scores.jpg
deleted file mode 100644
index 7d997ba52e3bb4a3a8e285512cb9e75e5a70f9bb..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/assets/v1-variants-scores.jpg and /dev/null differ
diff --git a/stable_diffusion/configs/autoencoder/autoencoder_kl_16x16x16.yaml b/stable_diffusion/configs/autoencoder/autoencoder_kl_16x16x16.yaml
deleted file mode 100644
index 5f1d10ec75e5de5932cdcf0e8d3c712feac7578e..0000000000000000000000000000000000000000
--- a/stable_diffusion/configs/autoencoder/autoencoder_kl_16x16x16.yaml
+++ /dev/null
@@ -1,54 +0,0 @@
-model:
- base_learning_rate: 4.5e-6
- target: ldm.models.autoencoder.AutoencoderKL
- params:
- monitor: "val/rec_loss"
- embed_dim: 16
- lossconfig:
- target: ldm.modules.losses.LPIPSWithDiscriminator
- params:
- disc_start: 50001
- kl_weight: 0.000001
- disc_weight: 0.5
-
- ddconfig:
- double_z: True
- z_channels: 16
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult: [ 1,1,2,2,4] # num_down = len(ch_mult)-1
- num_res_blocks: 2
- attn_resolutions: [16]
- dropout: 0.0
-
-
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 12
- wrap: True
- train:
- target: ldm.data.imagenet.ImageNetSRTrain
- params:
- size: 256
- degradation: pil_nearest
- validation:
- target: ldm.data.imagenet.ImageNetSRValidation
- params:
- size: 256
- degradation: pil_nearest
-
-lightning:
- callbacks:
- image_logger:
- target: main.ImageLogger
- params:
- batch_frequency: 1000
- max_images: 8
- increase_log_steps: True
-
- trainer:
- benchmark: True
- accumulate_grad_batches: 2
diff --git a/stable_diffusion/configs/autoencoder/autoencoder_kl_32x32x4.yaml b/stable_diffusion/configs/autoencoder/autoencoder_kl_32x32x4.yaml
deleted file mode 100644
index ab8b36fe6e3e95df2942a437b7d9c919b60d5c86..0000000000000000000000000000000000000000
--- a/stable_diffusion/configs/autoencoder/autoencoder_kl_32x32x4.yaml
+++ /dev/null
@@ -1,53 +0,0 @@
-model:
- base_learning_rate: 4.5e-6
- target: ldm.models.autoencoder.AutoencoderKL
- params:
- monitor: "val/rec_loss"
- embed_dim: 4
- lossconfig:
- target: ldm.modules.losses.LPIPSWithDiscriminator
- params:
- disc_start: 50001
- kl_weight: 0.000001
- disc_weight: 0.5
-
- ddconfig:
- double_z: True
- z_channels: 4
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult: [ 1,2,4,4 ] # num_down = len(ch_mult)-1
- num_res_blocks: 2
- attn_resolutions: [ ]
- dropout: 0.0
-
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 12
- wrap: True
- train:
- target: ldm.data.imagenet.ImageNetSRTrain
- params:
- size: 256
- degradation: pil_nearest
- validation:
- target: ldm.data.imagenet.ImageNetSRValidation
- params:
- size: 256
- degradation: pil_nearest
-
-lightning:
- callbacks:
- image_logger:
- target: main.ImageLogger
- params:
- batch_frequency: 1000
- max_images: 8
- increase_log_steps: True
-
- trainer:
- benchmark: True
- accumulate_grad_batches: 2
diff --git a/stable_diffusion/configs/autoencoder/autoencoder_kl_64x64x3.yaml b/stable_diffusion/configs/autoencoder/autoencoder_kl_64x64x3.yaml
deleted file mode 100644
index 5e3db5c4e28bcb58be4ee0872511059f5cc965ad..0000000000000000000000000000000000000000
--- a/stable_diffusion/configs/autoencoder/autoencoder_kl_64x64x3.yaml
+++ /dev/null
@@ -1,54 +0,0 @@
-model:
- base_learning_rate: 4.5e-6
- target: ldm.models.autoencoder.AutoencoderKL
- params:
- monitor: "val/rec_loss"
- embed_dim: 3
- lossconfig:
- target: ldm.modules.losses.LPIPSWithDiscriminator
- params:
- disc_start: 50001
- kl_weight: 0.000001
- disc_weight: 0.5
-
- ddconfig:
- double_z: True
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult: [ 1,2,4 ] # num_down = len(ch_mult)-1
- num_res_blocks: 2
- attn_resolutions: [ ]
- dropout: 0.0
-
-
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 12
- wrap: True
- train:
- target: ldm.data.imagenet.ImageNetSRTrain
- params:
- size: 256
- degradation: pil_nearest
- validation:
- target: ldm.data.imagenet.ImageNetSRValidation
- params:
- size: 256
- degradation: pil_nearest
-
-lightning:
- callbacks:
- image_logger:
- target: main.ImageLogger
- params:
- batch_frequency: 1000
- max_images: 8
- increase_log_steps: True
-
- trainer:
- benchmark: True
- accumulate_grad_batches: 2
diff --git a/stable_diffusion/configs/autoencoder/autoencoder_kl_8x8x64.yaml b/stable_diffusion/configs/autoencoder/autoencoder_kl_8x8x64.yaml
deleted file mode 100644
index 5ccd09d38e4926706fb1d287f4f65619627e0eb7..0000000000000000000000000000000000000000
--- a/stable_diffusion/configs/autoencoder/autoencoder_kl_8x8x64.yaml
+++ /dev/null
@@ -1,53 +0,0 @@
-model:
- base_learning_rate: 4.5e-6
- target: ldm.models.autoencoder.AutoencoderKL
- params:
- monitor: "val/rec_loss"
- embed_dim: 64
- lossconfig:
- target: ldm.modules.losses.LPIPSWithDiscriminator
- params:
- disc_start: 50001
- kl_weight: 0.000001
- disc_weight: 0.5
-
- ddconfig:
- double_z: True
- z_channels: 64
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult: [ 1,1,2,2,4,4] # num_down = len(ch_mult)-1
- num_res_blocks: 2
- attn_resolutions: [16,8]
- dropout: 0.0
-
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 12
- wrap: True
- train:
- target: ldm.data.imagenet.ImageNetSRTrain
- params:
- size: 256
- degradation: pil_nearest
- validation:
- target: ldm.data.imagenet.ImageNetSRValidation
- params:
- size: 256
- degradation: pil_nearest
-
-lightning:
- callbacks:
- image_logger:
- target: main.ImageLogger
- params:
- batch_frequency: 1000
- max_images: 8
- increase_log_steps: True
-
- trainer:
- benchmark: True
- accumulate_grad_batches: 2
diff --git a/stable_diffusion/configs/latent-diffusion/celebahq-ldm-vq-4.yaml b/stable_diffusion/configs/latent-diffusion/celebahq-ldm-vq-4.yaml
deleted file mode 100644
index 89b3df4fe1822295d509dca2237ea891cdd964bf..0000000000000000000000000000000000000000
--- a/stable_diffusion/configs/latent-diffusion/celebahq-ldm-vq-4.yaml
+++ /dev/null
@@ -1,86 +0,0 @@
-model:
- base_learning_rate: 2.0e-06
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0195
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- first_stage_key: image
- image_size: 64
- channels: 3
- monitor: val/loss_simple_ema
-
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 64
- in_channels: 3
- out_channels: 3
- model_channels: 224
- attention_resolutions:
- # note: this isn\t actually the resolution but
- # the downsampling factor, i.e. this corresnponds to
- # attention on spatial resolution 8,16,32, as the
- # spatial reolution of the latents is 64 for f4
- - 8
- - 4
- - 2
- num_res_blocks: 2
- channel_mult:
- - 1
- - 2
- - 3
- - 4
- num_head_channels: 32
- first_stage_config:
- target: ldm.models.autoencoder.VQModelInterface
- params:
- embed_dim: 3
- n_embed: 8192
- ckpt_path: models/first_stage_models/vq-f4/model.ckpt
- ddconfig:
- double_z: false
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
- cond_stage_config: __is_unconditional__
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 48
- num_workers: 5
- wrap: false
- train:
- target: taming.data.faceshq.CelebAHQTrain
- params:
- size: 256
- validation:
- target: taming.data.faceshq.CelebAHQValidation
- params:
- size: 256
-
-
-lightning:
- callbacks:
- image_logger:
- target: main.ImageLogger
- params:
- batch_frequency: 5000
- max_images: 8
- increase_log_steps: False
-
- trainer:
- benchmark: True
\ No newline at end of file
diff --git a/stable_diffusion/configs/latent-diffusion/cin-ldm-vq-f8.yaml b/stable_diffusion/configs/latent-diffusion/cin-ldm-vq-f8.yaml
deleted file mode 100644
index b8cd9e2ef5d26870bdbb26bf04a9b47aaa78feeb..0000000000000000000000000000000000000000
--- a/stable_diffusion/configs/latent-diffusion/cin-ldm-vq-f8.yaml
+++ /dev/null
@@ -1,98 +0,0 @@
-model:
- base_learning_rate: 1.0e-06
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0195
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- first_stage_key: image
- cond_stage_key: class_label
- image_size: 32
- channels: 4
- cond_stage_trainable: true
- conditioning_key: crossattn
- monitor: val/loss_simple_ema
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 32
- in_channels: 4
- out_channels: 4
- model_channels: 256
- attention_resolutions:
- #note: this isn\t actually the resolution but
- # the downsampling factor, i.e. this corresnponds to
- # attention on spatial resolution 8,16,32, as the
- # spatial reolution of the latents is 32 for f8
- - 4
- - 2
- - 1
- num_res_blocks: 2
- channel_mult:
- - 1
- - 2
- - 4
- num_head_channels: 32
- use_spatial_transformer: true
- transformer_depth: 1
- context_dim: 512
- first_stage_config:
- target: ldm.models.autoencoder.VQModelInterface
- params:
- embed_dim: 4
- n_embed: 16384
- ckpt_path: configs/first_stage_models/vq-f8/model.yaml
- ddconfig:
- double_z: false
- z_channels: 4
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions:
- - 32
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
- cond_stage_config:
- target: ldm.modules.encoders.modules.ClassEmbedder
- params:
- embed_dim: 512
- key: class_label
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 64
- num_workers: 12
- wrap: false
- train:
- target: ldm.data.imagenet.ImageNetTrain
- params:
- config:
- size: 256
- validation:
- target: ldm.data.imagenet.ImageNetValidation
- params:
- config:
- size: 256
-
-
-lightning:
- callbacks:
- image_logger:
- target: main.ImageLogger
- params:
- batch_frequency: 5000
- max_images: 8
- increase_log_steps: False
-
- trainer:
- benchmark: True
\ No newline at end of file
diff --git a/stable_diffusion/configs/latent-diffusion/cin256-v2.yaml b/stable_diffusion/configs/latent-diffusion/cin256-v2.yaml
deleted file mode 100644
index b7c1aa240c740d1e5b7693f9543f996d727a302d..0000000000000000000000000000000000000000
--- a/stable_diffusion/configs/latent-diffusion/cin256-v2.yaml
+++ /dev/null
@@ -1,68 +0,0 @@
-model:
- base_learning_rate: 0.0001
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0195
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- first_stage_key: image
- cond_stage_key: class_label
- image_size: 64
- channels: 3
- cond_stage_trainable: true
- conditioning_key: crossattn
- monitor: val/loss
- use_ema: False
-
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 64
- in_channels: 3
- out_channels: 3
- model_channels: 192
- attention_resolutions:
- - 8
- - 4
- - 2
- num_res_blocks: 2
- channel_mult:
- - 1
- - 2
- - 3
- - 5
- num_heads: 1
- use_spatial_transformer: true
- transformer_depth: 1
- context_dim: 512
-
- first_stage_config:
- target: ldm.models.autoencoder.VQModelInterface
- params:
- embed_dim: 3
- n_embed: 8192
- ddconfig:
- double_z: false
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
-
- cond_stage_config:
- target: ldm.modules.encoders.modules.ClassEmbedder
- params:
- n_classes: 1001
- embed_dim: 512
- key: class_label
diff --git a/stable_diffusion/configs/latent-diffusion/ffhq-ldm-vq-4.yaml b/stable_diffusion/configs/latent-diffusion/ffhq-ldm-vq-4.yaml
deleted file mode 100644
index 1899e30f77222142d7b33f45a6dcff086a31e174..0000000000000000000000000000000000000000
--- a/stable_diffusion/configs/latent-diffusion/ffhq-ldm-vq-4.yaml
+++ /dev/null
@@ -1,85 +0,0 @@
-model:
- base_learning_rate: 2.0e-06
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0195
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- first_stage_key: image
- image_size: 64
- channels: 3
- monitor: val/loss_simple_ema
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 64
- in_channels: 3
- out_channels: 3
- model_channels: 224
- attention_resolutions:
- # note: this isn\t actually the resolution but
- # the downsampling factor, i.e. this corresnponds to
- # attention on spatial resolution 8,16,32, as the
- # spatial reolution of the latents is 64 for f4
- - 8
- - 4
- - 2
- num_res_blocks: 2
- channel_mult:
- - 1
- - 2
- - 3
- - 4
- num_head_channels: 32
- first_stage_config:
- target: ldm.models.autoencoder.VQModelInterface
- params:
- embed_dim: 3
- n_embed: 8192
- ckpt_path: configs/first_stage_models/vq-f4/model.yaml
- ddconfig:
- double_z: false
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
- cond_stage_config: __is_unconditional__
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 42
- num_workers: 5
- wrap: false
- train:
- target: taming.data.faceshq.FFHQTrain
- params:
- size: 256
- validation:
- target: taming.data.faceshq.FFHQValidation
- params:
- size: 256
-
-
-lightning:
- callbacks:
- image_logger:
- target: main.ImageLogger
- params:
- batch_frequency: 5000
- max_images: 8
- increase_log_steps: False
-
- trainer:
- benchmark: True
\ No newline at end of file
diff --git a/stable_diffusion/configs/latent-diffusion/lsun_bedrooms-ldm-vq-4.yaml b/stable_diffusion/configs/latent-diffusion/lsun_bedrooms-ldm-vq-4.yaml
deleted file mode 100644
index c4ca66c16c00a0c3fd13ae1ad03635039161e7ad..0000000000000000000000000000000000000000
--- a/stable_diffusion/configs/latent-diffusion/lsun_bedrooms-ldm-vq-4.yaml
+++ /dev/null
@@ -1,85 +0,0 @@
-model:
- base_learning_rate: 2.0e-06
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0195
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- first_stage_key: image
- image_size: 64
- channels: 3
- monitor: val/loss_simple_ema
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 64
- in_channels: 3
- out_channels: 3
- model_channels: 224
- attention_resolutions:
- # note: this isn\t actually the resolution but
- # the downsampling factor, i.e. this corresnponds to
- # attention on spatial resolution 8,16,32, as the
- # spatial reolution of the latents is 64 for f4
- - 8
- - 4
- - 2
- num_res_blocks: 2
- channel_mult:
- - 1
- - 2
- - 3
- - 4
- num_head_channels: 32
- first_stage_config:
- target: ldm.models.autoencoder.VQModelInterface
- params:
- ckpt_path: configs/first_stage_models/vq-f4/model.yaml
- embed_dim: 3
- n_embed: 8192
- ddconfig:
- double_z: false
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
- cond_stage_config: __is_unconditional__
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 48
- num_workers: 5
- wrap: false
- train:
- target: ldm.data.lsun.LSUNBedroomsTrain
- params:
- size: 256
- validation:
- target: ldm.data.lsun.LSUNBedroomsValidation
- params:
- size: 256
-
-
-lightning:
- callbacks:
- image_logger:
- target: main.ImageLogger
- params:
- batch_frequency: 5000
- max_images: 8
- increase_log_steps: False
-
- trainer:
- benchmark: True
\ No newline at end of file
diff --git a/stable_diffusion/configs/latent-diffusion/lsun_churches-ldm-kl-8.yaml b/stable_diffusion/configs/latent-diffusion/lsun_churches-ldm-kl-8.yaml
deleted file mode 100644
index 18dc8c2d9cfb925b0f45e5b89186d71e3274b086..0000000000000000000000000000000000000000
--- a/stable_diffusion/configs/latent-diffusion/lsun_churches-ldm-kl-8.yaml
+++ /dev/null
@@ -1,91 +0,0 @@
-model:
- base_learning_rate: 5.0e-5 # set to target_lr by starting main.py with '--scale_lr False'
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0155
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- loss_type: l1
- first_stage_key: "image"
- cond_stage_key: "image"
- image_size: 32
- channels: 4
- cond_stage_trainable: False
- concat_mode: False
- scale_by_std: True
- monitor: 'val/loss_simple_ema'
-
- scheduler_config: # 10000 warmup steps
- target: ldm.lr_scheduler.LambdaLinearScheduler
- params:
- warm_up_steps: [10000]
- cycle_lengths: [10000000000000]
- f_start: [1.e-6]
- f_max: [1.]
- f_min: [ 1.]
-
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 32
- in_channels: 4
- out_channels: 4
- model_channels: 192
- attention_resolutions: [ 1, 2, 4, 8 ] # 32, 16, 8, 4
- num_res_blocks: 2
- channel_mult: [ 1,2,2,4,4 ] # 32, 16, 8, 4, 2
- num_heads: 8
- use_scale_shift_norm: True
- resblock_updown: True
-
- first_stage_config:
- target: ldm.models.autoencoder.AutoencoderKL
- params:
- embed_dim: 4
- monitor: "val/rec_loss"
- ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
- ddconfig:
- double_z: True
- z_channels: 4
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult: [ 1,2,4,4 ] # num_down = len(ch_mult)-1
- num_res_blocks: 2
- attn_resolutions: [ ]
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
-
- cond_stage_config: "__is_unconditional__"
-
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 96
- num_workers: 5
- wrap: False
- train:
- target: ldm.data.lsun.LSUNChurchesTrain
- params:
- size: 256
- validation:
- target: ldm.data.lsun.LSUNChurchesValidation
- params:
- size: 256
-
-lightning:
- callbacks:
- image_logger:
- target: main.ImageLogger
- params:
- batch_frequency: 5000
- max_images: 8
- increase_log_steps: False
-
-
- trainer:
- benchmark: True
\ No newline at end of file
diff --git a/stable_diffusion/configs/latent-diffusion/txt2img-1p4B-eval.yaml b/stable_diffusion/configs/latent-diffusion/txt2img-1p4B-eval.yaml
deleted file mode 100644
index 8e331cbfdff7ece1ef9008754e97f60f68585a07..0000000000000000000000000000000000000000
--- a/stable_diffusion/configs/latent-diffusion/txt2img-1p4B-eval.yaml
+++ /dev/null
@@ -1,71 +0,0 @@
-model:
- base_learning_rate: 5.0e-05
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.00085
- linear_end: 0.012
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- first_stage_key: image
- cond_stage_key: caption
- image_size: 32
- channels: 4
- cond_stage_trainable: true
- conditioning_key: crossattn
- monitor: val/loss_simple_ema
- scale_factor: 0.18215
- use_ema: False
-
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 32
- in_channels: 4
- out_channels: 4
- model_channels: 320
- attention_resolutions:
- - 4
- - 2
- - 1
- num_res_blocks: 2
- channel_mult:
- - 1
- - 2
- - 4
- - 4
- num_heads: 8
- use_spatial_transformer: true
- transformer_depth: 1
- context_dim: 1280
- use_checkpoint: true
- legacy: False
-
- first_stage_config:
- target: ldm.models.autoencoder.AutoencoderKL
- params:
- embed_dim: 4
- monitor: val/rec_loss
- ddconfig:
- double_z: true
- z_channels: 4
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
-
- cond_stage_config:
- target: ldm.modules.encoders.modules.BERTEmbedder
- params:
- n_embed: 1280
- n_layer: 32
diff --git a/stable_diffusion/configs/retrieval-augmented-diffusion/768x768.yaml b/stable_diffusion/configs/retrieval-augmented-diffusion/768x768.yaml
deleted file mode 100644
index b51b1d8373ca7a259320deaffc154f89ad2b8cf4..0000000000000000000000000000000000000000
--- a/stable_diffusion/configs/retrieval-augmented-diffusion/768x768.yaml
+++ /dev/null
@@ -1,68 +0,0 @@
-model:
- base_learning_rate: 0.0001
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.015
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- first_stage_key: jpg
- cond_stage_key: nix
- image_size: 48
- channels: 16
- cond_stage_trainable: false
- conditioning_key: crossattn
- monitor: val/loss_simple_ema
- scale_by_std: false
- scale_factor: 0.22765929
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 48
- in_channels: 16
- out_channels: 16
- model_channels: 448
- attention_resolutions:
- - 4
- - 2
- - 1
- num_res_blocks: 2
- channel_mult:
- - 1
- - 2
- - 3
- - 4
- use_scale_shift_norm: false
- resblock_updown: false
- num_head_channels: 32
- use_spatial_transformer: true
- transformer_depth: 1
- context_dim: 768
- use_checkpoint: true
- first_stage_config:
- target: ldm.models.autoencoder.AutoencoderKL
- params:
- monitor: val/rec_loss
- embed_dim: 16
- ddconfig:
- double_z: true
- z_channels: 16
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 1
- - 2
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions:
- - 16
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
- cond_stage_config:
- target: torch.nn.Identity
\ No newline at end of file
diff --git a/stable_diffusion/configs/stable-diffusion/v1-inference.yaml b/stable_diffusion/configs/stable-diffusion/v1-inference.yaml
deleted file mode 100644
index d4effe569e897369918625f9d8be5603a0e6a0d6..0000000000000000000000000000000000000000
--- a/stable_diffusion/configs/stable-diffusion/v1-inference.yaml
+++ /dev/null
@@ -1,70 +0,0 @@
-model:
- base_learning_rate: 1.0e-04
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.00085
- linear_end: 0.0120
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- first_stage_key: "jpg"
- cond_stage_key: "txt"
- image_size: 64
- channels: 4
- cond_stage_trainable: false # Note: different from the one we trained before
- conditioning_key: crossattn
- monitor: val/loss_simple_ema
- scale_factor: 0.18215
- use_ema: False
-
- scheduler_config: # 10000 warmup steps
- target: ldm.lr_scheduler.LambdaLinearScheduler
- params:
- warm_up_steps: [ 10000 ]
- cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
- f_start: [ 1.e-6 ]
- f_max: [ 1. ]
- f_min: [ 1. ]
-
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 32 # unused
- in_channels: 4
- out_channels: 4
- model_channels: 320
- attention_resolutions: [ 4, 2, 1 ]
- num_res_blocks: 2
- channel_mult: [ 1, 2, 4, 4 ]
- num_heads: 8
- use_spatial_transformer: True
- transformer_depth: 1
- context_dim: 768
- use_checkpoint: True
- legacy: False
-
- first_stage_config:
- target: ldm.models.autoencoder.AutoencoderKL
- params:
- embed_dim: 4
- monitor: val/rec_loss
- ddconfig:
- double_z: true
- z_channels: 4
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
-
- cond_stage_config:
- target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
diff --git a/stable_diffusion/data/DejaVuSans.ttf b/stable_diffusion/data/DejaVuSans.ttf
deleted file mode 100644
index e5f7eecce43be41ff0703ed99e1553029b849f14..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/DejaVuSans.ttf and /dev/null differ
diff --git a/stable_diffusion/data/example_conditioning/superresolution/sample_0.jpg b/stable_diffusion/data/example_conditioning/superresolution/sample_0.jpg
deleted file mode 100644
index 09abe80ae7cf61f3071882e5eea6d15c730ab0cc..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/example_conditioning/superresolution/sample_0.jpg and /dev/null differ
diff --git a/stable_diffusion/data/example_conditioning/text_conditional/sample_0.txt b/stable_diffusion/data/example_conditioning/text_conditional/sample_0.txt
deleted file mode 100644
index de60c5c9a38bbead2956aa0c60129a26985cbf6d..0000000000000000000000000000000000000000
--- a/stable_diffusion/data/example_conditioning/text_conditional/sample_0.txt
+++ /dev/null
@@ -1 +0,0 @@
-A basket of cerries
diff --git a/stable_diffusion/data/imagenet_clsidx_to_label.txt b/stable_diffusion/data/imagenet_clsidx_to_label.txt
deleted file mode 100755
index e2fe435526be7e0dd6675885c6c74b2f9276459b..0000000000000000000000000000000000000000
--- a/stable_diffusion/data/imagenet_clsidx_to_label.txt
+++ /dev/null
@@ -1,1000 +0,0 @@
- 0: 'tench, Tinca tinca',
- 1: 'goldfish, Carassius auratus',
- 2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias',
- 3: 'tiger shark, Galeocerdo cuvieri',
- 4: 'hammerhead, hammerhead shark',
- 5: 'electric ray, crampfish, numbfish, torpedo',
- 6: 'stingray',
- 7: 'cock',
- 8: 'hen',
- 9: 'ostrich, Struthio camelus',
- 10: 'brambling, Fringilla montifringilla',
- 11: 'goldfinch, Carduelis carduelis',
- 12: 'house finch, linnet, Carpodacus mexicanus',
- 13: 'junco, snowbird',
- 14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea',
- 15: 'robin, American robin, Turdus migratorius',
- 16: 'bulbul',
- 17: 'jay',
- 18: 'magpie',
- 19: 'chickadee',
- 20: 'water ouzel, dipper',
- 21: 'kite',
- 22: 'bald eagle, American eagle, Haliaeetus leucocephalus',
- 23: 'vulture',
- 24: 'great grey owl, great gray owl, Strix nebulosa',
- 25: 'European fire salamander, Salamandra salamandra',
- 26: 'common newt, Triturus vulgaris',
- 27: 'eft',
- 28: 'spotted salamander, Ambystoma maculatum',
- 29: 'axolotl, mud puppy, Ambystoma mexicanum',
- 30: 'bullfrog, Rana catesbeiana',
- 31: 'tree frog, tree-frog',
- 32: 'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui',
- 33: 'loggerhead, loggerhead turtle, Caretta caretta',
- 34: 'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea',
- 35: 'mud turtle',
- 36: 'terrapin',
- 37: 'box turtle, box tortoise',
- 38: 'banded gecko',
- 39: 'common iguana, iguana, Iguana iguana',
- 40: 'American chameleon, anole, Anolis carolinensis',
- 41: 'whiptail, whiptail lizard',
- 42: 'agama',
- 43: 'frilled lizard, Chlamydosaurus kingi',
- 44: 'alligator lizard',
- 45: 'Gila monster, Heloderma suspectum',
- 46: 'green lizard, Lacerta viridis',
- 47: 'African chameleon, Chamaeleo chamaeleon',
- 48: 'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis',
- 49: 'African crocodile, Nile crocodile, Crocodylus niloticus',
- 50: 'American alligator, Alligator mississipiensis',
- 51: 'triceratops',
- 52: 'thunder snake, worm snake, Carphophis amoenus',
- 53: 'ringneck snake, ring-necked snake, ring snake',
- 54: 'hognose snake, puff adder, sand viper',
- 55: 'green snake, grass snake',
- 56: 'king snake, kingsnake',
- 57: 'garter snake, grass snake',
- 58: 'water snake',
- 59: 'vine snake',
- 60: 'night snake, Hypsiglena torquata',
- 61: 'boa constrictor, Constrictor constrictor',
- 62: 'rock python, rock snake, Python sebae',
- 63: 'Indian cobra, Naja naja',
- 64: 'green mamba',
- 65: 'sea snake',
- 66: 'horned viper, cerastes, sand viper, horned asp, Cerastes cornutus',
- 67: 'diamondback, diamondback rattlesnake, Crotalus adamanteus',
- 68: 'sidewinder, horned rattlesnake, Crotalus cerastes',
- 69: 'trilobite',
- 70: 'harvestman, daddy longlegs, Phalangium opilio',
- 71: 'scorpion',
- 72: 'black and gold garden spider, Argiope aurantia',
- 73: 'barn spider, Araneus cavaticus',
- 74: 'garden spider, Aranea diademata',
- 75: 'black widow, Latrodectus mactans',
- 76: 'tarantula',
- 77: 'wolf spider, hunting spider',
- 78: 'tick',
- 79: 'centipede',
- 80: 'black grouse',
- 81: 'ptarmigan',
- 82: 'ruffed grouse, partridge, Bonasa umbellus',
- 83: 'prairie chicken, prairie grouse, prairie fowl',
- 84: 'peacock',
- 85: 'quail',
- 86: 'partridge',
- 87: 'African grey, African gray, Psittacus erithacus',
- 88: 'macaw',
- 89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita',
- 90: 'lorikeet',
- 91: 'coucal',
- 92: 'bee eater',
- 93: 'hornbill',
- 94: 'hummingbird',
- 95: 'jacamar',
- 96: 'toucan',
- 97: 'drake',
- 98: 'red-breasted merganser, Mergus serrator',
- 99: 'goose',
- 100: 'black swan, Cygnus atratus',
- 101: 'tusker',
- 102: 'echidna, spiny anteater, anteater',
- 103: 'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus',
- 104: 'wallaby, brush kangaroo',
- 105: 'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus',
- 106: 'wombat',
- 107: 'jellyfish',
- 108: 'sea anemone, anemone',
- 109: 'brain coral',
- 110: 'flatworm, platyhelminth',
- 111: 'nematode, nematode worm, roundworm',
- 112: 'conch',
- 113: 'snail',
- 114: 'slug',
- 115: 'sea slug, nudibranch',
- 116: 'chiton, coat-of-mail shell, sea cradle, polyplacophore',
- 117: 'chambered nautilus, pearly nautilus, nautilus',
- 118: 'Dungeness crab, Cancer magister',
- 119: 'rock crab, Cancer irroratus',
- 120: 'fiddler crab',
- 121: 'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica',
- 122: 'American lobster, Northern lobster, Maine lobster, Homarus americanus',
- 123: 'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish',
- 124: 'crayfish, crawfish, crawdad, crawdaddy',
- 125: 'hermit crab',
- 126: 'isopod',
- 127: 'white stork, Ciconia ciconia',
- 128: 'black stork, Ciconia nigra',
- 129: 'spoonbill',
- 130: 'flamingo',
- 131: 'little blue heron, Egretta caerulea',
- 132: 'American egret, great white heron, Egretta albus',
- 133: 'bittern',
- 134: 'crane',
- 135: 'limpkin, Aramus pictus',
- 136: 'European gallinule, Porphyrio porphyrio',
- 137: 'American coot, marsh hen, mud hen, water hen, Fulica americana',
- 138: 'bustard',
- 139: 'ruddy turnstone, Arenaria interpres',
- 140: 'red-backed sandpiper, dunlin, Erolia alpina',
- 141: 'redshank, Tringa totanus',
- 142: 'dowitcher',
- 143: 'oystercatcher, oyster catcher',
- 144: 'pelican',
- 145: 'king penguin, Aptenodytes patagonica',
- 146: 'albatross, mollymawk',
- 147: 'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus',
- 148: 'killer whale, killer, orca, grampus, sea wolf, Orcinus orca',
- 149: 'dugong, Dugong dugon',
- 150: 'sea lion',
- 151: 'Chihuahua',
- 152: 'Japanese spaniel',
- 153: 'Maltese dog, Maltese terrier, Maltese',
- 154: 'Pekinese, Pekingese, Peke',
- 155: 'Shih-Tzu',
- 156: 'Blenheim spaniel',
- 157: 'papillon',
- 158: 'toy terrier',
- 159: 'Rhodesian ridgeback',
- 160: 'Afghan hound, Afghan',
- 161: 'basset, basset hound',
- 162: 'beagle',
- 163: 'bloodhound, sleuthhound',
- 164: 'bluetick',
- 165: 'black-and-tan coonhound',
- 166: 'Walker hound, Walker foxhound',
- 167: 'English foxhound',
- 168: 'redbone',
- 169: 'borzoi, Russian wolfhound',
- 170: 'Irish wolfhound',
- 171: 'Italian greyhound',
- 172: 'whippet',
- 173: 'Ibizan hound, Ibizan Podenco',
- 174: 'Norwegian elkhound, elkhound',
- 175: 'otterhound, otter hound',
- 176: 'Saluki, gazelle hound',
- 177: 'Scottish deerhound, deerhound',
- 178: 'Weimaraner',
- 179: 'Staffordshire bullterrier, Staffordshire bull terrier',
- 180: 'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier',
- 181: 'Bedlington terrier',
- 182: 'Border terrier',
- 183: 'Kerry blue terrier',
- 184: 'Irish terrier',
- 185: 'Norfolk terrier',
- 186: 'Norwich terrier',
- 187: 'Yorkshire terrier',
- 188: 'wire-haired fox terrier',
- 189: 'Lakeland terrier',
- 190: 'Sealyham terrier, Sealyham',
- 191: 'Airedale, Airedale terrier',
- 192: 'cairn, cairn terrier',
- 193: 'Australian terrier',
- 194: 'Dandie Dinmont, Dandie Dinmont terrier',
- 195: 'Boston bull, Boston terrier',
- 196: 'miniature schnauzer',
- 197: 'giant schnauzer',
- 198: 'standard schnauzer',
- 199: 'Scotch terrier, Scottish terrier, Scottie',
- 200: 'Tibetan terrier, chrysanthemum dog',
- 201: 'silky terrier, Sydney silky',
- 202: 'soft-coated wheaten terrier',
- 203: 'West Highland white terrier',
- 204: 'Lhasa, Lhasa apso',
- 205: 'flat-coated retriever',
- 206: 'curly-coated retriever',
- 207: 'golden retriever',
- 208: 'Labrador retriever',
- 209: 'Chesapeake Bay retriever',
- 210: 'German short-haired pointer',
- 211: 'vizsla, Hungarian pointer',
- 212: 'English setter',
- 213: 'Irish setter, red setter',
- 214: 'Gordon setter',
- 215: 'Brittany spaniel',
- 216: 'clumber, clumber spaniel',
- 217: 'English springer, English springer spaniel',
- 218: 'Welsh springer spaniel',
- 219: 'cocker spaniel, English cocker spaniel, cocker',
- 220: 'Sussex spaniel',
- 221: 'Irish water spaniel',
- 222: 'kuvasz',
- 223: 'schipperke',
- 224: 'groenendael',
- 225: 'malinois',
- 226: 'briard',
- 227: 'kelpie',
- 228: 'komondor',
- 229: 'Old English sheepdog, bobtail',
- 230: 'Shetland sheepdog, Shetland sheep dog, Shetland',
- 231: 'collie',
- 232: 'Border collie',
- 233: 'Bouvier des Flandres, Bouviers des Flandres',
- 234: 'Rottweiler',
- 235: 'German shepherd, German shepherd dog, German police dog, alsatian',
- 236: 'Doberman, Doberman pinscher',
- 237: 'miniature pinscher',
- 238: 'Greater Swiss Mountain dog',
- 239: 'Bernese mountain dog',
- 240: 'Appenzeller',
- 241: 'EntleBucher',
- 242: 'boxer',
- 243: 'bull mastiff',
- 244: 'Tibetan mastiff',
- 245: 'French bulldog',
- 246: 'Great Dane',
- 247: 'Saint Bernard, St Bernard',
- 248: 'Eskimo dog, husky',
- 249: 'malamute, malemute, Alaskan malamute',
- 250: 'Siberian husky',
- 251: 'dalmatian, coach dog, carriage dog',
- 252: 'affenpinscher, monkey pinscher, monkey dog',
- 253: 'basenji',
- 254: 'pug, pug-dog',
- 255: 'Leonberg',
- 256: 'Newfoundland, Newfoundland dog',
- 257: 'Great Pyrenees',
- 258: 'Samoyed, Samoyede',
- 259: 'Pomeranian',
- 260: 'chow, chow chow',
- 261: 'keeshond',
- 262: 'Brabancon griffon',
- 263: 'Pembroke, Pembroke Welsh corgi',
- 264: 'Cardigan, Cardigan Welsh corgi',
- 265: 'toy poodle',
- 266: 'miniature poodle',
- 267: 'standard poodle',
- 268: 'Mexican hairless',
- 269: 'timber wolf, grey wolf, gray wolf, Canis lupus',
- 270: 'white wolf, Arctic wolf, Canis lupus tundrarum',
- 271: 'red wolf, maned wolf, Canis rufus, Canis niger',
- 272: 'coyote, prairie wolf, brush wolf, Canis latrans',
- 273: 'dingo, warrigal, warragal, Canis dingo',
- 274: 'dhole, Cuon alpinus',
- 275: 'African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus',
- 276: 'hyena, hyaena',
- 277: 'red fox, Vulpes vulpes',
- 278: 'kit fox, Vulpes macrotis',
- 279: 'Arctic fox, white fox, Alopex lagopus',
- 280: 'grey fox, gray fox, Urocyon cinereoargenteus',
- 281: 'tabby, tabby cat',
- 282: 'tiger cat',
- 283: 'Persian cat',
- 284: 'Siamese cat, Siamese',
- 285: 'Egyptian cat',
- 286: 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor',
- 287: 'lynx, catamount',
- 288: 'leopard, Panthera pardus',
- 289: 'snow leopard, ounce, Panthera uncia',
- 290: 'jaguar, panther, Panthera onca, Felis onca',
- 291: 'lion, king of beasts, Panthera leo',
- 292: 'tiger, Panthera tigris',
- 293: 'cheetah, chetah, Acinonyx jubatus',
- 294: 'brown bear, bruin, Ursus arctos',
- 295: 'American black bear, black bear, Ursus americanus, Euarctos americanus',
- 296: 'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus',
- 297: 'sloth bear, Melursus ursinus, Ursus ursinus',
- 298: 'mongoose',
- 299: 'meerkat, mierkat',
- 300: 'tiger beetle',
- 301: 'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle',
- 302: 'ground beetle, carabid beetle',
- 303: 'long-horned beetle, longicorn, longicorn beetle',
- 304: 'leaf beetle, chrysomelid',
- 305: 'dung beetle',
- 306: 'rhinoceros beetle',
- 307: 'weevil',
- 308: 'fly',
- 309: 'bee',
- 310: 'ant, emmet, pismire',
- 311: 'grasshopper, hopper',
- 312: 'cricket',
- 313: 'walking stick, walkingstick, stick insect',
- 314: 'cockroach, roach',
- 315: 'mantis, mantid',
- 316: 'cicada, cicala',
- 317: 'leafhopper',
- 318: 'lacewing, lacewing fly',
- 319: "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk",
- 320: 'damselfly',
- 321: 'admiral',
- 322: 'ringlet, ringlet butterfly',
- 323: 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus',
- 324: 'cabbage butterfly',
- 325: 'sulphur butterfly, sulfur butterfly',
- 326: 'lycaenid, lycaenid butterfly',
- 327: 'starfish, sea star',
- 328: 'sea urchin',
- 329: 'sea cucumber, holothurian',
- 330: 'wood rabbit, cottontail, cottontail rabbit',
- 331: 'hare',
- 332: 'Angora, Angora rabbit',
- 333: 'hamster',
- 334: 'porcupine, hedgehog',
- 335: 'fox squirrel, eastern fox squirrel, Sciurus niger',
- 336: 'marmot',
- 337: 'beaver',
- 338: 'guinea pig, Cavia cobaya',
- 339: 'sorrel',
- 340: 'zebra',
- 341: 'hog, pig, grunter, squealer, Sus scrofa',
- 342: 'wild boar, boar, Sus scrofa',
- 343: 'warthog',
- 344: 'hippopotamus, hippo, river horse, Hippopotamus amphibius',
- 345: 'ox',
- 346: 'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis',
- 347: 'bison',
- 348: 'ram, tup',
- 349: 'bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis',
- 350: 'ibex, Capra ibex',
- 351: 'hartebeest',
- 352: 'impala, Aepyceros melampus',
- 353: 'gazelle',
- 354: 'Arabian camel, dromedary, Camelus dromedarius',
- 355: 'llama',
- 356: 'weasel',
- 357: 'mink',
- 358: 'polecat, fitch, foulmart, foumart, Mustela putorius',
- 359: 'black-footed ferret, ferret, Mustela nigripes',
- 360: 'otter',
- 361: 'skunk, polecat, wood pussy',
- 362: 'badger',
- 363: 'armadillo',
- 364: 'three-toed sloth, ai, Bradypus tridactylus',
- 365: 'orangutan, orang, orangutang, Pongo pygmaeus',
- 366: 'gorilla, Gorilla gorilla',
- 367: 'chimpanzee, chimp, Pan troglodytes',
- 368: 'gibbon, Hylobates lar',
- 369: 'siamang, Hylobates syndactylus, Symphalangus syndactylus',
- 370: 'guenon, guenon monkey',
- 371: 'patas, hussar monkey, Erythrocebus patas',
- 372: 'baboon',
- 373: 'macaque',
- 374: 'langur',
- 375: 'colobus, colobus monkey',
- 376: 'proboscis monkey, Nasalis larvatus',
- 377: 'marmoset',
- 378: 'capuchin, ringtail, Cebus capucinus',
- 379: 'howler monkey, howler',
- 380: 'titi, titi monkey',
- 381: 'spider monkey, Ateles geoffroyi',
- 382: 'squirrel monkey, Saimiri sciureus',
- 383: 'Madagascar cat, ring-tailed lemur, Lemur catta',
- 384: 'indri, indris, Indri indri, Indri brevicaudatus',
- 385: 'Indian elephant, Elephas maximus',
- 386: 'African elephant, Loxodonta africana',
- 387: 'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens',
- 388: 'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca',
- 389: 'barracouta, snoek',
- 390: 'eel',
- 391: 'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch',
- 392: 'rock beauty, Holocanthus tricolor',
- 393: 'anemone fish',
- 394: 'sturgeon',
- 395: 'gar, garfish, garpike, billfish, Lepisosteus osseus',
- 396: 'lionfish',
- 397: 'puffer, pufferfish, blowfish, globefish',
- 398: 'abacus',
- 399: 'abaya',
- 400: "academic gown, academic robe, judge's robe",
- 401: 'accordion, piano accordion, squeeze box',
- 402: 'acoustic guitar',
- 403: 'aircraft carrier, carrier, flattop, attack aircraft carrier',
- 404: 'airliner',
- 405: 'airship, dirigible',
- 406: 'altar',
- 407: 'ambulance',
- 408: 'amphibian, amphibious vehicle',
- 409: 'analog clock',
- 410: 'apiary, bee house',
- 411: 'apron',
- 412: 'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin',
- 413: 'assault rifle, assault gun',
- 414: 'backpack, back pack, knapsack, packsack, rucksack, haversack',
- 415: 'bakery, bakeshop, bakehouse',
- 416: 'balance beam, beam',
- 417: 'balloon',
- 418: 'ballpoint, ballpoint pen, ballpen, Biro',
- 419: 'Band Aid',
- 420: 'banjo',
- 421: 'bannister, banister, balustrade, balusters, handrail',
- 422: 'barbell',
- 423: 'barber chair',
- 424: 'barbershop',
- 425: 'barn',
- 426: 'barometer',
- 427: 'barrel, cask',
- 428: 'barrow, garden cart, lawn cart, wheelbarrow',
- 429: 'baseball',
- 430: 'basketball',
- 431: 'bassinet',
- 432: 'bassoon',
- 433: 'bathing cap, swimming cap',
- 434: 'bath towel',
- 435: 'bathtub, bathing tub, bath, tub',
- 436: 'beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon',
- 437: 'beacon, lighthouse, beacon light, pharos',
- 438: 'beaker',
- 439: 'bearskin, busby, shako',
- 440: 'beer bottle',
- 441: 'beer glass',
- 442: 'bell cote, bell cot',
- 443: 'bib',
- 444: 'bicycle-built-for-two, tandem bicycle, tandem',
- 445: 'bikini, two-piece',
- 446: 'binder, ring-binder',
- 447: 'binoculars, field glasses, opera glasses',
- 448: 'birdhouse',
- 449: 'boathouse',
- 450: 'bobsled, bobsleigh, bob',
- 451: 'bolo tie, bolo, bola tie, bola',
- 452: 'bonnet, poke bonnet',
- 453: 'bookcase',
- 454: 'bookshop, bookstore, bookstall',
- 455: 'bottlecap',
- 456: 'bow',
- 457: 'bow tie, bow-tie, bowtie',
- 458: 'brass, memorial tablet, plaque',
- 459: 'brassiere, bra, bandeau',
- 460: 'breakwater, groin, groyne, mole, bulwark, seawall, jetty',
- 461: 'breastplate, aegis, egis',
- 462: 'broom',
- 463: 'bucket, pail',
- 464: 'buckle',
- 465: 'bulletproof vest',
- 466: 'bullet train, bullet',
- 467: 'butcher shop, meat market',
- 468: 'cab, hack, taxi, taxicab',
- 469: 'caldron, cauldron',
- 470: 'candle, taper, wax light',
- 471: 'cannon',
- 472: 'canoe',
- 473: 'can opener, tin opener',
- 474: 'cardigan',
- 475: 'car mirror',
- 476: 'carousel, carrousel, merry-go-round, roundabout, whirligig',
- 477: "carpenter's kit, tool kit",
- 478: 'carton',
- 479: 'car wheel',
- 480: 'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM',
- 481: 'cassette',
- 482: 'cassette player',
- 483: 'castle',
- 484: 'catamaran',
- 485: 'CD player',
- 486: 'cello, violoncello',
- 487: 'cellular telephone, cellular phone, cellphone, cell, mobile phone',
- 488: 'chain',
- 489: 'chainlink fence',
- 490: 'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour',
- 491: 'chain saw, chainsaw',
- 492: 'chest',
- 493: 'chiffonier, commode',
- 494: 'chime, bell, gong',
- 495: 'china cabinet, china closet',
- 496: 'Christmas stocking',
- 497: 'church, church building',
- 498: 'cinema, movie theater, movie theatre, movie house, picture palace',
- 499: 'cleaver, meat cleaver, chopper',
- 500: 'cliff dwelling',
- 501: 'cloak',
- 502: 'clog, geta, patten, sabot',
- 503: 'cocktail shaker',
- 504: 'coffee mug',
- 505: 'coffeepot',
- 506: 'coil, spiral, volute, whorl, helix',
- 507: 'combination lock',
- 508: 'computer keyboard, keypad',
- 509: 'confectionery, confectionary, candy store',
- 510: 'container ship, containership, container vessel',
- 511: 'convertible',
- 512: 'corkscrew, bottle screw',
- 513: 'cornet, horn, trumpet, trump',
- 514: 'cowboy boot',
- 515: 'cowboy hat, ten-gallon hat',
- 516: 'cradle',
- 517: 'crane',
- 518: 'crash helmet',
- 519: 'crate',
- 520: 'crib, cot',
- 521: 'Crock Pot',
- 522: 'croquet ball',
- 523: 'crutch',
- 524: 'cuirass',
- 525: 'dam, dike, dyke',
- 526: 'desk',
- 527: 'desktop computer',
- 528: 'dial telephone, dial phone',
- 529: 'diaper, nappy, napkin',
- 530: 'digital clock',
- 531: 'digital watch',
- 532: 'dining table, board',
- 533: 'dishrag, dishcloth',
- 534: 'dishwasher, dish washer, dishwashing machine',
- 535: 'disk brake, disc brake',
- 536: 'dock, dockage, docking facility',
- 537: 'dogsled, dog sled, dog sleigh',
- 538: 'dome',
- 539: 'doormat, welcome mat',
- 540: 'drilling platform, offshore rig',
- 541: 'drum, membranophone, tympan',
- 542: 'drumstick',
- 543: 'dumbbell',
- 544: 'Dutch oven',
- 545: 'electric fan, blower',
- 546: 'electric guitar',
- 547: 'electric locomotive',
- 548: 'entertainment center',
- 549: 'envelope',
- 550: 'espresso maker',
- 551: 'face powder',
- 552: 'feather boa, boa',
- 553: 'file, file cabinet, filing cabinet',
- 554: 'fireboat',
- 555: 'fire engine, fire truck',
- 556: 'fire screen, fireguard',
- 557: 'flagpole, flagstaff',
- 558: 'flute, transverse flute',
- 559: 'folding chair',
- 560: 'football helmet',
- 561: 'forklift',
- 562: 'fountain',
- 563: 'fountain pen',
- 564: 'four-poster',
- 565: 'freight car',
- 566: 'French horn, horn',
- 567: 'frying pan, frypan, skillet',
- 568: 'fur coat',
- 569: 'garbage truck, dustcart',
- 570: 'gasmask, respirator, gas helmet',
- 571: 'gas pump, gasoline pump, petrol pump, island dispenser',
- 572: 'goblet',
- 573: 'go-kart',
- 574: 'golf ball',
- 575: 'golfcart, golf cart',
- 576: 'gondola',
- 577: 'gong, tam-tam',
- 578: 'gown',
- 579: 'grand piano, grand',
- 580: 'greenhouse, nursery, glasshouse',
- 581: 'grille, radiator grille',
- 582: 'grocery store, grocery, food market, market',
- 583: 'guillotine',
- 584: 'hair slide',
- 585: 'hair spray',
- 586: 'half track',
- 587: 'hammer',
- 588: 'hamper',
- 589: 'hand blower, blow dryer, blow drier, hair dryer, hair drier',
- 590: 'hand-held computer, hand-held microcomputer',
- 591: 'handkerchief, hankie, hanky, hankey',
- 592: 'hard disc, hard disk, fixed disk',
- 593: 'harmonica, mouth organ, harp, mouth harp',
- 594: 'harp',
- 595: 'harvester, reaper',
- 596: 'hatchet',
- 597: 'holster',
- 598: 'home theater, home theatre',
- 599: 'honeycomb',
- 600: 'hook, claw',
- 601: 'hoopskirt, crinoline',
- 602: 'horizontal bar, high bar',
- 603: 'horse cart, horse-cart',
- 604: 'hourglass',
- 605: 'iPod',
- 606: 'iron, smoothing iron',
- 607: "jack-o'-lantern",
- 608: 'jean, blue jean, denim',
- 609: 'jeep, landrover',
- 610: 'jersey, T-shirt, tee shirt',
- 611: 'jigsaw puzzle',
- 612: 'jinrikisha, ricksha, rickshaw',
- 613: 'joystick',
- 614: 'kimono',
- 615: 'knee pad',
- 616: 'knot',
- 617: 'lab coat, laboratory coat',
- 618: 'ladle',
- 619: 'lampshade, lamp shade',
- 620: 'laptop, laptop computer',
- 621: 'lawn mower, mower',
- 622: 'lens cap, lens cover',
- 623: 'letter opener, paper knife, paperknife',
- 624: 'library',
- 625: 'lifeboat',
- 626: 'lighter, light, igniter, ignitor',
- 627: 'limousine, limo',
- 628: 'liner, ocean liner',
- 629: 'lipstick, lip rouge',
- 630: 'Loafer',
- 631: 'lotion',
- 632: 'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system',
- 633: "loupe, jeweler's loupe",
- 634: 'lumbermill, sawmill',
- 635: 'magnetic compass',
- 636: 'mailbag, postbag',
- 637: 'mailbox, letter box',
- 638: 'maillot',
- 639: 'maillot, tank suit',
- 640: 'manhole cover',
- 641: 'maraca',
- 642: 'marimba, xylophone',
- 643: 'mask',
- 644: 'matchstick',
- 645: 'maypole',
- 646: 'maze, labyrinth',
- 647: 'measuring cup',
- 648: 'medicine chest, medicine cabinet',
- 649: 'megalith, megalithic structure',
- 650: 'microphone, mike',
- 651: 'microwave, microwave oven',
- 652: 'military uniform',
- 653: 'milk can',
- 654: 'minibus',
- 655: 'miniskirt, mini',
- 656: 'minivan',
- 657: 'missile',
- 658: 'mitten',
- 659: 'mixing bowl',
- 660: 'mobile home, manufactured home',
- 661: 'Model T',
- 662: 'modem',
- 663: 'monastery',
- 664: 'monitor',
- 665: 'moped',
- 666: 'mortar',
- 667: 'mortarboard',
- 668: 'mosque',
- 669: 'mosquito net',
- 670: 'motor scooter, scooter',
- 671: 'mountain bike, all-terrain bike, off-roader',
- 672: 'mountain tent',
- 673: 'mouse, computer mouse',
- 674: 'mousetrap',
- 675: 'moving van',
- 676: 'muzzle',
- 677: 'nail',
- 678: 'neck brace',
- 679: 'necklace',
- 680: 'nipple',
- 681: 'notebook, notebook computer',
- 682: 'obelisk',
- 683: 'oboe, hautboy, hautbois',
- 684: 'ocarina, sweet potato',
- 685: 'odometer, hodometer, mileometer, milometer',
- 686: 'oil filter',
- 687: 'organ, pipe organ',
- 688: 'oscilloscope, scope, cathode-ray oscilloscope, CRO',
- 689: 'overskirt',
- 690: 'oxcart',
- 691: 'oxygen mask',
- 692: 'packet',
- 693: 'paddle, boat paddle',
- 694: 'paddlewheel, paddle wheel',
- 695: 'padlock',
- 696: 'paintbrush',
- 697: "pajama, pyjama, pj's, jammies",
- 698: 'palace',
- 699: 'panpipe, pandean pipe, syrinx',
- 700: 'paper towel',
- 701: 'parachute, chute',
- 702: 'parallel bars, bars',
- 703: 'park bench',
- 704: 'parking meter',
- 705: 'passenger car, coach, carriage',
- 706: 'patio, terrace',
- 707: 'pay-phone, pay-station',
- 708: 'pedestal, plinth, footstall',
- 709: 'pencil box, pencil case',
- 710: 'pencil sharpener',
- 711: 'perfume, essence',
- 712: 'Petri dish',
- 713: 'photocopier',
- 714: 'pick, plectrum, plectron',
- 715: 'pickelhaube',
- 716: 'picket fence, paling',
- 717: 'pickup, pickup truck',
- 718: 'pier',
- 719: 'piggy bank, penny bank',
- 720: 'pill bottle',
- 721: 'pillow',
- 722: 'ping-pong ball',
- 723: 'pinwheel',
- 724: 'pirate, pirate ship',
- 725: 'pitcher, ewer',
- 726: "plane, carpenter's plane, woodworking plane",
- 727: 'planetarium',
- 728: 'plastic bag',
- 729: 'plate rack',
- 730: 'plow, plough',
- 731: "plunger, plumber's helper",
- 732: 'Polaroid camera, Polaroid Land camera',
- 733: 'pole',
- 734: 'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria',
- 735: 'poncho',
- 736: 'pool table, billiard table, snooker table',
- 737: 'pop bottle, soda bottle',
- 738: 'pot, flowerpot',
- 739: "potter's wheel",
- 740: 'power drill',
- 741: 'prayer rug, prayer mat',
- 742: 'printer',
- 743: 'prison, prison house',
- 744: 'projectile, missile',
- 745: 'projector',
- 746: 'puck, hockey puck',
- 747: 'punching bag, punch bag, punching ball, punchball',
- 748: 'purse',
- 749: 'quill, quill pen',
- 750: 'quilt, comforter, comfort, puff',
- 751: 'racer, race car, racing car',
- 752: 'racket, racquet',
- 753: 'radiator',
- 754: 'radio, wireless',
- 755: 'radio telescope, radio reflector',
- 756: 'rain barrel',
- 757: 'recreational vehicle, RV, R.V.',
- 758: 'reel',
- 759: 'reflex camera',
- 760: 'refrigerator, icebox',
- 761: 'remote control, remote',
- 762: 'restaurant, eating house, eating place, eatery',
- 763: 'revolver, six-gun, six-shooter',
- 764: 'rifle',
- 765: 'rocking chair, rocker',
- 766: 'rotisserie',
- 767: 'rubber eraser, rubber, pencil eraser',
- 768: 'rugby ball',
- 769: 'rule, ruler',
- 770: 'running shoe',
- 771: 'safe',
- 772: 'safety pin',
- 773: 'saltshaker, salt shaker',
- 774: 'sandal',
- 775: 'sarong',
- 776: 'sax, saxophone',
- 777: 'scabbard',
- 778: 'scale, weighing machine',
- 779: 'school bus',
- 780: 'schooner',
- 781: 'scoreboard',
- 782: 'screen, CRT screen',
- 783: 'screw',
- 784: 'screwdriver',
- 785: 'seat belt, seatbelt',
- 786: 'sewing machine',
- 787: 'shield, buckler',
- 788: 'shoe shop, shoe-shop, shoe store',
- 789: 'shoji',
- 790: 'shopping basket',
- 791: 'shopping cart',
- 792: 'shovel',
- 793: 'shower cap',
- 794: 'shower curtain',
- 795: 'ski',
- 796: 'ski mask',
- 797: 'sleeping bag',
- 798: 'slide rule, slipstick',
- 799: 'sliding door',
- 800: 'slot, one-armed bandit',
- 801: 'snorkel',
- 802: 'snowmobile',
- 803: 'snowplow, snowplough',
- 804: 'soap dispenser',
- 805: 'soccer ball',
- 806: 'sock',
- 807: 'solar dish, solar collector, solar furnace',
- 808: 'sombrero',
- 809: 'soup bowl',
- 810: 'space bar',
- 811: 'space heater',
- 812: 'space shuttle',
- 813: 'spatula',
- 814: 'speedboat',
- 815: "spider web, spider's web",
- 816: 'spindle',
- 817: 'sports car, sport car',
- 818: 'spotlight, spot',
- 819: 'stage',
- 820: 'steam locomotive',
- 821: 'steel arch bridge',
- 822: 'steel drum',
- 823: 'stethoscope',
- 824: 'stole',
- 825: 'stone wall',
- 826: 'stopwatch, stop watch',
- 827: 'stove',
- 828: 'strainer',
- 829: 'streetcar, tram, tramcar, trolley, trolley car',
- 830: 'stretcher',
- 831: 'studio couch, day bed',
- 832: 'stupa, tope',
- 833: 'submarine, pigboat, sub, U-boat',
- 834: 'suit, suit of clothes',
- 835: 'sundial',
- 836: 'sunglass',
- 837: 'sunglasses, dark glasses, shades',
- 838: 'sunscreen, sunblock, sun blocker',
- 839: 'suspension bridge',
- 840: 'swab, swob, mop',
- 841: 'sweatshirt',
- 842: 'swimming trunks, bathing trunks',
- 843: 'swing',
- 844: 'switch, electric switch, electrical switch',
- 845: 'syringe',
- 846: 'table lamp',
- 847: 'tank, army tank, armored combat vehicle, armoured combat vehicle',
- 848: 'tape player',
- 849: 'teapot',
- 850: 'teddy, teddy bear',
- 851: 'television, television system',
- 852: 'tennis ball',
- 853: 'thatch, thatched roof',
- 854: 'theater curtain, theatre curtain',
- 855: 'thimble',
- 856: 'thresher, thrasher, threshing machine',
- 857: 'throne',
- 858: 'tile roof',
- 859: 'toaster',
- 860: 'tobacco shop, tobacconist shop, tobacconist',
- 861: 'toilet seat',
- 862: 'torch',
- 863: 'totem pole',
- 864: 'tow truck, tow car, wrecker',
- 865: 'toyshop',
- 866: 'tractor',
- 867: 'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi',
- 868: 'tray',
- 869: 'trench coat',
- 870: 'tricycle, trike, velocipede',
- 871: 'trimaran',
- 872: 'tripod',
- 873: 'triumphal arch',
- 874: 'trolleybus, trolley coach, trackless trolley',
- 875: 'trombone',
- 876: 'tub, vat',
- 877: 'turnstile',
- 878: 'typewriter keyboard',
- 879: 'umbrella',
- 880: 'unicycle, monocycle',
- 881: 'upright, upright piano',
- 882: 'vacuum, vacuum cleaner',
- 883: 'vase',
- 884: 'vault',
- 885: 'velvet',
- 886: 'vending machine',
- 887: 'vestment',
- 888: 'viaduct',
- 889: 'violin, fiddle',
- 890: 'volleyball',
- 891: 'waffle iron',
- 892: 'wall clock',
- 893: 'wallet, billfold, notecase, pocketbook',
- 894: 'wardrobe, closet, press',
- 895: 'warplane, military plane',
- 896: 'washbasin, handbasin, washbowl, lavabo, wash-hand basin',
- 897: 'washer, automatic washer, washing machine',
- 898: 'water bottle',
- 899: 'water jug',
- 900: 'water tower',
- 901: 'whiskey jug',
- 902: 'whistle',
- 903: 'wig',
- 904: 'window screen',
- 905: 'window shade',
- 906: 'Windsor tie',
- 907: 'wine bottle',
- 908: 'wing',
- 909: 'wok',
- 910: 'wooden spoon',
- 911: 'wool, woolen, woollen',
- 912: 'worm fence, snake fence, snake-rail fence, Virginia fence',
- 913: 'wreck',
- 914: 'yawl',
- 915: 'yurt',
- 916: 'web site, website, internet site, site',
- 917: 'comic book',
- 918: 'crossword puzzle, crossword',
- 919: 'street sign',
- 920: 'traffic light, traffic signal, stoplight',
- 921: 'book jacket, dust cover, dust jacket, dust wrapper',
- 922: 'menu',
- 923: 'plate',
- 924: 'guacamole',
- 925: 'consomme',
- 926: 'hot pot, hotpot',
- 927: 'trifle',
- 928: 'ice cream, icecream',
- 929: 'ice lolly, lolly, lollipop, popsicle',
- 930: 'French loaf',
- 931: 'bagel, beigel',
- 932: 'pretzel',
- 933: 'cheeseburger',
- 934: 'hotdog, hot dog, red hot',
- 935: 'mashed potato',
- 936: 'head cabbage',
- 937: 'broccoli',
- 938: 'cauliflower',
- 939: 'zucchini, courgette',
- 940: 'spaghetti squash',
- 941: 'acorn squash',
- 942: 'butternut squash',
- 943: 'cucumber, cuke',
- 944: 'artichoke, globe artichoke',
- 945: 'bell pepper',
- 946: 'cardoon',
- 947: 'mushroom',
- 948: 'Granny Smith',
- 949: 'strawberry',
- 950: 'orange',
- 951: 'lemon',
- 952: 'fig',
- 953: 'pineapple, ananas',
- 954: 'banana',
- 955: 'jackfruit, jak, jack',
- 956: 'custard apple',
- 957: 'pomegranate',
- 958: 'hay',
- 959: 'carbonara',
- 960: 'chocolate sauce, chocolate syrup',
- 961: 'dough',
- 962: 'meat loaf, meatloaf',
- 963: 'pizza, pizza pie',
- 964: 'potpie',
- 965: 'burrito',
- 966: 'red wine',
- 967: 'espresso',
- 968: 'cup',
- 969: 'eggnog',
- 970: 'alp',
- 971: 'bubble',
- 972: 'cliff, drop, drop-off',
- 973: 'coral reef',
- 974: 'geyser',
- 975: 'lakeside, lakeshore',
- 976: 'promontory, headland, head, foreland',
- 977: 'sandbar, sand bar',
- 978: 'seashore, coast, seacoast, sea-coast',
- 979: 'valley, vale',
- 980: 'volcano',
- 981: 'ballplayer, baseball player',
- 982: 'groom, bridegroom',
- 983: 'scuba diver',
- 984: 'rapeseed',
- 985: 'daisy',
- 986: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum",
- 987: 'corn',
- 988: 'acorn',
- 989: 'hip, rose hip, rosehip',
- 990: 'buckeye, horse chestnut, conker',
- 991: 'coral fungus',
- 992: 'agaric',
- 993: 'gyromitra',
- 994: 'stinkhorn, carrion fungus',
- 995: 'earthstar',
- 996: 'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa',
- 997: 'bolete',
- 998: 'ear, spike, capitulum',
- 999: 'toilet tissue, toilet paper, bathroom tissue'
\ No newline at end of file
diff --git a/stable_diffusion/data/imagenet_train_hr_indices.p.REMOVED.git-id b/stable_diffusion/data/imagenet_train_hr_indices.p.REMOVED.git-id
deleted file mode 100644
index baaaf8a9dadda8295dc0e6ce74bcf308c3cc99b2..0000000000000000000000000000000000000000
--- a/stable_diffusion/data/imagenet_train_hr_indices.p.REMOVED.git-id
+++ /dev/null
@@ -1 +0,0 @@
-b8d6d4689d2ecf32147e9cc2f5e6c50e072df26f
\ No newline at end of file
diff --git a/stable_diffusion/data/imagenet_val_hr_indices.p b/stable_diffusion/data/imagenet_val_hr_indices.p
deleted file mode 100644
index 744ad64b430f82b6fac24d3015a147ba1436b408..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/imagenet_val_hr_indices.p and /dev/null differ
diff --git a/stable_diffusion/data/index_synset.yaml b/stable_diffusion/data/index_synset.yaml
deleted file mode 100644
index 635ea71a0da40d42072fee110143520daa203ce6..0000000000000000000000000000000000000000
--- a/stable_diffusion/data/index_synset.yaml
+++ /dev/null
@@ -1,1000 +0,0 @@
-0: n01440764
-1: n01443537
-2: n01484850
-3: n01491361
-4: n01494475
-5: n01496331
-6: n01498041
-7: n01514668
-8: n07646067
-9: n01518878
-10: n01530575
-11: n01531178
-12: n01532829
-13: n01534433
-14: n01537544
-15: n01558993
-16: n01560419
-17: n01580077
-18: n01582220
-19: n01592084
-20: n01601694
-21: n13382471
-22: n01614925
-23: n01616318
-24: n01622779
-25: n01629819
-26: n01630670
-27: n01631663
-28: n01632458
-29: n01632777
-30: n01641577
-31: n01644373
-32: n01644900
-33: n01664065
-34: n01665541
-35: n01667114
-36: n01667778
-37: n01669191
-38: n01675722
-39: n01677366
-40: n01682714
-41: n01685808
-42: n01687978
-43: n01688243
-44: n01689811
-45: n01692333
-46: n01693334
-47: n01694178
-48: n01695060
-49: n01697457
-50: n01698640
-51: n01704323
-52: n01728572
-53: n01728920
-54: n01729322
-55: n01729977
-56: n01734418
-57: n01735189
-58: n01737021
-59: n01739381
-60: n01740131
-61: n01742172
-62: n01744401
-63: n01748264
-64: n01749939
-65: n01751748
-66: n01753488
-67: n01755581
-68: n01756291
-69: n01768244
-70: n01770081
-71: n01770393
-72: n01773157
-73: n01773549
-74: n01773797
-75: n01774384
-76: n01774750
-77: n01775062
-78: n04432308
-79: n01784675
-80: n01795545
-81: n01796340
-82: n01797886
-83: n01798484
-84: n01806143
-85: n07647321
-86: n07647496
-87: n01817953
-88: n01818515
-89: n01819313
-90: n01820546
-91: n01824575
-92: n01828970
-93: n01829413
-94: n01833805
-95: n01843065
-96: n01843383
-97: n01847000
-98: n01855032
-99: n07646821
-100: n01860187
-101: n01871265
-102: n01872772
-103: n01873310
-104: n01877812
-105: n01882714
-106: n01883070
-107: n01910747
-108: n01914609
-109: n01917289
-110: n01924916
-111: n01930112
-112: n01943899
-113: n01944390
-114: n13719102
-115: n01950731
-116: n01955084
-117: n01968897
-118: n01978287
-119: n01978455
-120: n01980166
-121: n01981276
-122: n01983481
-123: n01984695
-124: n01985128
-125: n01986214
-126: n01990800
-127: n02002556
-128: n02002724
-129: n02006656
-130: n02007558
-131: n02009229
-132: n02009912
-133: n02011460
-134: n03126707
-135: n02013706
-136: n02017213
-137: n02018207
-138: n02018795
-139: n02025239
-140: n02027492
-141: n02028035
-142: n02033041
-143: n02037110
-144: n02051845
-145: n02056570
-146: n02058221
-147: n02066245
-148: n02071294
-149: n02074367
-150: n02077923
-151: n08742578
-152: n02085782
-153: n02085936
-154: n02086079
-155: n02086240
-156: n02086646
-157: n02086910
-158: n02087046
-159: n02087394
-160: n02088094
-161: n02088238
-162: n02088364
-163: n02088466
-164: n02088632
-165: n02089078
-166: n02089867
-167: n02089973
-168: n02090379
-169: n02090622
-170: n02090721
-171: n02091032
-172: n02091134
-173: n02091244
-174: n02091467
-175: n02091635
-176: n02091831
-177: n02092002
-178: n02092339
-179: n02093256
-180: n02093428
-181: n02093647
-182: n02093754
-183: n02093859
-184: n02093991
-185: n02094114
-186: n02094258
-187: n02094433
-188: n02095314
-189: n02095570
-190: n02095889
-191: n02096051
-192: n02096177
-193: n02096294
-194: n02096437
-195: n02096585
-196: n02097047
-197: n02097130
-198: n02097209
-199: n02097298
-200: n02097474
-201: n02097658
-202: n02098105
-203: n02098286
-204: n02098413
-205: n02099267
-206: n02099429
-207: n02099601
-208: n02099712
-209: n02099849
-210: n02100236
-211: n02100583
-212: n02100735
-213: n02100877
-214: n02101006
-215: n02101388
-216: n02101556
-217: n02102040
-218: n02102177
-219: n02102318
-220: n02102480
-221: n02102973
-222: n02104029
-223: n02104365
-224: n02105056
-225: n02105162
-226: n02105251
-227: n02105412
-228: n02105505
-229: n02105641
-230: n02105855
-231: n02106030
-232: n02106166
-233: n02106382
-234: n02106550
-235: n02106662
-236: n02107142
-237: n02107312
-238: n02107574
-239: n02107683
-240: n02107908
-241: n02108000
-242: n02108089
-243: n02108422
-244: n02108551
-245: n02108915
-246: n02109047
-247: n02109525
-248: n02109961
-249: n02110063
-250: n02110185
-251: n02110341
-252: n02110627
-253: n02110806
-254: n02110958
-255: n02111129
-256: n02111277
-257: n02111500
-258: n02111889
-259: n02112018
-260: n02112137
-261: n02112350
-262: n02112706
-263: n02113023
-264: n02113186
-265: n02113624
-266: n02113712
-267: n02113799
-268: n02113978
-269: n02114367
-270: n02114548
-271: n02114712
-272: n02114855
-273: n02115641
-274: n02115913
-275: n02116738
-276: n02117135
-277: n02119022
-278: n02119789
-279: n02120079
-280: n02120505
-281: n02123045
-282: n02123159
-283: n02123394
-284: n02123597
-285: n02124075
-286: n02125311
-287: n02127052
-288: n02128385
-289: n02128757
-290: n02128925
-291: n02129165
-292: n02129604
-293: n02130308
-294: n02132136
-295: n02133161
-296: n02134084
-297: n02134418
-298: n02137549
-299: n02138441
-300: n02165105
-301: n02165456
-302: n02167151
-303: n02168699
-304: n02169497
-305: n02172182
-306: n02174001
-307: n02177972
-308: n03373237
-309: n07975909
-310: n02219486
-311: n02226429
-312: n02229544
-313: n02231487
-314: n02233338
-315: n02236044
-316: n02256656
-317: n02259212
-318: n02264363
-319: n02268443
-320: n02268853
-321: n02276258
-322: n02277742
-323: n02279972
-324: n02280649
-325: n02281406
-326: n02281787
-327: n02317335
-328: n02319095
-329: n02321529
-330: n02325366
-331: n02326432
-332: n02328150
-333: n02342885
-334: n02346627
-335: n02356798
-336: n02361337
-337: n05262120
-338: n02364673
-339: n02389026
-340: n02391049
-341: n02395406
-342: n02396427
-343: n02397096
-344: n02398521
-345: n02403003
-346: n02408429
-347: n02410509
-348: n02412080
-349: n02415577
-350: n02417914
-351: n02422106
-352: n02422699
-353: n02423022
-354: n02437312
-355: n02437616
-356: n10771990
-357: n14765497
-358: n02443114
-359: n02443484
-360: n14765785
-361: n02445715
-362: n02447366
-363: n02454379
-364: n02457408
-365: n02480495
-366: n02480855
-367: n02481823
-368: n02483362
-369: n02483708
-370: n02484975
-371: n02486261
-372: n02486410
-373: n02487347
-374: n02488291
-375: n02488702
-376: n02489166
-377: n02490219
-378: n02492035
-379: n02492660
-380: n02493509
-381: n02493793
-382: n02494079
-383: n02497673
-384: n02500267
-385: n02504013
-386: n02504458
-387: n02509815
-388: n02510455
-389: n02514041
-390: n07783967
-391: n02536864
-392: n02606052
-393: n02607072
-394: n02640242
-395: n02641379
-396: n02643566
-397: n02655020
-398: n02666347
-399: n02667093
-400: n02669723
-401: n02672831
-402: n02676566
-403: n02687172
-404: n02690373
-405: n02692877
-406: n02699494
-407: n02701002
-408: n02704792
-409: n02708093
-410: n02727426
-411: n08496334
-412: n02747177
-413: n02749479
-414: n02769748
-415: n02776631
-416: n02777292
-417: n02782329
-418: n02783161
-419: n02786058
-420: n02787622
-421: n02788148
-422: n02790996
-423: n02791124
-424: n02791270
-425: n02793495
-426: n02794156
-427: n02795169
-428: n02797295
-429: n02799071
-430: n02802426
-431: n02804515
-432: n02804610
-433: n02807133
-434: n02808304
-435: n02808440
-436: n02814533
-437: n02814860
-438: n02815834
-439: n02817516
-440: n02823428
-441: n02823750
-442: n02825657
-443: n02834397
-444: n02835271
-445: n02837789
-446: n02840245
-447: n02841315
-448: n02843684
-449: n02859443
-450: n02860847
-451: n02865351
-452: n02869837
-453: n02870880
-454: n02871525
-455: n02877765
-456: n02880308
-457: n02883205
-458: n02892201
-459: n02892767
-460: n02894605
-461: n02895154
-462: n12520864
-463: n02909870
-464: n02910353
-465: n02916936
-466: n02917067
-467: n02927161
-468: n02930766
-469: n02939185
-470: n02948072
-471: n02950826
-472: n02951358
-473: n02951585
-474: n02963159
-475: n02965783
-476: n02966193
-477: n02966687
-478: n02971356
-479: n02974003
-480: n02977058
-481: n02978881
-482: n02979186
-483: n02980441
-484: n02981792
-485: n02988304
-486: n02992211
-487: n02992529
-488: n13652994
-489: n03000134
-490: n03000247
-491: n03000684
-492: n03014705
-493: n03016953
-494: n03017168
-495: n03018349
-496: n03026506
-497: n03028079
-498: n03032252
-499: n03041632
-500: n03042490
-501: n03045698
-502: n03047690
-503: n03062245
-504: n03063599
-505: n03063689
-506: n03065424
-507: n03075370
-508: n03085013
-509: n03089624
-510: n03095699
-511: n03100240
-512: n03109150
-513: n03110669
-514: n03124043
-515: n03124170
-516: n15142452
-517: n03126707
-518: n03127747
-519: n03127925
-520: n03131574
-521: n03133878
-522: n03134739
-523: n03141823
-524: n03146219
-525: n03160309
-526: n03179701
-527: n03180011
-528: n03187595
-529: n03188531
-530: n03196217
-531: n03197337
-532: n03201208
-533: n03207743
-534: n03207941
-535: n03208938
-536: n03216828
-537: n03218198
-538: n13872072
-539: n03223299
-540: n03240683
-541: n03249569
-542: n07647870
-543: n03255030
-544: n03259401
-545: n03271574
-546: n03272010
-547: n03272562
-548: n03290653
-549: n13869788
-550: n03297495
-551: n03314780
-552: n03325584
-553: n03337140
-554: n03344393
-555: n03345487
-556: n03347037
-557: n03355925
-558: n03372029
-559: n03376595
-560: n03379051
-561: n03384352
-562: n03388043
-563: n03388183
-564: n03388549
-565: n03393912
-566: n03394916
-567: n03400231
-568: n03404251
-569: n03417042
-570: n03424325
-571: n03425413
-572: n03443371
-573: n03444034
-574: n03445777
-575: n03445924
-576: n03447447
-577: n03447721
-578: n08286342
-579: n03452741
-580: n03457902
-581: n03459775
-582: n03461385
-583: n03467068
-584: n03476684
-585: n03476991
-586: n03478589
-587: n03482001
-588: n03482405
-589: n03483316
-590: n03485407
-591: n03485794
-592: n03492542
-593: n03494278
-594: n03495570
-595: n10161363
-596: n03498962
-597: n03527565
-598: n03529860
-599: n09218315
-600: n03532672
-601: n03534580
-602: n03535780
-603: n03538406
-604: n03544143
-605: n03584254
-606: n03584829
-607: n03590841
-608: n03594734
-609: n03594945
-610: n03595614
-611: n03598930
-612: n03599486
-613: n03602883
-614: n03617480
-615: n03623198
-616: n15102712
-617: n03630383
-618: n03633091
-619: n03637318
-620: n03642806
-621: n03649909
-622: n03657121
-623: n03658185
-624: n07977870
-625: n03662601
-626: n03666591
-627: n03670208
-628: n03673027
-629: n03676483
-630: n03680355
-631: n03690938
-632: n03691459
-633: n03692522
-634: n03697007
-635: n03706229
-636: n03709823
-637: n03710193
-638: n03710637
-639: n03710721
-640: n03717622
-641: n03720891
-642: n03721384
-643: n03725035
-644: n03729826
-645: n03733131
-646: n03733281
-647: n03733805
-648: n03742115
-649: n03743016
-650: n03759954
-651: n03761084
-652: n03763968
-653: n03764736
-654: n03769881
-655: n03770439
-656: n03770679
-657: n03773504
-658: n03775071
-659: n03775546
-660: n03776460
-661: n03777568
-662: n03777754
-663: n03781244
-664: n03782006
-665: n03785016
-666: n14955889
-667: n03787032
-668: n03788195
-669: n03788365
-670: n03791053
-671: n03792782
-672: n03792972
-673: n03793489
-674: n03794056
-675: n03796401
-676: n03803284
-677: n13652335
-678: n03814639
-679: n03814906
-680: n03825788
-681: n03832673
-682: n03837869
-683: n03838899
-684: n03840681
-685: n03841143
-686: n03843555
-687: n03854065
-688: n03857828
-689: n03866082
-690: n03868242
-691: n03868863
-692: n07281099
-693: n03873416
-694: n03874293
-695: n03874599
-696: n03876231
-697: n03877472
-698: n08053121
-699: n03884397
-700: n03887697
-701: n03888257
-702: n03888605
-703: n03891251
-704: n03891332
-705: n03895866
-706: n03899768
-707: n03902125
-708: n03903868
-709: n03908618
-710: n03908714
-711: n03916031
-712: n03920288
-713: n03924679
-714: n03929660
-715: n03929855
-716: n03930313
-717: n03930630
-718: n03934042
-719: n03935335
-720: n03937543
-721: n03938244
-722: n03942813
-723: n03944341
-724: n03947888
-725: n03950228
-726: n03954731
-727: n03956157
-728: n03958227
-729: n03961711
-730: n03967562
-731: n03970156
-732: n03976467
-733: n08620881
-734: n03977966
-735: n03980874
-736: n03982430
-737: n03983396
-738: n03991062
-739: n03992509
-740: n03995372
-741: n03998194
-742: n04004767
-743: n13937284
-744: n04008634
-745: n04009801
-746: n04019541
-747: n04023962
-748: n13413294
-749: n04033901
-750: n04033995
-751: n04037443
-752: n04039381
-753: n09403211
-754: n04041544
-755: n04044716
-756: n04049303
-757: n04065272
-758: n07056680
-759: n04069434
-760: n04070727
-761: n04074963
-762: n04081281
-763: n04086273
-764: n04090263
-765: n04099969
-766: n04111531
-767: n04116512
-768: n04118538
-769: n04118776
-770: n04120489
-771: n04125116
-772: n04127249
-773: n04131690
-774: n04133789
-775: n04136333
-776: n04141076
-777: n04141327
-778: n04141975
-779: n04146614
-780: n04147291
-781: n04149813
-782: n04152593
-783: n04154340
-784: n07917272
-785: n04162706
-786: n04179913
-787: n04192698
-788: n04200800
-789: n04201297
-790: n04204238
-791: n04204347
-792: n04208427
-793: n04209133
-794: n04209239
-795: n04228054
-796: n04229816
-797: n04235860
-798: n04238763
-799: n04239074
-800: n04243546
-801: n04251144
-802: n04252077
-803: n04252225
-804: n04254120
-805: n04254680
-806: n04254777
-807: n04258138
-808: n04259630
-809: n04263257
-810: n04264628
-811: n04265275
-812: n04266014
-813: n04270147
-814: n04273569
-815: n04275363
-816: n05605498
-817: n04285008
-818: n04286575
-819: n08646566
-820: n04310018
-821: n04311004
-822: n04311174
-823: n04317175
-824: n04325704
-825: n04326547
-826: n04328186
-827: n04330267
-828: n04332243
-829: n04335435
-830: n04337157
-831: n04344873
-832: n04346328
-833: n04347754
-834: n04350905
-835: n04355338
-836: n04355933
-837: n04356056
-838: n04357314
-839: n04366367
-840: n04367480
-841: n04370456
-842: n04371430
-843: n14009946
-844: n04372370
-845: n04376876
-846: n04380533
-847: n04389033
-848: n04392985
-849: n04398044
-850: n04399382
-851: n04404412
-852: n04409515
-853: n04417672
-854: n04418357
-855: n04423845
-856: n04428191
-857: n04429376
-858: n04435653
-859: n04442312
-860: n04443257
-861: n04447861
-862: n04456115
-863: n04458633
-864: n04461696
-865: n04462240
-866: n04465666
-867: n04467665
-868: n04476259
-869: n04479046
-870: n04482393
-871: n04483307
-872: n04485082
-873: n04486054
-874: n04487081
-875: n04487394
-876: n04493381
-877: n04501370
-878: n04505470
-879: n04507155
-880: n04509417
-881: n04515003
-882: n04517823
-883: n04522168
-884: n04523525
-885: n04525038
-886: n04525305
-887: n04532106
-888: n04532670
-889: n04536866
-890: n04540053
-891: n04542943
-892: n04548280
-893: n04548362
-894: n04550184
-895: n04552348
-896: n04553703
-897: n04554684
-898: n04557648
-899: n04560804
-900: n04562935
-901: n04579145
-902: n04579667
-903: n04584207
-904: n04589890
-905: n04590129
-906: n04591157
-907: n04591713
-908: n10782135
-909: n04596742
-910: n04598010
-911: n04599235
-912: n04604644
-913: n14423870
-914: n04612504
-915: n04613696
-916: n06359193
-917: n06596364
-918: n06785654
-919: n06794110
-920: n06874185
-921: n07248320
-922: n07565083
-923: n07657664
-924: n07583066
-925: n07584110
-926: n07590611
-927: n07613480
-928: n07614500
-929: n07615774
-930: n07684084
-931: n07693725
-932: n07695742
-933: n07697313
-934: n07697537
-935: n07711569
-936: n07714571
-937: n07714990
-938: n07715103
-939: n12159804
-940: n12160303
-941: n12160857
-942: n07717556
-943: n07718472
-944: n07718747
-945: n07720875
-946: n07730033
-947: n13001041
-948: n07742313
-949: n12630144
-950: n14991210
-951: n07749582
-952: n07753113
-953: n07753275
-954: n07753592
-955: n07754684
-956: n07760859
-957: n07768694
-958: n07802026
-959: n07831146
-960: n07836838
-961: n07860988
-962: n07871810
-963: n07873807
-964: n07875152
-965: n07880968
-966: n07892512
-967: n07920052
-968: n13904665
-969: n07932039
-970: n09193705
-971: n09229709
-972: n09246464
-973: n09256479
-974: n09288635
-975: n09332890
-976: n09399592
-977: n09421951
-978: n09428293
-979: n09468604
-980: n09472597
-981: n09835506
-982: n10148035
-983: n10565667
-984: n11879895
-985: n11939491
-986: n12057211
-987: n12144580
-988: n12267677
-989: n12620546
-990: n12768682
-991: n12985857
-992: n12998815
-993: n13037406
-994: n13040303
-995: n13044778
-996: n13052670
-997: n13054560
-998: n13133613
-999: n15075141
diff --git a/stable_diffusion/data/inpainting_examples/6458524847_2f4c361183_k.png b/stable_diffusion/data/inpainting_examples/6458524847_2f4c361183_k.png
deleted file mode 100644
index 3eb5a2242e6ae0e59fb25bcc0265aa86b6435855..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/inpainting_examples/6458524847_2f4c361183_k.png and /dev/null differ
diff --git a/stable_diffusion/data/inpainting_examples/6458524847_2f4c361183_k_mask.png b/stable_diffusion/data/inpainting_examples/6458524847_2f4c361183_k_mask.png
deleted file mode 100644
index 6c77130e04992544d717cd5d76856a3206237f89..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/inpainting_examples/6458524847_2f4c361183_k_mask.png and /dev/null differ
diff --git a/stable_diffusion/data/inpainting_examples/8399166846_f6fb4e4b8e_k.png b/stable_diffusion/data/inpainting_examples/8399166846_f6fb4e4b8e_k.png
deleted file mode 100644
index 63ac9891e4646fda9e990cee2efca75493038913..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/inpainting_examples/8399166846_f6fb4e4b8e_k.png and /dev/null differ
diff --git a/stable_diffusion/data/inpainting_examples/8399166846_f6fb4e4b8e_k_mask.png b/stable_diffusion/data/inpainting_examples/8399166846_f6fb4e4b8e_k_mask.png
deleted file mode 100644
index 7eb67e45fabccd74bb98863ebc8d383966fc62cb..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/inpainting_examples/8399166846_f6fb4e4b8e_k_mask.png and /dev/null differ
diff --git a/stable_diffusion/data/inpainting_examples/alex-iby-G_Pk4D9rMLs.png b/stable_diffusion/data/inpainting_examples/alex-iby-G_Pk4D9rMLs.png
deleted file mode 100644
index 7714a1f7d51998e85c83c857c858e47b97f389f3..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/inpainting_examples/alex-iby-G_Pk4D9rMLs.png and /dev/null differ
diff --git a/stable_diffusion/data/inpainting_examples/alex-iby-G_Pk4D9rMLs_mask.png b/stable_diffusion/data/inpainting_examples/alex-iby-G_Pk4D9rMLs_mask.png
deleted file mode 100644
index 0324f677ebb0b2e335143397c2cda462c3ff3024..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/inpainting_examples/alex-iby-G_Pk4D9rMLs_mask.png and /dev/null differ
diff --git a/stable_diffusion/data/inpainting_examples/bench2.png b/stable_diffusion/data/inpainting_examples/bench2.png
deleted file mode 100644
index 09be46d1ba6ea47ac8cdadb854a0cf9b135195d4..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/inpainting_examples/bench2.png and /dev/null differ
diff --git a/stable_diffusion/data/inpainting_examples/bench2_mask.png b/stable_diffusion/data/inpainting_examples/bench2_mask.png
deleted file mode 100644
index bacadfa5da74fc69d0da7b698561e1d5d7e161ed..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/inpainting_examples/bench2_mask.png and /dev/null differ
diff --git a/stable_diffusion/data/inpainting_examples/bertrand-gabioud-CpuFzIsHYJ0.png b/stable_diffusion/data/inpainting_examples/bertrand-gabioud-CpuFzIsHYJ0.png
deleted file mode 100644
index 618f200e56f4dea89bf4a4afe7cadba247b0bb7f..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/inpainting_examples/bertrand-gabioud-CpuFzIsHYJ0.png and /dev/null differ
diff --git a/stable_diffusion/data/inpainting_examples/bertrand-gabioud-CpuFzIsHYJ0_mask.png b/stable_diffusion/data/inpainting_examples/bertrand-gabioud-CpuFzIsHYJ0_mask.png
deleted file mode 100644
index fd18be987f8667748b005782815a51b3cc4772f9..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/inpainting_examples/bertrand-gabioud-CpuFzIsHYJ0_mask.png and /dev/null differ
diff --git a/stable_diffusion/data/inpainting_examples/billow926-12-Wc-Zgx6Y.png b/stable_diffusion/data/inpainting_examples/billow926-12-Wc-Zgx6Y.png
deleted file mode 100644
index cbd246e906b74c6b1f735e4433d60914ac60c0d5..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/inpainting_examples/billow926-12-Wc-Zgx6Y.png and /dev/null differ
diff --git a/stable_diffusion/data/inpainting_examples/billow926-12-Wc-Zgx6Y_mask.png b/stable_diffusion/data/inpainting_examples/billow926-12-Wc-Zgx6Y_mask.png
deleted file mode 100644
index 7e5121400687e553d9ed306e245f3b7810c7aeaa..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/inpainting_examples/billow926-12-Wc-Zgx6Y_mask.png and /dev/null differ
diff --git a/stable_diffusion/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png b/stable_diffusion/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png
deleted file mode 100644
index e84dfc8554d344a69afb1fe8c7b8b2997d4e5e11..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png and /dev/null differ
diff --git a/stable_diffusion/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png b/stable_diffusion/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png
deleted file mode 100644
index 7f3c753058c58ee3b96814722562b42af3588be2..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png and /dev/null differ
diff --git a/stable_diffusion/data/inpainting_examples/photo-1583445095369-9c651e7e5d34.png b/stable_diffusion/data/inpainting_examples/photo-1583445095369-9c651e7e5d34.png
deleted file mode 100644
index e8999de888b2f57c7af9db2f858fce7bfee1e1d1..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/inpainting_examples/photo-1583445095369-9c651e7e5d34.png and /dev/null differ
diff --git a/stable_diffusion/data/inpainting_examples/photo-1583445095369-9c651e7e5d34_mask.png b/stable_diffusion/data/inpainting_examples/photo-1583445095369-9c651e7e5d34_mask.png
deleted file mode 100644
index 093d0c1819aa6056a993897c9b0dce51cba7d96e..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/data/inpainting_examples/photo-1583445095369-9c651e7e5d34_mask.png and /dev/null differ
diff --git a/stable_diffusion/environment.yaml b/stable_diffusion/environment.yaml
deleted file mode 100644
index 025ced87018b87c8e23a80fd77cde85e4715d897..0000000000000000000000000000000000000000
--- a/stable_diffusion/environment.yaml
+++ /dev/null
@@ -1,31 +0,0 @@
-name: ldm
-channels:
- - pytorch
- - defaults
-dependencies:
- - python=3.8.5
- - pip=20.3
- - cudatoolkit=11.3
- - pytorch=1.11.0
- - torchvision=0.12.0
- - numpy=1.19.2
- - pip:
- - albumentations==0.4.3
- - diffusers
- - opencv-python==4.1.2.30
- - pudb==2019.2
- - invisible-watermark
- - imageio==2.9.0
- - imageio-ffmpeg==0.4.2
- - pytorch-lightning==1.4.2
- - omegaconf==2.1.1
- - test-tube>=0.7.5
- - streamlit>=0.73.1
- - einops==0.3.0
- - torch-fidelity==0.3.0
- - transformers==4.19.2
- - torchmetrics==0.6.0
- - kornia==0.6
- - -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
- - -e git+https://github.com/openai/CLIP.git@main#egg=clip
- - -e .
diff --git a/stable_diffusion/ldm/data/__init__.py b/stable_diffusion/ldm/data/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/stable_diffusion/ldm/data/base.py b/stable_diffusion/ldm/data/base.py
deleted file mode 100644
index b196c2f7aa583a3e8bc4aad9f943df0c4dae0da7..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/data/base.py
+++ /dev/null
@@ -1,23 +0,0 @@
-from abc import abstractmethod
-from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
-
-
-class Txt2ImgIterableBaseDataset(IterableDataset):
- '''
- Define an interface to make the IterableDatasets for text2img data chainable
- '''
- def __init__(self, num_records=0, valid_ids=None, size=256):
- super().__init__()
- self.num_records = num_records
- self.valid_ids = valid_ids
- self.sample_ids = valid_ids
- self.size = size
-
- print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
-
- def __len__(self):
- return self.num_records
-
- @abstractmethod
- def __iter__(self):
- pass
\ No newline at end of file
diff --git a/stable_diffusion/ldm/data/imagenet.py b/stable_diffusion/ldm/data/imagenet.py
deleted file mode 100644
index 1c473f9c6965b22315dbb289eff8247c71bdc790..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/data/imagenet.py
+++ /dev/null
@@ -1,394 +0,0 @@
-import os, yaml, pickle, shutil, tarfile, glob
-import cv2
-import albumentations
-import PIL
-import numpy as np
-import torchvision.transforms.functional as TF
-from omegaconf import OmegaConf
-from functools import partial
-from PIL import Image
-from tqdm import tqdm
-from torch.utils.data import Dataset, Subset
-
-import taming.data.utils as tdu
-from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
-from taming.data.imagenet import ImagePaths
-
-from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
-
-
-def synset2idx(path_to_yaml="data/index_synset.yaml"):
- with open(path_to_yaml) as f:
- di2s = yaml.load(f)
- return dict((v,k) for k,v in di2s.items())
-
-
-class ImageNetBase(Dataset):
- def __init__(self, config=None):
- self.config = config or OmegaConf.create()
- if not type(self.config)==dict:
- self.config = OmegaConf.to_container(self.config)
- self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
- self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
- self._prepare()
- self._prepare_synset_to_human()
- self._prepare_idx_to_synset()
- self._prepare_human_to_integer_label()
- self._load()
-
- def __len__(self):
- return len(self.data)
-
- def __getitem__(self, i):
- return self.data[i]
-
- def _prepare(self):
- raise NotImplementedError()
-
- def _filter_relpaths(self, relpaths):
- ignore = set([
- "n06596364_9591.JPEG",
- ])
- relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
- if "sub_indices" in self.config:
- indices = str_to_indices(self.config["sub_indices"])
- synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
- self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
- files = []
- for rpath in relpaths:
- syn = rpath.split("/")[0]
- if syn in synsets:
- files.append(rpath)
- return files
- else:
- return relpaths
-
- def _prepare_synset_to_human(self):
- SIZE = 2655750
- URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
- self.human_dict = os.path.join(self.root, "synset_human.txt")
- if (not os.path.exists(self.human_dict) or
- not os.path.getsize(self.human_dict)==SIZE):
- download(URL, self.human_dict)
-
- def _prepare_idx_to_synset(self):
- URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
- self.idx2syn = os.path.join(self.root, "index_synset.yaml")
- if (not os.path.exists(self.idx2syn)):
- download(URL, self.idx2syn)
-
- def _prepare_human_to_integer_label(self):
- URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
- self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
- if (not os.path.exists(self.human2integer)):
- download(URL, self.human2integer)
- with open(self.human2integer, "r") as f:
- lines = f.read().splitlines()
- assert len(lines) == 1000
- self.human2integer_dict = dict()
- for line in lines:
- value, key = line.split(":")
- self.human2integer_dict[key] = int(value)
-
- def _load(self):
- with open(self.txt_filelist, "r") as f:
- self.relpaths = f.read().splitlines()
- l1 = len(self.relpaths)
- self.relpaths = self._filter_relpaths(self.relpaths)
- print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
-
- self.synsets = [p.split("/")[0] for p in self.relpaths]
- self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
-
- unique_synsets = np.unique(self.synsets)
- class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
- if not self.keep_orig_class_label:
- self.class_labels = [class_dict[s] for s in self.synsets]
- else:
- self.class_labels = [self.synset2idx[s] for s in self.synsets]
-
- with open(self.human_dict, "r") as f:
- human_dict = f.read().splitlines()
- human_dict = dict(line.split(maxsplit=1) for line in human_dict)
-
- self.human_labels = [human_dict[s] for s in self.synsets]
-
- labels = {
- "relpath": np.array(self.relpaths),
- "synsets": np.array(self.synsets),
- "class_label": np.array(self.class_labels),
- "human_label": np.array(self.human_labels),
- }
-
- if self.process_images:
- self.size = retrieve(self.config, "size", default=256)
- self.data = ImagePaths(self.abspaths,
- labels=labels,
- size=self.size,
- random_crop=self.random_crop,
- )
- else:
- self.data = self.abspaths
-
-
-class ImageNetTrain(ImageNetBase):
- NAME = "ILSVRC2012_train"
- URL = "http://www.image-net.org/challenges/LSVRC/2012/"
- AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
- FILES = [
- "ILSVRC2012_img_train.tar",
- ]
- SIZES = [
- 147897477120,
- ]
-
- def __init__(self, process_images=True, data_root=None, **kwargs):
- self.process_images = process_images
- self.data_root = data_root
- super().__init__(**kwargs)
-
- def _prepare(self):
- if self.data_root:
- self.root = os.path.join(self.data_root, self.NAME)
- else:
- cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
- self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
-
- self.datadir = os.path.join(self.root, "data")
- self.txt_filelist = os.path.join(self.root, "filelist.txt")
- self.expected_length = 1281167
- self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
- default=True)
- if not tdu.is_prepared(self.root):
- # prep
- print("Preparing dataset {} in {}".format(self.NAME, self.root))
-
- datadir = self.datadir
- if not os.path.exists(datadir):
- path = os.path.join(self.root, self.FILES[0])
- if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
- import academictorrents as at
- atpath = at.get(self.AT_HASH, datastore=self.root)
- assert atpath == path
-
- print("Extracting {} to {}".format(path, datadir))
- os.makedirs(datadir, exist_ok=True)
- with tarfile.open(path, "r:") as tar:
- tar.extractall(path=datadir)
-
- print("Extracting sub-tars.")
- subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
- for subpath in tqdm(subpaths):
- subdir = subpath[:-len(".tar")]
- os.makedirs(subdir, exist_ok=True)
- with tarfile.open(subpath, "r:") as tar:
- tar.extractall(path=subdir)
-
- filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
- filelist = [os.path.relpath(p, start=datadir) for p in filelist]
- filelist = sorted(filelist)
- filelist = "\n".join(filelist)+"\n"
- with open(self.txt_filelist, "w") as f:
- f.write(filelist)
-
- tdu.mark_prepared(self.root)
-
-
-class ImageNetValidation(ImageNetBase):
- NAME = "ILSVRC2012_validation"
- URL = "http://www.image-net.org/challenges/LSVRC/2012/"
- AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
- VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
- FILES = [
- "ILSVRC2012_img_val.tar",
- "validation_synset.txt",
- ]
- SIZES = [
- 6744924160,
- 1950000,
- ]
-
- def __init__(self, process_images=True, data_root=None, **kwargs):
- self.data_root = data_root
- self.process_images = process_images
- super().__init__(**kwargs)
-
- def _prepare(self):
- if self.data_root:
- self.root = os.path.join(self.data_root, self.NAME)
- else:
- cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
- self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
- self.datadir = os.path.join(self.root, "data")
- self.txt_filelist = os.path.join(self.root, "filelist.txt")
- self.expected_length = 50000
- self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
- default=False)
- if not tdu.is_prepared(self.root):
- # prep
- print("Preparing dataset {} in {}".format(self.NAME, self.root))
-
- datadir = self.datadir
- if not os.path.exists(datadir):
- path = os.path.join(self.root, self.FILES[0])
- if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
- import academictorrents as at
- atpath = at.get(self.AT_HASH, datastore=self.root)
- assert atpath == path
-
- print("Extracting {} to {}".format(path, datadir))
- os.makedirs(datadir, exist_ok=True)
- with tarfile.open(path, "r:") as tar:
- tar.extractall(path=datadir)
-
- vspath = os.path.join(self.root, self.FILES[1])
- if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
- download(self.VS_URL, vspath)
-
- with open(vspath, "r") as f:
- synset_dict = f.read().splitlines()
- synset_dict = dict(line.split() for line in synset_dict)
-
- print("Reorganizing into synset folders")
- synsets = np.unique(list(synset_dict.values()))
- for s in synsets:
- os.makedirs(os.path.join(datadir, s), exist_ok=True)
- for k, v in synset_dict.items():
- src = os.path.join(datadir, k)
- dst = os.path.join(datadir, v)
- shutil.move(src, dst)
-
- filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
- filelist = [os.path.relpath(p, start=datadir) for p in filelist]
- filelist = sorted(filelist)
- filelist = "\n".join(filelist)+"\n"
- with open(self.txt_filelist, "w") as f:
- f.write(filelist)
-
- tdu.mark_prepared(self.root)
-
-
-
-class ImageNetSR(Dataset):
- def __init__(self, size=None,
- degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
- random_crop=True):
- """
- Imagenet Superresolution Dataloader
- Performs following ops in order:
- 1. crops a crop of size s from image either as random or center crop
- 2. resizes crop to size with cv2.area_interpolation
- 3. degrades resized crop with degradation_fn
-
- :param size: resizing to size after cropping
- :param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
- :param downscale_f: Low Resolution Downsample factor
- :param min_crop_f: determines crop size s,
- where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
- :param max_crop_f: ""
- :param data_root:
- :param random_crop:
- """
- self.base = self.get_base()
- assert size
- assert (size / downscale_f).is_integer()
- self.size = size
- self.LR_size = int(size / downscale_f)
- self.min_crop_f = min_crop_f
- self.max_crop_f = max_crop_f
- assert(max_crop_f <= 1.)
- self.center_crop = not random_crop
-
- self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
-
- self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
-
- if degradation == "bsrgan":
- self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
-
- elif degradation == "bsrgan_light":
- self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
-
- else:
- interpolation_fn = {
- "cv_nearest": cv2.INTER_NEAREST,
- "cv_bilinear": cv2.INTER_LINEAR,
- "cv_bicubic": cv2.INTER_CUBIC,
- "cv_area": cv2.INTER_AREA,
- "cv_lanczos": cv2.INTER_LANCZOS4,
- "pil_nearest": PIL.Image.NEAREST,
- "pil_bilinear": PIL.Image.BILINEAR,
- "pil_bicubic": PIL.Image.BICUBIC,
- "pil_box": PIL.Image.BOX,
- "pil_hamming": PIL.Image.HAMMING,
- "pil_lanczos": PIL.Image.LANCZOS,
- }[degradation]
-
- self.pil_interpolation = degradation.startswith("pil_")
-
- if self.pil_interpolation:
- self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
-
- else:
- self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
- interpolation=interpolation_fn)
-
- def __len__(self):
- return len(self.base)
-
- def __getitem__(self, i):
- example = self.base[i]
- image = Image.open(example["file_path_"])
-
- if not image.mode == "RGB":
- image = image.convert("RGB")
-
- image = np.array(image).astype(np.uint8)
-
- min_side_len = min(image.shape[:2])
- crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
- crop_side_len = int(crop_side_len)
-
- if self.center_crop:
- self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
-
- else:
- self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
-
- image = self.cropper(image=image)["image"]
- image = self.image_rescaler(image=image)["image"]
-
- if self.pil_interpolation:
- image_pil = PIL.Image.fromarray(image)
- LR_image = self.degradation_process(image_pil)
- LR_image = np.array(LR_image).astype(np.uint8)
-
- else:
- LR_image = self.degradation_process(image=image)["image"]
-
- example["image"] = (image/127.5 - 1.0).astype(np.float32)
- example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
-
- return example
-
-
-class ImageNetSRTrain(ImageNetSR):
- def __init__(self, **kwargs):
- super().__init__(**kwargs)
-
- def get_base(self):
- with open("data/imagenet_train_hr_indices.p", "rb") as f:
- indices = pickle.load(f)
- dset = ImageNetTrain(process_images=False,)
- return Subset(dset, indices)
-
-
-class ImageNetSRValidation(ImageNetSR):
- def __init__(self, **kwargs):
- super().__init__(**kwargs)
-
- def get_base(self):
- with open("data/imagenet_val_hr_indices.p", "rb") as f:
- indices = pickle.load(f)
- dset = ImageNetValidation(process_images=False,)
- return Subset(dset, indices)
diff --git a/stable_diffusion/ldm/data/lsun.py b/stable_diffusion/ldm/data/lsun.py
deleted file mode 100644
index 6256e45715ff0b57c53f985594d27cbbbff0e68e..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/data/lsun.py
+++ /dev/null
@@ -1,92 +0,0 @@
-import os
-import numpy as np
-import PIL
-from PIL import Image
-from torch.utils.data import Dataset
-from torchvision import transforms
-
-
-class LSUNBase(Dataset):
- def __init__(self,
- txt_file,
- data_root,
- size=None,
- interpolation="bicubic",
- flip_p=0.5
- ):
- self.data_paths = txt_file
- self.data_root = data_root
- with open(self.data_paths, "r") as f:
- self.image_paths = f.read().splitlines()
- self._length = len(self.image_paths)
- self.labels = {
- "relative_file_path_": [l for l in self.image_paths],
- "file_path_": [os.path.join(self.data_root, l)
- for l in self.image_paths],
- }
-
- self.size = size
- self.interpolation = {"linear": PIL.Image.LINEAR,
- "bilinear": PIL.Image.BILINEAR,
- "bicubic": PIL.Image.BICUBIC,
- "lanczos": PIL.Image.LANCZOS,
- }[interpolation]
- self.flip = transforms.RandomHorizontalFlip(p=flip_p)
-
- def __len__(self):
- return self._length
-
- def __getitem__(self, i):
- example = dict((k, self.labels[k][i]) for k in self.labels)
- image = Image.open(example["file_path_"])
- if not image.mode == "RGB":
- image = image.convert("RGB")
-
- # default to score-sde preprocessing
- img = np.array(image).astype(np.uint8)
- crop = min(img.shape[0], img.shape[1])
- h, w, = img.shape[0], img.shape[1]
- img = img[(h - crop) // 2:(h + crop) // 2,
- (w - crop) // 2:(w + crop) // 2]
-
- image = Image.fromarray(img)
- if self.size is not None:
- image = image.resize((self.size, self.size), resample=self.interpolation)
-
- image = self.flip(image)
- image = np.array(image).astype(np.uint8)
- example["image"] = (image / 127.5 - 1.0).astype(np.float32)
- return example
-
-
-class LSUNChurchesTrain(LSUNBase):
- def __init__(self, **kwargs):
- super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
-
-
-class LSUNChurchesValidation(LSUNBase):
- def __init__(self, flip_p=0., **kwargs):
- super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
- flip_p=flip_p, **kwargs)
-
-
-class LSUNBedroomsTrain(LSUNBase):
- def __init__(self, **kwargs):
- super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
-
-
-class LSUNBedroomsValidation(LSUNBase):
- def __init__(self, flip_p=0.0, **kwargs):
- super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
- flip_p=flip_p, **kwargs)
-
-
-class LSUNCatsTrain(LSUNBase):
- def __init__(self, **kwargs):
- super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
-
-
-class LSUNCatsValidation(LSUNBase):
- def __init__(self, flip_p=0., **kwargs):
- super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
- flip_p=flip_p, **kwargs)
diff --git a/stable_diffusion/ldm/lr_scheduler.py b/stable_diffusion/ldm/lr_scheduler.py
deleted file mode 100644
index be39da9ca6dacc22bf3df9c7389bbb403a4a3ade..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/lr_scheduler.py
+++ /dev/null
@@ -1,98 +0,0 @@
-import numpy as np
-
-
-class LambdaWarmUpCosineScheduler:
- """
- note: use with a base_lr of 1.0
- """
- def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
- self.lr_warm_up_steps = warm_up_steps
- self.lr_start = lr_start
- self.lr_min = lr_min
- self.lr_max = lr_max
- self.lr_max_decay_steps = max_decay_steps
- self.last_lr = 0.
- self.verbosity_interval = verbosity_interval
-
- def schedule(self, n, **kwargs):
- if self.verbosity_interval > 0:
- if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
- if n < self.lr_warm_up_steps:
- lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
- self.last_lr = lr
- return lr
- else:
- t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
- t = min(t, 1.0)
- lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
- 1 + np.cos(t * np.pi))
- self.last_lr = lr
- return lr
-
- def __call__(self, n, **kwargs):
- return self.schedule(n,**kwargs)
-
-
-class LambdaWarmUpCosineScheduler2:
- """
- supports repeated iterations, configurable via lists
- note: use with a base_lr of 1.0.
- """
- def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
- assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
- self.lr_warm_up_steps = warm_up_steps
- self.f_start = f_start
- self.f_min = f_min
- self.f_max = f_max
- self.cycle_lengths = cycle_lengths
- self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
- self.last_f = 0.
- self.verbosity_interval = verbosity_interval
-
- def find_in_interval(self, n):
- interval = 0
- for cl in self.cum_cycles[1:]:
- if n <= cl:
- return interval
- interval += 1
-
- def schedule(self, n, **kwargs):
- cycle = self.find_in_interval(n)
- n = n - self.cum_cycles[cycle]
- if self.verbosity_interval > 0:
- if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
- f"current cycle {cycle}")
- if n < self.lr_warm_up_steps[cycle]:
- f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
- self.last_f = f
- return f
- else:
- t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
- t = min(t, 1.0)
- f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
- 1 + np.cos(t * np.pi))
- self.last_f = f
- return f
-
- def __call__(self, n, **kwargs):
- return self.schedule(n, **kwargs)
-
-
-class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
-
- def schedule(self, n, **kwargs):
- cycle = self.find_in_interval(n)
- n = n - self.cum_cycles[cycle]
- if self.verbosity_interval > 0:
- if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
- f"current cycle {cycle}")
-
- if n < self.lr_warm_up_steps[cycle]:
- f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
- self.last_f = f
- return f
- else:
- f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
- self.last_f = f
- return f
-
diff --git a/stable_diffusion/ldm/models/autoencoder.py b/stable_diffusion/ldm/models/autoencoder.py
deleted file mode 100644
index 6a9c4f45498561953b8085981609b2a3298a5473..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/models/autoencoder.py
+++ /dev/null
@@ -1,443 +0,0 @@
-import torch
-import pytorch_lightning as pl
-import torch.nn.functional as F
-from contextlib import contextmanager
-
-from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
-
-from ldm.modules.diffusionmodules.model import Encoder, Decoder
-from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
-
-from ldm.util import instantiate_from_config
-
-
-class VQModel(pl.LightningModule):
- def __init__(self,
- ddconfig,
- lossconfig,
- n_embed,
- embed_dim,
- ckpt_path=None,
- ignore_keys=[],
- image_key="image",
- colorize_nlabels=None,
- monitor=None,
- batch_resize_range=None,
- scheduler_config=None,
- lr_g_factor=1.0,
- remap=None,
- sane_index_shape=False, # tell vector quantizer to return indices as bhw
- use_ema=False
- ):
- super().__init__()
- self.embed_dim = embed_dim
- self.n_embed = n_embed
- self.image_key = image_key
- self.encoder = Encoder(**ddconfig)
- self.decoder = Decoder(**ddconfig)
- self.loss = instantiate_from_config(lossconfig)
- self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
- remap=remap,
- sane_index_shape=sane_index_shape)
- self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
- self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
- if colorize_nlabels is not None:
- assert type(colorize_nlabels)==int
- self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
- if monitor is not None:
- self.monitor = monitor
- self.batch_resize_range = batch_resize_range
- if self.batch_resize_range is not None:
- print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
-
- self.use_ema = use_ema
- if self.use_ema:
- self.model_ema = LitEma(self)
- print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
-
- if ckpt_path is not None:
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
- self.scheduler_config = scheduler_config
- self.lr_g_factor = lr_g_factor
-
- @contextmanager
- def ema_scope(self, context=None):
- if self.use_ema:
- self.model_ema.store(self.parameters())
- self.model_ema.copy_to(self)
- if context is not None:
- print(f"{context}: Switched to EMA weights")
- try:
- yield None
- finally:
- if self.use_ema:
- self.model_ema.restore(self.parameters())
- if context is not None:
- print(f"{context}: Restored training weights")
-
- def init_from_ckpt(self, path, ignore_keys=list()):
- sd = torch.load(path, map_location="cpu")["state_dict"]
- keys = list(sd.keys())
- for k in keys:
- for ik in ignore_keys:
- if k.startswith(ik):
- print("Deleting key {} from state_dict.".format(k))
- del sd[k]
- missing, unexpected = self.load_state_dict(sd, strict=False)
- print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
- if len(missing) > 0:
- print(f"Missing Keys: {missing}")
- print(f"Unexpected Keys: {unexpected}")
-
- def on_train_batch_end(self, *args, **kwargs):
- if self.use_ema:
- self.model_ema(self)
-
- def encode(self, x):
- h = self.encoder(x)
- h = self.quant_conv(h)
- quant, emb_loss, info = self.quantize(h)
- return quant, emb_loss, info
-
- def encode_to_prequant(self, x):
- h = self.encoder(x)
- h = self.quant_conv(h)
- return h
-
- def decode(self, quant):
- quant = self.post_quant_conv(quant)
- dec = self.decoder(quant)
- return dec
-
- def decode_code(self, code_b):
- quant_b = self.quantize.embed_code(code_b)
- dec = self.decode(quant_b)
- return dec
-
- def forward(self, input, return_pred_indices=False):
- quant, diff, (_,_,ind) = self.encode(input)
- dec = self.decode(quant)
- if return_pred_indices:
- return dec, diff, ind
- return dec, diff
-
- def get_input(self, batch, k):
- x = batch[k]
- if len(x.shape) == 3:
- x = x[..., None]
- x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
- if self.batch_resize_range is not None:
- lower_size = self.batch_resize_range[0]
- upper_size = self.batch_resize_range[1]
- if self.global_step <= 4:
- # do the first few batches with max size to avoid later oom
- new_resize = upper_size
- else:
- new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
- if new_resize != x.shape[2]:
- x = F.interpolate(x, size=new_resize, mode="bicubic")
- x = x.detach()
- return x
-
- def training_step(self, batch, batch_idx, optimizer_idx):
- # https://github.com/pytorch/pytorch/issues/37142
- # try not to fool the heuristics
- x = self.get_input(batch, self.image_key)
- xrec, qloss, ind = self(x, return_pred_indices=True)
-
- if optimizer_idx == 0:
- # autoencode
- aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
- last_layer=self.get_last_layer(), split="train",
- predicted_indices=ind)
-
- self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
- return aeloss
-
- if optimizer_idx == 1:
- # discriminator
- discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
- last_layer=self.get_last_layer(), split="train")
- self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
- return discloss
-
- def validation_step(self, batch, batch_idx):
- log_dict = self._validation_step(batch, batch_idx)
- with self.ema_scope():
- log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
- return log_dict
-
- def _validation_step(self, batch, batch_idx, suffix=""):
- x = self.get_input(batch, self.image_key)
- xrec, qloss, ind = self(x, return_pred_indices=True)
- aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
- self.global_step,
- last_layer=self.get_last_layer(),
- split="val"+suffix,
- predicted_indices=ind
- )
-
- discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
- self.global_step,
- last_layer=self.get_last_layer(),
- split="val"+suffix,
- predicted_indices=ind
- )
- rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
- self.log(f"val{suffix}/rec_loss", rec_loss,
- prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
- self.log(f"val{suffix}/aeloss", aeloss,
- prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
- if version.parse(pl.__version__) >= version.parse('1.4.0'):
- del log_dict_ae[f"val{suffix}/rec_loss"]
- self.log_dict(log_dict_ae)
- self.log_dict(log_dict_disc)
- return self.log_dict
-
- def configure_optimizers(self):
- lr_d = self.learning_rate
- lr_g = self.lr_g_factor*self.learning_rate
- print("lr_d", lr_d)
- print("lr_g", lr_g)
- opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
- list(self.decoder.parameters())+
- list(self.quantize.parameters())+
- list(self.quant_conv.parameters())+
- list(self.post_quant_conv.parameters()),
- lr=lr_g, betas=(0.5, 0.9))
- opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
- lr=lr_d, betas=(0.5, 0.9))
-
- if self.scheduler_config is not None:
- scheduler = instantiate_from_config(self.scheduler_config)
-
- print("Setting up LambdaLR scheduler...")
- scheduler = [
- {
- 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
- 'interval': 'step',
- 'frequency': 1
- },
- {
- 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
- 'interval': 'step',
- 'frequency': 1
- },
- ]
- return [opt_ae, opt_disc], scheduler
- return [opt_ae, opt_disc], []
-
- def get_last_layer(self):
- return self.decoder.conv_out.weight
-
- def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
- log = dict()
- x = self.get_input(batch, self.image_key)
- x = x.to(self.device)
- if only_inputs:
- log["inputs"] = x
- return log
- xrec, _ = self(x)
- if x.shape[1] > 3:
- # colorize with random projection
- assert xrec.shape[1] > 3
- x = self.to_rgb(x)
- xrec = self.to_rgb(xrec)
- log["inputs"] = x
- log["reconstructions"] = xrec
- if plot_ema:
- with self.ema_scope():
- xrec_ema, _ = self(x)
- if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
- log["reconstructions_ema"] = xrec_ema
- return log
-
- def to_rgb(self, x):
- assert self.image_key == "segmentation"
- if not hasattr(self, "colorize"):
- self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
- x = F.conv2d(x, weight=self.colorize)
- x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
- return x
-
-
-class VQModelInterface(VQModel):
- def __init__(self, embed_dim, *args, **kwargs):
- super().__init__(embed_dim=embed_dim, *args, **kwargs)
- self.embed_dim = embed_dim
-
- def encode(self, x):
- h = self.encoder(x)
- h = self.quant_conv(h)
- return h
-
- def decode(self, h, force_not_quantize=False):
- # also go through quantization layer
- if not force_not_quantize:
- quant, emb_loss, info = self.quantize(h)
- else:
- quant = h
- quant = self.post_quant_conv(quant)
- dec = self.decoder(quant)
- return dec
-
-
-class AutoencoderKL(pl.LightningModule):
- def __init__(self,
- ddconfig,
- lossconfig,
- embed_dim,
- ckpt_path=None,
- ignore_keys=[],
- image_key="image",
- colorize_nlabels=None,
- monitor=None,
- ):
- super().__init__()
- self.image_key = image_key
- self.encoder = Encoder(**ddconfig)
- self.decoder = Decoder(**ddconfig)
- self.loss = instantiate_from_config(lossconfig)
- assert ddconfig["double_z"]
- self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
- self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
- self.embed_dim = embed_dim
- if colorize_nlabels is not None:
- assert type(colorize_nlabels)==int
- self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
- if monitor is not None:
- self.monitor = monitor
- if ckpt_path is not None:
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
-
- def init_from_ckpt(self, path, ignore_keys=list()):
- sd = torch.load(path, map_location="cpu")["state_dict"]
- keys = list(sd.keys())
- for k in keys:
- for ik in ignore_keys:
- if k.startswith(ik):
- print("Deleting key {} from state_dict.".format(k))
- del sd[k]
- self.load_state_dict(sd, strict=False)
- print(f"Restored from {path}")
-
- def encode(self, x):
- h = self.encoder(x)
- moments = self.quant_conv(h)
- posterior = DiagonalGaussianDistribution(moments)
- return posterior
-
- def decode(self, z):
- z = self.post_quant_conv(z)
- dec = self.decoder(z)
- return dec
-
- def forward(self, input, sample_posterior=True):
- posterior = self.encode(input)
- if sample_posterior:
- z = posterior.sample()
- else:
- z = posterior.mode()
- dec = self.decode(z)
- return dec, posterior
-
- def get_input(self, batch, k):
- x = batch[k]
- if len(x.shape) == 3:
- x = x[..., None]
- x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
- return x
-
- def training_step(self, batch, batch_idx, optimizer_idx):
- inputs = self.get_input(batch, self.image_key)
- reconstructions, posterior = self(inputs)
-
- if optimizer_idx == 0:
- # train encoder+decoder+logvar
- aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
- last_layer=self.get_last_layer(), split="train")
- self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
- self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
- return aeloss
-
- if optimizer_idx == 1:
- # train the discriminator
- discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
- last_layer=self.get_last_layer(), split="train")
-
- self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
- self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
- return discloss
-
- def validation_step(self, batch, batch_idx):
- inputs = self.get_input(batch, self.image_key)
- reconstructions, posterior = self(inputs)
- aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
- last_layer=self.get_last_layer(), split="val")
-
- discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
- last_layer=self.get_last_layer(), split="val")
-
- self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
- self.log_dict(log_dict_ae)
- self.log_dict(log_dict_disc)
- return self.log_dict
-
- def configure_optimizers(self):
- lr = self.learning_rate
- opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
- list(self.decoder.parameters())+
- list(self.quant_conv.parameters())+
- list(self.post_quant_conv.parameters()),
- lr=lr, betas=(0.5, 0.9))
- opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
- lr=lr, betas=(0.5, 0.9))
- return [opt_ae, opt_disc], []
-
- def get_last_layer(self):
- return self.decoder.conv_out.weight
-
- @torch.no_grad()
- def log_images(self, batch, only_inputs=False, **kwargs):
- log = dict()
- x = self.get_input(batch, self.image_key)
- x = x.to(self.device)
- if not only_inputs:
- xrec, posterior = self(x)
- if x.shape[1] > 3:
- # colorize with random projection
- assert xrec.shape[1] > 3
- x = self.to_rgb(x)
- xrec = self.to_rgb(xrec)
- log["samples"] = self.decode(torch.randn_like(posterior.sample()))
- log["reconstructions"] = xrec
- log["inputs"] = x
- return log
-
- def to_rgb(self, x):
- assert self.image_key == "segmentation"
- if not hasattr(self, "colorize"):
- self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
- x = F.conv2d(x, weight=self.colorize)
- x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
- return x
-
-
-class IdentityFirstStage(torch.nn.Module):
- def __init__(self, *args, vq_interface=False, **kwargs):
- self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
- super().__init__()
-
- def encode(self, x, *args, **kwargs):
- return x
-
- def decode(self, x, *args, **kwargs):
- return x
-
- def quantize(self, x, *args, **kwargs):
- if self.vq_interface:
- return x, None, [None, None, None]
- return x
-
- def forward(self, x, *args, **kwargs):
- return x
diff --git a/stable_diffusion/ldm/models/diffusion/__init__.py b/stable_diffusion/ldm/models/diffusion/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/stable_diffusion/ldm/models/diffusion/classifier.py b/stable_diffusion/ldm/models/diffusion/classifier.py
deleted file mode 100644
index 67e98b9d8ffb96a150b517497ace0a242d7163ef..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/models/diffusion/classifier.py
+++ /dev/null
@@ -1,267 +0,0 @@
-import os
-import torch
-import pytorch_lightning as pl
-from omegaconf import OmegaConf
-from torch.nn import functional as F
-from torch.optim import AdamW
-from torch.optim.lr_scheduler import LambdaLR
-from copy import deepcopy
-from einops import rearrange
-from glob import glob
-from natsort import natsorted
-
-from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
-from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
-
-__models__ = {
- 'class_label': EncoderUNetModel,
- 'segmentation': UNetModel
-}
-
-
-def disabled_train(self, mode=True):
- """Overwrite model.train with this function to make sure train/eval mode
- does not change anymore."""
- return self
-
-
-class NoisyLatentImageClassifier(pl.LightningModule):
-
- def __init__(self,
- diffusion_path,
- num_classes,
- ckpt_path=None,
- pool='attention',
- label_key=None,
- diffusion_ckpt_path=None,
- scheduler_config=None,
- weight_decay=1.e-2,
- log_steps=10,
- monitor='val/loss',
- *args,
- **kwargs):
- super().__init__(*args, **kwargs)
- self.num_classes = num_classes
- # get latest config of diffusion model
- diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
- self.diffusion_config = OmegaConf.load(diffusion_config).model
- self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
- self.load_diffusion()
-
- self.monitor = monitor
- self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
- self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
- self.log_steps = log_steps
-
- self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
- else self.diffusion_model.cond_stage_key
-
- assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
-
- if self.label_key not in __models__:
- raise NotImplementedError()
-
- self.load_classifier(ckpt_path, pool)
-
- self.scheduler_config = scheduler_config
- self.use_scheduler = self.scheduler_config is not None
- self.weight_decay = weight_decay
-
- def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
- sd = torch.load(path, map_location="cpu")
- if "state_dict" in list(sd.keys()):
- sd = sd["state_dict"]
- keys = list(sd.keys())
- for k in keys:
- for ik in ignore_keys:
- if k.startswith(ik):
- print("Deleting key {} from state_dict.".format(k))
- del sd[k]
- missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
- sd, strict=False)
- print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
- if len(missing) > 0:
- print(f"Missing Keys: {missing}")
- if len(unexpected) > 0:
- print(f"Unexpected Keys: {unexpected}")
-
- def load_diffusion(self):
- model = instantiate_from_config(self.diffusion_config)
- self.diffusion_model = model.eval()
- self.diffusion_model.train = disabled_train
- for param in self.diffusion_model.parameters():
- param.requires_grad = False
-
- def load_classifier(self, ckpt_path, pool):
- model_config = deepcopy(self.diffusion_config.params.unet_config.params)
- model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
- model_config.out_channels = self.num_classes
- if self.label_key == 'class_label':
- model_config.pool = pool
-
- self.model = __models__[self.label_key](**model_config)
- if ckpt_path is not None:
- print('#####################################################################')
- print(f'load from ckpt "{ckpt_path}"')
- print('#####################################################################')
- self.init_from_ckpt(ckpt_path)
-
- @torch.no_grad()
- def get_x_noisy(self, x, t, noise=None):
- noise = default(noise, lambda: torch.randn_like(x))
- continuous_sqrt_alpha_cumprod = None
- if self.diffusion_model.use_continuous_noise:
- continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
- # todo: make sure t+1 is correct here
-
- return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
- continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
-
- def forward(self, x_noisy, t, *args, **kwargs):
- return self.model(x_noisy, t)
-
- @torch.no_grad()
- def get_input(self, batch, k):
- x = batch[k]
- if len(x.shape) == 3:
- x = x[..., None]
- x = rearrange(x, 'b h w c -> b c h w')
- x = x.to(memory_format=torch.contiguous_format).float()
- return x
-
- @torch.no_grad()
- def get_conditioning(self, batch, k=None):
- if k is None:
- k = self.label_key
- assert k is not None, 'Needs to provide label key'
-
- targets = batch[k].to(self.device)
-
- if self.label_key == 'segmentation':
- targets = rearrange(targets, 'b h w c -> b c h w')
- for down in range(self.numd):
- h, w = targets.shape[-2:]
- targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
-
- # targets = rearrange(targets,'b c h w -> b h w c')
-
- return targets
-
- def compute_top_k(self, logits, labels, k, reduction="mean"):
- _, top_ks = torch.topk(logits, k, dim=1)
- if reduction == "mean":
- return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
- elif reduction == "none":
- return (top_ks == labels[:, None]).float().sum(dim=-1)
-
- def on_train_epoch_start(self):
- # save some memory
- self.diffusion_model.model.to('cpu')
-
- @torch.no_grad()
- def write_logs(self, loss, logits, targets):
- log_prefix = 'train' if self.training else 'val'
- log = {}
- log[f"{log_prefix}/loss"] = loss.mean()
- log[f"{log_prefix}/acc@1"] = self.compute_top_k(
- logits, targets, k=1, reduction="mean"
- )
- log[f"{log_prefix}/acc@5"] = self.compute_top_k(
- logits, targets, k=5, reduction="mean"
- )
-
- self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
- self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
- self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
- lr = self.optimizers().param_groups[0]['lr']
- self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
-
- def shared_step(self, batch, t=None):
- x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
- targets = self.get_conditioning(batch)
- if targets.dim() == 4:
- targets = targets.argmax(dim=1)
- if t is None:
- t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
- else:
- t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
- x_noisy = self.get_x_noisy(x, t)
- logits = self(x_noisy, t)
-
- loss = F.cross_entropy(logits, targets, reduction='none')
-
- self.write_logs(loss.detach(), logits.detach(), targets.detach())
-
- loss = loss.mean()
- return loss, logits, x_noisy, targets
-
- def training_step(self, batch, batch_idx):
- loss, *_ = self.shared_step(batch)
- return loss
-
- def reset_noise_accs(self):
- self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
- range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
-
- def on_validation_start(self):
- self.reset_noise_accs()
-
- @torch.no_grad()
- def validation_step(self, batch, batch_idx):
- loss, *_ = self.shared_step(batch)
-
- for t in self.noisy_acc:
- _, logits, _, targets = self.shared_step(batch, t)
- self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
- self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
-
- return loss
-
- def configure_optimizers(self):
- optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
-
- if self.use_scheduler:
- scheduler = instantiate_from_config(self.scheduler_config)
-
- print("Setting up LambdaLR scheduler...")
- scheduler = [
- {
- 'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
- 'interval': 'step',
- 'frequency': 1
- }]
- return [optimizer], scheduler
-
- return optimizer
-
- @torch.no_grad()
- def log_images(self, batch, N=8, *args, **kwargs):
- log = dict()
- x = self.get_input(batch, self.diffusion_model.first_stage_key)
- log['inputs'] = x
-
- y = self.get_conditioning(batch)
-
- if self.label_key == 'class_label':
- y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
- log['labels'] = y
-
- if ismap(y):
- log['labels'] = self.diffusion_model.to_rgb(y)
-
- for step in range(self.log_steps):
- current_time = step * self.log_time_interval
-
- _, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
-
- log[f'inputs@t{current_time}'] = x_noisy
-
- pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
- pred = rearrange(pred, 'b h w c -> b c h w')
-
- log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
-
- for key in log:
- log[key] = log[key][:N]
-
- return log
diff --git a/stable_diffusion/ldm/models/diffusion/ddim.py b/stable_diffusion/ldm/models/diffusion/ddim.py
deleted file mode 100644
index fb31215db5c3f3f703f15987d7eee6a179c9f7ec..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/models/diffusion/ddim.py
+++ /dev/null
@@ -1,241 +0,0 @@
-"""SAMPLING ONLY."""
-
-import torch
-import numpy as np
-from tqdm import tqdm
-from functools import partial
-
-from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, \
- extract_into_tensor
-
-
-class DDIMSampler(object):
- def __init__(self, model, schedule="linear", **kwargs):
- super().__init__()
- self.model = model
- self.ddpm_num_timesteps = model.num_timesteps
- self.schedule = schedule
-
- def register_buffer(self, name, attr):
- if type(attr) == torch.Tensor:
- if attr.device != torch.device("cuda"):
- attr = attr.to(torch.device("cuda"))
- setattr(self, name, attr)
-
- def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
- self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
- num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
- alphas_cumprod = self.model.alphas_cumprod
- assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
- to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
-
- self.register_buffer('betas', to_torch(self.model.betas))
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
- self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
-
- # calculations for diffusion q(x_t | x_{t-1}) and others
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
-
- # ddim sampling parameters
- ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
- ddim_timesteps=self.ddim_timesteps,
- eta=ddim_eta,verbose=verbose)
- self.register_buffer('ddim_sigmas', ddim_sigmas)
- self.register_buffer('ddim_alphas', ddim_alphas)
- self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
- self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
- sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
- (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
- 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
- self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
-
- @torch.no_grad()
- def sample(self,
- S,
- batch_size,
- shape,
- conditioning=None,
- callback=None,
- normals_sequence=None,
- img_callback=None,
- quantize_x0=False,
- eta=0.,
- mask=None,
- x0=None,
- temperature=1.,
- noise_dropout=0.,
- score_corrector=None,
- corrector_kwargs=None,
- verbose=True,
- x_T=None,
- log_every_t=100,
- unconditional_guidance_scale=1.,
- unconditional_conditioning=None,
- # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
- **kwargs
- ):
- if conditioning is not None:
- if isinstance(conditioning, dict):
- cbs = conditioning[list(conditioning.keys())[0]].shape[0]
- if cbs != batch_size:
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
- else:
- if conditioning.shape[0] != batch_size:
- print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
-
- self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
- # sampling
- C, H, W = shape
- size = (batch_size, C, H, W)
- print(f'Data shape for DDIM sampling is {size}, eta {eta}')
-
- samples, intermediates = self.ddim_sampling(conditioning, size,
- callback=callback,
- img_callback=img_callback,
- quantize_denoised=quantize_x0,
- mask=mask, x0=x0,
- ddim_use_original_steps=False,
- noise_dropout=noise_dropout,
- temperature=temperature,
- score_corrector=score_corrector,
- corrector_kwargs=corrector_kwargs,
- x_T=x_T,
- log_every_t=log_every_t,
- unconditional_guidance_scale=unconditional_guidance_scale,
- unconditional_conditioning=unconditional_conditioning,
- )
- return samples, intermediates
-
- @torch.no_grad()
- def ddim_sampling(self, cond, shape,
- x_T=None, ddim_use_original_steps=False,
- callback=None, timesteps=None, quantize_denoised=False,
- mask=None, x0=None, img_callback=None, log_every_t=100,
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
- unconditional_guidance_scale=1., unconditional_conditioning=None,):
- device = self.model.betas.device
- b = shape[0]
- if x_T is None:
- img = torch.randn(shape, device=device)
- else:
- img = x_T
-
- if timesteps is None:
- timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
- elif timesteps is not None and not ddim_use_original_steps:
- subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
- timesteps = self.ddim_timesteps[:subset_end]
-
- intermediates = {'x_inter': [img], 'pred_x0': [img]}
- time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
- total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
- print(f"Running DDIM Sampling with {total_steps} timesteps")
-
- iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
-
- for i, step in enumerate(iterator):
- index = total_steps - i - 1
- ts = torch.full((b,), step, device=device, dtype=torch.long)
-
- if mask is not None:
- assert x0 is not None
- img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
- img = img_orig * mask + (1. - mask) * img
-
- outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
- quantize_denoised=quantize_denoised, temperature=temperature,
- noise_dropout=noise_dropout, score_corrector=score_corrector,
- corrector_kwargs=corrector_kwargs,
- unconditional_guidance_scale=unconditional_guidance_scale,
- unconditional_conditioning=unconditional_conditioning)
- img, pred_x0 = outs
- if callback: callback(i)
- if img_callback: img_callback(pred_x0, i)
-
- if index % log_every_t == 0 or index == total_steps - 1:
- intermediates['x_inter'].append(img)
- intermediates['pred_x0'].append(pred_x0)
-
- return img, intermediates
-
- @torch.no_grad()
- def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
- unconditional_guidance_scale=1., unconditional_conditioning=None):
- b, *_, device = *x.shape, x.device
-
- if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
- e_t = self.model.apply_model(x, t, c)
- else:
- x_in = torch.cat([x] * 2)
- t_in = torch.cat([t] * 2)
- c_in = torch.cat([unconditional_conditioning, c])
- e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
- e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
-
- if score_corrector is not None:
- assert self.model.parameterization == "eps"
- e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
-
- alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
- alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
- sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
- sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
- # select parameters corresponding to the currently considered timestep
- a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
- a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
- sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
- sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
-
- # current prediction for x_0
- pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
- if quantize_denoised:
- pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
- # direction pointing to x_t
- dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
- noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
- if noise_dropout > 0.:
- noise = torch.nn.functional.dropout(noise, p=noise_dropout)
- x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
- return x_prev, pred_x0
-
- @torch.no_grad()
- def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
- # fast, but does not allow for exact reconstruction
- # t serves as an index to gather the correct alphas
- if use_original_steps:
- sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
- sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
- else:
- sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
- sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
-
- if noise is None:
- noise = torch.randn_like(x0)
- return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
- extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
-
- @torch.no_grad()
- def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
- use_original_steps=False):
-
- timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
- timesteps = timesteps[:t_start]
-
- time_range = np.flip(timesteps)
- total_steps = timesteps.shape[0]
- print(f"Running DDIM Sampling with {total_steps} timesteps")
-
- iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
- x_dec = x_latent
- for i, step in enumerate(iterator):
- index = total_steps - i - 1
- ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
- x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
- unconditional_guidance_scale=unconditional_guidance_scale,
- unconditional_conditioning=unconditional_conditioning)
- return x_dec
\ No newline at end of file
diff --git a/stable_diffusion/ldm/models/diffusion/ddpm.py b/stable_diffusion/ldm/models/diffusion/ddpm.py
deleted file mode 100644
index bbedd04cfd6f736ac066434a75618b9ba5125be7..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/models/diffusion/ddpm.py
+++ /dev/null
@@ -1,1445 +0,0 @@
-"""
-wild mixture of
-https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
-https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
-https://github.com/CompVis/taming-transformers
--- merci
-"""
-
-import torch
-import torch.nn as nn
-import numpy as np
-import pytorch_lightning as pl
-from torch.optim.lr_scheduler import LambdaLR
-from einops import rearrange, repeat
-from contextlib import contextmanager
-from functools import partial
-from tqdm import tqdm
-from torchvision.utils import make_grid
-from pytorch_lightning.utilities.distributed import rank_zero_only
-
-from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
-from ldm.modules.ema import LitEma
-from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
-from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
-from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
-from ldm.models.diffusion.ddim import DDIMSampler
-
-
-__conditioning_keys__ = {'concat': 'c_concat',
- 'crossattn': 'c_crossattn',
- 'adm': 'y'}
-
-
-def disabled_train(self, mode=True):
- """Overwrite model.train with this function to make sure train/eval mode
- does not change anymore."""
- return self
-
-
-def uniform_on_device(r1, r2, shape, device):
- return (r1 - r2) * torch.rand(*shape, device=device) + r2
-
-
-class DDPM(pl.LightningModule):
- # classic DDPM with Gaussian diffusion, in image space
- def __init__(self,
- unet_config,
- timesteps=1000,
- beta_schedule="linear",
- loss_type="l2",
- ckpt_path=None,
- ignore_keys=[],
- load_only_unet=False,
- monitor="val/loss",
- use_ema=True,
- first_stage_key="image",
- image_size=256,
- channels=3,
- log_every_t=100,
- clip_denoised=True,
- linear_start=1e-4,
- linear_end=2e-2,
- cosine_s=8e-3,
- given_betas=None,
- original_elbo_weight=0.,
- v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
- l_simple_weight=1.,
- conditioning_key=None,
- parameterization="eps", # all assuming fixed variance schedules
- scheduler_config=None,
- use_positional_encodings=False,
- learn_logvar=False,
- logvar_init=0.,
- ):
- super().__init__()
- assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
- self.parameterization = parameterization
- print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
- self.cond_stage_model = None
- self.clip_denoised = clip_denoised
- self.log_every_t = log_every_t
- self.first_stage_key = first_stage_key
- self.image_size = image_size # try conv?
- self.channels = channels
- self.use_positional_encodings = use_positional_encodings
- self.model = DiffusionWrapper(unet_config, conditioning_key)
- count_params(self.model, verbose=True)
- self.use_ema = use_ema
- if self.use_ema:
- self.model_ema = LitEma(self.model)
- print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
-
- self.use_scheduler = scheduler_config is not None
- if self.use_scheduler:
- self.scheduler_config = scheduler_config
-
- self.v_posterior = v_posterior
- self.original_elbo_weight = original_elbo_weight
- self.l_simple_weight = l_simple_weight
-
- if monitor is not None:
- self.monitor = monitor
- if ckpt_path is not None:
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
-
- self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
- linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
-
- self.loss_type = loss_type
-
- self.learn_logvar = learn_logvar
- self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
- if self.learn_logvar:
- self.logvar = nn.Parameter(self.logvar, requires_grad=True)
-
-
- def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
- linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
- if exists(given_betas):
- betas = given_betas
- else:
- betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
- cosine_s=cosine_s)
- alphas = 1. - betas
- alphas_cumprod = np.cumprod(alphas, axis=0)
- alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
-
- timesteps, = betas.shape
- self.num_timesteps = int(timesteps)
- self.linear_start = linear_start
- self.linear_end = linear_end
- assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
-
- to_torch = partial(torch.tensor, dtype=torch.float32)
-
- self.register_buffer('betas', to_torch(betas))
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
- self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
-
- # calculations for diffusion q(x_t | x_{t-1}) and others
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
-
- # calculations for posterior q(x_{t-1} | x_t, x_0)
- posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
- 1. - alphas_cumprod) + self.v_posterior * betas
- # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
- self.register_buffer('posterior_variance', to_torch(posterior_variance))
- # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
- self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
- self.register_buffer('posterior_mean_coef1', to_torch(
- betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
- self.register_buffer('posterior_mean_coef2', to_torch(
- (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
-
- if self.parameterization == "eps":
- lvlb_weights = self.betas ** 2 / (
- 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
- elif self.parameterization == "x0":
- lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
- else:
- raise NotImplementedError("mu not supported")
- # TODO how to choose this term
- lvlb_weights[0] = lvlb_weights[1]
- self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
- assert not torch.isnan(self.lvlb_weights).all()
-
- @contextmanager
- def ema_scope(self, context=None):
- if self.use_ema:
- self.model_ema.store(self.model.parameters())
- self.model_ema.copy_to(self.model)
- if context is not None:
- print(f"{context}: Switched to EMA weights")
- try:
- yield None
- finally:
- if self.use_ema:
- self.model_ema.restore(self.model.parameters())
- if context is not None:
- print(f"{context}: Restored training weights")
-
- def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
- sd = torch.load(path, map_location="cpu")
- if "state_dict" in list(sd.keys()):
- sd = sd["state_dict"]
- keys = list(sd.keys())
- for k in keys:
- for ik in ignore_keys:
- if k.startswith(ik):
- print("Deleting key {} from state_dict.".format(k))
- del sd[k]
- missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
- sd, strict=False)
- print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
- if len(missing) > 0:
- print(f"Missing Keys: {missing}")
- if len(unexpected) > 0:
- print(f"Unexpected Keys: {unexpected}")
-
- def q_mean_variance(self, x_start, t):
- """
- Get the distribution q(x_t | x_0).
- :param x_start: the [N x C x ...] tensor of noiseless inputs.
- :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
- :return: A tuple (mean, variance, log_variance), all of x_start's shape.
- """
- mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
- variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
- log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
- return mean, variance, log_variance
-
- def predict_start_from_noise(self, x_t, t, noise):
- return (
- extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
- )
-
- def q_posterior(self, x_start, x_t, t):
- posterior_mean = (
- extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
- extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
- )
- posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
- posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
- return posterior_mean, posterior_variance, posterior_log_variance_clipped
-
- def p_mean_variance(self, x, t, clip_denoised: bool):
- model_out = self.model(x, t)
- if self.parameterization == "eps":
- x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
- elif self.parameterization == "x0":
- x_recon = model_out
- if clip_denoised:
- x_recon.clamp_(-1., 1.)
-
- model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
- return model_mean, posterior_variance, posterior_log_variance
-
- @torch.no_grad()
- def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
- b, *_, device = *x.shape, x.device
- model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
- noise = noise_like(x.shape, device, repeat_noise)
- # no noise when t == 0
- nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
-
- @torch.no_grad()
- def p_sample_loop(self, shape, return_intermediates=False):
- device = self.betas.device
- b = shape[0]
- img = torch.randn(shape, device=device)
- intermediates = [img]
- for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
- img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
- clip_denoised=self.clip_denoised)
- if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
- intermediates.append(img)
- if return_intermediates:
- return img, intermediates
- return img
-
- @torch.no_grad()
- def sample(self, batch_size=16, return_intermediates=False):
- image_size = self.image_size
- channels = self.channels
- return self.p_sample_loop((batch_size, channels, image_size, image_size),
- return_intermediates=return_intermediates)
-
- def q_sample(self, x_start, t, noise=None):
- noise = default(noise, lambda: torch.randn_like(x_start))
- return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
-
- def get_loss(self, pred, target, mean=True):
- if self.loss_type == 'l1':
- loss = (target - pred).abs()
- if mean:
- loss = loss.mean()
- elif self.loss_type == 'l2':
- if mean:
- loss = torch.nn.functional.mse_loss(target, pred)
- else:
- loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
- else:
- raise NotImplementedError("unknown loss type '{loss_type}'")
-
- return loss
-
- def p_losses(self, x_start, t, noise=None):
- noise = default(noise, lambda: torch.randn_like(x_start))
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
- model_out = self.model(x_noisy, t)
-
- loss_dict = {}
- if self.parameterization == "eps":
- target = noise
- elif self.parameterization == "x0":
- target = x_start
- else:
- raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
-
- loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
-
- log_prefix = 'train' if self.training else 'val'
-
- loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
- loss_simple = loss.mean() * self.l_simple_weight
-
- loss_vlb = (self.lvlb_weights[t] * loss).mean()
- loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
-
- loss = loss_simple + self.original_elbo_weight * loss_vlb
-
- loss_dict.update({f'{log_prefix}/loss': loss})
-
- return loss, loss_dict
-
- def forward(self, x, *args, **kwargs):
- # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
- # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
- t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
- return self.p_losses(x, t, *args, **kwargs)
-
- def get_input(self, batch, k):
- x = batch[k]
- if len(x.shape) == 3:
- x = x[..., None]
- x = rearrange(x, 'b h w c -> b c h w')
- x = x.to(memory_format=torch.contiguous_format).float()
- return x
-
- def shared_step(self, batch):
- x = self.get_input(batch, self.first_stage_key)
- loss, loss_dict = self(x)
- return loss, loss_dict
-
- def training_step(self, batch, batch_idx):
- loss, loss_dict = self.shared_step(batch)
-
- self.log_dict(loss_dict, prog_bar=True,
- logger=True, on_step=True, on_epoch=True)
-
- self.log("global_step", self.global_step,
- prog_bar=True, logger=True, on_step=True, on_epoch=False)
-
- if self.use_scheduler:
- lr = self.optimizers().param_groups[0]['lr']
- self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
-
- return loss
-
- @torch.no_grad()
- def validation_step(self, batch, batch_idx):
- _, loss_dict_no_ema = self.shared_step(batch)
- with self.ema_scope():
- _, loss_dict_ema = self.shared_step(batch)
- loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
- self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
- self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
-
- def on_train_batch_end(self, *args, **kwargs):
- if self.use_ema:
- self.model_ema(self.model)
-
- def _get_rows_from_list(self, samples):
- n_imgs_per_row = len(samples)
- denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
- denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
- denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
- return denoise_grid
-
- @torch.no_grad()
- def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
- log = dict()
- x = self.get_input(batch, self.first_stage_key)
- N = min(x.shape[0], N)
- n_row = min(x.shape[0], n_row)
- x = x.to(self.device)[:N]
- log["inputs"] = x
-
- # get diffusion row
- diffusion_row = list()
- x_start = x[:n_row]
-
- for t in range(self.num_timesteps):
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
- t = t.to(self.device).long()
- noise = torch.randn_like(x_start)
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
- diffusion_row.append(x_noisy)
-
- log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
-
- if sample:
- # get denoise row
- with self.ema_scope("Plotting"):
- samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
-
- log["samples"] = samples
- log["denoise_row"] = self._get_rows_from_list(denoise_row)
-
- if return_keys:
- if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
- return log
- else:
- return {key: log[key] for key in return_keys}
- return log
-
- def configure_optimizers(self):
- lr = self.learning_rate
- params = list(self.model.parameters())
- if self.learn_logvar:
- params = params + [self.logvar]
- opt = torch.optim.AdamW(params, lr=lr)
- return opt
-
-
-class LatentDiffusion(DDPM):
- """main class"""
- def __init__(self,
- first_stage_config,
- cond_stage_config,
- num_timesteps_cond=None,
- cond_stage_key="image",
- cond_stage_trainable=False,
- concat_mode=True,
- cond_stage_forward=None,
- conditioning_key=None,
- scale_factor=1.0,
- scale_by_std=False,
- *args, **kwargs):
- self.num_timesteps_cond = default(num_timesteps_cond, 1)
- self.scale_by_std = scale_by_std
- assert self.num_timesteps_cond <= kwargs['timesteps']
- # for backwards compatibility after implementation of DiffusionWrapper
- if conditioning_key is None:
- conditioning_key = 'concat' if concat_mode else 'crossattn'
- if cond_stage_config == '__is_unconditional__':
- conditioning_key = None
- ckpt_path = kwargs.pop("ckpt_path", None)
- ignore_keys = kwargs.pop("ignore_keys", [])
- super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
- self.concat_mode = concat_mode
- self.cond_stage_trainable = cond_stage_trainable
- self.cond_stage_key = cond_stage_key
- try:
- self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
- except:
- self.num_downs = 0
- if not scale_by_std:
- self.scale_factor = scale_factor
- else:
- self.register_buffer('scale_factor', torch.tensor(scale_factor))
- self.instantiate_first_stage(first_stage_config)
- self.instantiate_cond_stage(cond_stage_config)
- self.cond_stage_forward = cond_stage_forward
- self.clip_denoised = False
- self.bbox_tokenizer = None
-
- self.restarted_from_ckpt = False
- if ckpt_path is not None:
- self.init_from_ckpt(ckpt_path, ignore_keys)
- self.restarted_from_ckpt = True
-
- def make_cond_schedule(self, ):
- self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
- ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
- self.cond_ids[:self.num_timesteps_cond] = ids
-
- @rank_zero_only
- @torch.no_grad()
- def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
- # only for very first batch
- if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
- assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
- # set rescale weight to 1./std of encodings
- print("### USING STD-RESCALING ###")
- x = super().get_input(batch, self.first_stage_key)
- x = x.to(self.device)
- encoder_posterior = self.encode_first_stage(x)
- z = self.get_first_stage_encoding(encoder_posterior).detach()
- del self.scale_factor
- self.register_buffer('scale_factor', 1. / z.flatten().std())
- print(f"setting self.scale_factor to {self.scale_factor}")
- print("### USING STD-RESCALING ###")
-
- def register_schedule(self,
- given_betas=None, beta_schedule="linear", timesteps=1000,
- linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
- super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
-
- self.shorten_cond_schedule = self.num_timesteps_cond > 1
- if self.shorten_cond_schedule:
- self.make_cond_schedule()
-
- def instantiate_first_stage(self, config):
- model = instantiate_from_config(config)
- self.first_stage_model = model.eval()
- self.first_stage_model.train = disabled_train
- for param in self.first_stage_model.parameters():
- param.requires_grad = False
-
- def instantiate_cond_stage(self, config):
- if not self.cond_stage_trainable:
- if config == "__is_first_stage__":
- print("Using first stage also as cond stage.")
- self.cond_stage_model = self.first_stage_model
- elif config == "__is_unconditional__":
- print(f"Training {self.__class__.__name__} as an unconditional model.")
- self.cond_stage_model = None
- # self.be_unconditional = True
- else:
- model = instantiate_from_config(config)
- self.cond_stage_model = model.eval()
- self.cond_stage_model.train = disabled_train
- for param in self.cond_stage_model.parameters():
- param.requires_grad = False
- else:
- assert config != '__is_first_stage__'
- assert config != '__is_unconditional__'
- model = instantiate_from_config(config)
- self.cond_stage_model = model
-
- def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
- denoise_row = []
- for zd in tqdm(samples, desc=desc):
- denoise_row.append(self.decode_first_stage(zd.to(self.device),
- force_not_quantize=force_no_decoder_quantization))
- n_imgs_per_row = len(denoise_row)
- denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
- denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
- denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
- denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
- return denoise_grid
-
- def get_first_stage_encoding(self, encoder_posterior):
- if isinstance(encoder_posterior, DiagonalGaussianDistribution):
- z = encoder_posterior.sample()
- elif isinstance(encoder_posterior, torch.Tensor):
- z = encoder_posterior
- else:
- raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
- return self.scale_factor * z
-
- def get_learned_conditioning(self, c):
- if self.cond_stage_forward is None:
- if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
- c = self.cond_stage_model.encode(c)
- if isinstance(c, DiagonalGaussianDistribution):
- c = c.mode()
- else:
- c = self.cond_stage_model(c)
- else:
- assert hasattr(self.cond_stage_model, self.cond_stage_forward)
- c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
- return c
-
- def meshgrid(self, h, w):
- y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
- x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
-
- arr = torch.cat([y, x], dim=-1)
- return arr
-
- def delta_border(self, h, w):
- """
- :param h: height
- :param w: width
- :return: normalized distance to image border,
- wtith min distance = 0 at border and max dist = 0.5 at image center
- """
- lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
- arr = self.meshgrid(h, w) / lower_right_corner
- dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
- dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
- edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
- return edge_dist
-
- def get_weighting(self, h, w, Ly, Lx, device):
- weighting = self.delta_border(h, w)
- weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
- self.split_input_params["clip_max_weight"], )
- weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
-
- if self.split_input_params["tie_braker"]:
- L_weighting = self.delta_border(Ly, Lx)
- L_weighting = torch.clip(L_weighting,
- self.split_input_params["clip_min_tie_weight"],
- self.split_input_params["clip_max_tie_weight"])
-
- L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
- weighting = weighting * L_weighting
- return weighting
-
- def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
- """
- :param x: img of size (bs, c, h, w)
- :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
- """
- bs, nc, h, w = x.shape
-
- # number of crops in image
- Ly = (h - kernel_size[0]) // stride[0] + 1
- Lx = (w - kernel_size[1]) // stride[1] + 1
-
- if uf == 1 and df == 1:
- fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
- unfold = torch.nn.Unfold(**fold_params)
-
- fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
-
- weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
- normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
- weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
-
- elif uf > 1 and df == 1:
- fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
- unfold = torch.nn.Unfold(**fold_params)
-
- fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
- dilation=1, padding=0,
- stride=(stride[0] * uf, stride[1] * uf))
- fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
-
- weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
- normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
- weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
-
- elif df > 1 and uf == 1:
- fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
- unfold = torch.nn.Unfold(**fold_params)
-
- fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
- dilation=1, padding=0,
- stride=(stride[0] // df, stride[1] // df))
- fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
-
- weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
- normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
- weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
-
- else:
- raise NotImplementedError
-
- return fold, unfold, normalization, weighting
-
- @torch.no_grad()
- def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
- cond_key=None, return_original_cond=False, bs=None):
- x = super().get_input(batch, k)
- if bs is not None:
- x = x[:bs]
- x = x.to(self.device)
- encoder_posterior = self.encode_first_stage(x)
- z = self.get_first_stage_encoding(encoder_posterior).detach()
-
- if self.model.conditioning_key is not None:
- if cond_key is None:
- cond_key = self.cond_stage_key
- if cond_key != self.first_stage_key:
- if cond_key in ['caption', 'coordinates_bbox']:
- xc = batch[cond_key]
- elif cond_key == 'class_label':
- xc = batch
- else:
- xc = super().get_input(batch, cond_key).to(self.device)
- else:
- xc = x
- if not self.cond_stage_trainable or force_c_encode:
- if isinstance(xc, dict) or isinstance(xc, list):
- # import pudb; pudb.set_trace()
- c = self.get_learned_conditioning(xc)
- else:
- c = self.get_learned_conditioning(xc.to(self.device))
- else:
- c = xc
- if bs is not None:
- c = c[:bs]
-
- if self.use_positional_encodings:
- pos_x, pos_y = self.compute_latent_shifts(batch)
- ckey = __conditioning_keys__[self.model.conditioning_key]
- c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
-
- else:
- c = None
- xc = None
- if self.use_positional_encodings:
- pos_x, pos_y = self.compute_latent_shifts(batch)
- c = {'pos_x': pos_x, 'pos_y': pos_y}
- out = [z, c]
- if return_first_stage_outputs:
- xrec = self.decode_first_stage(z)
- out.extend([x, xrec])
- if return_original_cond:
- out.append(xc)
- return out
-
- @torch.no_grad()
- def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
- if predict_cids:
- if z.dim() == 4:
- z = torch.argmax(z.exp(), dim=1).long()
- z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
- z = rearrange(z, 'b h w c -> b c h w').contiguous()
-
- z = 1. / self.scale_factor * z
-
- if hasattr(self, "split_input_params"):
- if self.split_input_params["patch_distributed_vq"]:
- ks = self.split_input_params["ks"] # eg. (128, 128)
- stride = self.split_input_params["stride"] # eg. (64, 64)
- uf = self.split_input_params["vqf"]
- bs, nc, h, w = z.shape
- if ks[0] > h or ks[1] > w:
- ks = (min(ks[0], h), min(ks[1], w))
- print("reducing Kernel")
-
- if stride[0] > h or stride[1] > w:
- stride = (min(stride[0], h), min(stride[1], w))
- print("reducing stride")
-
- fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
-
- z = unfold(z) # (bn, nc * prod(**ks), L)
- # 1. Reshape to img shape
- z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
-
- # 2. apply model loop over last dim
- if isinstance(self.first_stage_model, VQModelInterface):
- output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
- force_not_quantize=predict_cids or force_not_quantize)
- for i in range(z.shape[-1])]
- else:
-
- output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
- for i in range(z.shape[-1])]
-
- o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
- o = o * weighting
- # Reverse 1. reshape to img shape
- o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
- # stitch crops together
- decoded = fold(o)
- decoded = decoded / normalization # norm is shape (1, 1, h, w)
- return decoded
- else:
- if isinstance(self.first_stage_model, VQModelInterface):
- return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
- else:
- return self.first_stage_model.decode(z)
-
- else:
- if isinstance(self.first_stage_model, VQModelInterface):
- return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
- else:
- return self.first_stage_model.decode(z)
-
- # same as above but without decorator
- def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
- if predict_cids:
- if z.dim() == 4:
- z = torch.argmax(z.exp(), dim=1).long()
- z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
- z = rearrange(z, 'b h w c -> b c h w').contiguous()
-
- z = 1. / self.scale_factor * z
-
- if hasattr(self, "split_input_params"):
- if self.split_input_params["patch_distributed_vq"]:
- ks = self.split_input_params["ks"] # eg. (128, 128)
- stride = self.split_input_params["stride"] # eg. (64, 64)
- uf = self.split_input_params["vqf"]
- bs, nc, h, w = z.shape
- if ks[0] > h or ks[1] > w:
- ks = (min(ks[0], h), min(ks[1], w))
- print("reducing Kernel")
-
- if stride[0] > h or stride[1] > w:
- stride = (min(stride[0], h), min(stride[1], w))
- print("reducing stride")
-
- fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
-
- z = unfold(z) # (bn, nc * prod(**ks), L)
- # 1. Reshape to img shape
- z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
-
- # 2. apply model loop over last dim
- if isinstance(self.first_stage_model, VQModelInterface):
- output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
- force_not_quantize=predict_cids or force_not_quantize)
- for i in range(z.shape[-1])]
- else:
-
- output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
- for i in range(z.shape[-1])]
-
- o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
- o = o * weighting
- # Reverse 1. reshape to img shape
- o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
- # stitch crops together
- decoded = fold(o)
- decoded = decoded / normalization # norm is shape (1, 1, h, w)
- return decoded
- else:
- if isinstance(self.first_stage_model, VQModelInterface):
- return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
- else:
- return self.first_stage_model.decode(z)
-
- else:
- if isinstance(self.first_stage_model, VQModelInterface):
- return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
- else:
- return self.first_stage_model.decode(z)
-
- @torch.no_grad()
- def encode_first_stage(self, x):
- if hasattr(self, "split_input_params"):
- if self.split_input_params["patch_distributed_vq"]:
- ks = self.split_input_params["ks"] # eg. (128, 128)
- stride = self.split_input_params["stride"] # eg. (64, 64)
- df = self.split_input_params["vqf"]
- self.split_input_params['original_image_size'] = x.shape[-2:]
- bs, nc, h, w = x.shape
- if ks[0] > h or ks[1] > w:
- ks = (min(ks[0], h), min(ks[1], w))
- print("reducing Kernel")
-
- if stride[0] > h or stride[1] > w:
- stride = (min(stride[0], h), min(stride[1], w))
- print("reducing stride")
-
- fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
- z = unfold(x) # (bn, nc * prod(**ks), L)
- # Reshape to img shape
- z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
-
- output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
- for i in range(z.shape[-1])]
-
- o = torch.stack(output_list, axis=-1)
- o = o * weighting
-
- # Reverse reshape to img shape
- o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
- # stitch crops together
- decoded = fold(o)
- decoded = decoded / normalization
- return decoded
-
- else:
- return self.first_stage_model.encode(x)
- else:
- return self.first_stage_model.encode(x)
-
- def shared_step(self, batch, **kwargs):
- x, c = self.get_input(batch, self.first_stage_key)
- loss = self(x, c)
- return loss
-
- def forward(self, x, c, *args, **kwargs):
- t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
- if self.model.conditioning_key is not None:
- assert c is not None
- if self.cond_stage_trainable:
- c = self.get_learned_conditioning(c)
- if self.shorten_cond_schedule: # TODO: drop this option
- tc = self.cond_ids[t].to(self.device)
- c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
- return self.p_losses(x, c, t, *args, **kwargs)
-
- def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
- def rescale_bbox(bbox):
- x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
- y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
- w = min(bbox[2] / crop_coordinates[2], 1 - x0)
- h = min(bbox[3] / crop_coordinates[3], 1 - y0)
- return x0, y0, w, h
-
- return [rescale_bbox(b) for b in bboxes]
-
- def apply_model(self, x_noisy, t, cond, return_ids=False):
-
- if isinstance(cond, dict):
- # hybrid case, cond is exptected to be a dict
- pass
- else:
- if not isinstance(cond, list):
- cond = [cond]
- key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
- cond = {key: cond}
-
- if hasattr(self, "split_input_params"):
- assert len(cond) == 1 # todo can only deal with one conditioning atm
- assert not return_ids
- ks = self.split_input_params["ks"] # eg. (128, 128)
- stride = self.split_input_params["stride"] # eg. (64, 64)
-
- h, w = x_noisy.shape[-2:]
-
- fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
-
- z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
- # Reshape to img shape
- z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
- z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
-
- if self.cond_stage_key in ["image", "LR_image", "segmentation",
- 'bbox_img'] and self.model.conditioning_key: # todo check for completeness
- c_key = next(iter(cond.keys())) # get key
- c = next(iter(cond.values())) # get value
- assert (len(c) == 1) # todo extend to list with more than one elem
- c = c[0] # get element
-
- c = unfold(c)
- c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
-
- cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
-
- elif self.cond_stage_key == 'coordinates_bbox':
- assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
-
- # assuming padding of unfold is always 0 and its dilation is always 1
- n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
- full_img_h, full_img_w = self.split_input_params['original_image_size']
- # as we are operating on latents, we need the factor from the original image size to the
- # spatial latent size to properly rescale the crops for regenerating the bbox annotations
- num_downs = self.first_stage_model.encoder.num_resolutions - 1
- rescale_latent = 2 ** (num_downs)
-
- # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
- # need to rescale the tl patch coordinates to be in between (0,1)
- tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
- rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
- for patch_nr in range(z.shape[-1])]
-
- # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
- patch_limits = [(x_tl, y_tl,
- rescale_latent * ks[0] / full_img_w,
- rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
- # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
-
- # tokenize crop coordinates for the bounding boxes of the respective patches
- patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
- for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
- print(patch_limits_tknzd[0].shape)
- # cut tknzd crop position from conditioning
- assert isinstance(cond, dict), 'cond must be dict to be fed into model'
- cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
- print(cut_cond.shape)
-
- adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
- adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
- print(adapted_cond.shape)
- adapted_cond = self.get_learned_conditioning(adapted_cond)
- print(adapted_cond.shape)
- adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
- print(adapted_cond.shape)
-
- cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
-
- else:
- cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
-
- # apply model by loop over crops
- output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
- assert not isinstance(output_list[0],
- tuple) # todo cant deal with multiple model outputs check this never happens
-
- o = torch.stack(output_list, axis=-1)
- o = o * weighting
- # Reverse reshape to img shape
- o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
- # stitch crops together
- x_recon = fold(o) / normalization
-
- else:
- x_recon = self.model(x_noisy, t, **cond)
-
- if isinstance(x_recon, tuple) and not return_ids:
- return x_recon[0]
- else:
- return x_recon
-
- def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
- return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
-
- def _prior_bpd(self, x_start):
- """
- Get the prior KL term for the variational lower-bound, measured in
- bits-per-dim.
- This term can't be optimized, as it only depends on the encoder.
- :param x_start: the [N x C x ...] tensor of inputs.
- :return: a batch of [N] KL values (in bits), one per batch element.
- """
- batch_size = x_start.shape[0]
- t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
- qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
- kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
- return mean_flat(kl_prior) / np.log(2.0)
-
- def p_losses(self, x_start, cond, t, noise=None):
- noise = default(noise, lambda: torch.randn_like(x_start))
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
- model_output = self.apply_model(x_noisy, t, cond)
-
- loss_dict = {}
- prefix = 'train' if self.training else 'val'
-
- if self.parameterization == "x0":
- target = x_start
- elif self.parameterization == "eps":
- target = noise
- else:
- raise NotImplementedError()
-
- loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
- loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
-
- logvar_t = self.logvar[t].to(self.device)
- loss = loss_simple / torch.exp(logvar_t) + logvar_t
- # loss = loss_simple / torch.exp(self.logvar) + self.logvar
- if self.learn_logvar:
- loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
- loss_dict.update({'logvar': self.logvar.data.mean()})
-
- loss = self.l_simple_weight * loss.mean()
-
- loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
- loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
- loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
- loss += (self.original_elbo_weight * loss_vlb)
- loss_dict.update({f'{prefix}/loss': loss})
-
- return loss, loss_dict
-
- def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
- return_x0=False, score_corrector=None, corrector_kwargs=None):
- t_in = t
- model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
-
- if score_corrector is not None:
- assert self.parameterization == "eps"
- model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
-
- if return_codebook_ids:
- model_out, logits = model_out
-
- if self.parameterization == "eps":
- x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
- elif self.parameterization == "x0":
- x_recon = model_out
- else:
- raise NotImplementedError()
-
- if clip_denoised:
- x_recon.clamp_(-1., 1.)
- if quantize_denoised:
- x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
- model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
- if return_codebook_ids:
- return model_mean, posterior_variance, posterior_log_variance, logits
- elif return_x0:
- return model_mean, posterior_variance, posterior_log_variance, x_recon
- else:
- return model_mean, posterior_variance, posterior_log_variance
-
- @torch.no_grad()
- def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
- return_codebook_ids=False, quantize_denoised=False, return_x0=False,
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
- b, *_, device = *x.shape, x.device
- outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
- return_codebook_ids=return_codebook_ids,
- quantize_denoised=quantize_denoised,
- return_x0=return_x0,
- score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
- if return_codebook_ids:
- raise DeprecationWarning("Support dropped.")
- model_mean, _, model_log_variance, logits = outputs
- elif return_x0:
- model_mean, _, model_log_variance, x0 = outputs
- else:
- model_mean, _, model_log_variance = outputs
-
- noise = noise_like(x.shape, device, repeat_noise) * temperature
- if noise_dropout > 0.:
- noise = torch.nn.functional.dropout(noise, p=noise_dropout)
- # no noise when t == 0
- nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
-
- if return_codebook_ids:
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
- if return_x0:
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
- else:
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
-
- @torch.no_grad()
- def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
- img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
- score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
- log_every_t=None):
- if not log_every_t:
- log_every_t = self.log_every_t
- timesteps = self.num_timesteps
- if batch_size is not None:
- b = batch_size if batch_size is not None else shape[0]
- shape = [batch_size] + list(shape)
- else:
- b = batch_size = shape[0]
- if x_T is None:
- img = torch.randn(shape, device=self.device)
- else:
- img = x_T
- intermediates = []
- if cond is not None:
- if isinstance(cond, dict):
- cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
- list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
- else:
- cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
-
- if start_T is not None:
- timesteps = min(timesteps, start_T)
- iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
- total=timesteps) if verbose else reversed(
- range(0, timesteps))
- if type(temperature) == float:
- temperature = [temperature] * timesteps
-
- for i in iterator:
- ts = torch.full((b,), i, device=self.device, dtype=torch.long)
- if self.shorten_cond_schedule:
- assert self.model.conditioning_key != 'hybrid'
- tc = self.cond_ids[ts].to(cond.device)
- cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
-
- img, x0_partial = self.p_sample(img, cond, ts,
- clip_denoised=self.clip_denoised,
- quantize_denoised=quantize_denoised, return_x0=True,
- temperature=temperature[i], noise_dropout=noise_dropout,
- score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
- if mask is not None:
- assert x0 is not None
- img_orig = self.q_sample(x0, ts)
- img = img_orig * mask + (1. - mask) * img
-
- if i % log_every_t == 0 or i == timesteps - 1:
- intermediates.append(x0_partial)
- if callback: callback(i)
- if img_callback: img_callback(img, i)
- return img, intermediates
-
- @torch.no_grad()
- def p_sample_loop(self, cond, shape, return_intermediates=False,
- x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
- mask=None, x0=None, img_callback=None, start_T=None,
- log_every_t=None):
-
- if not log_every_t:
- log_every_t = self.log_every_t
- device = self.betas.device
- b = shape[0]
- if x_T is None:
- img = torch.randn(shape, device=device)
- else:
- img = x_T
-
- intermediates = [img]
- if timesteps is None:
- timesteps = self.num_timesteps
-
- if start_T is not None:
- timesteps = min(timesteps, start_T)
- iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
- range(0, timesteps))
-
- if mask is not None:
- assert x0 is not None
- assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
-
- for i in iterator:
- ts = torch.full((b,), i, device=device, dtype=torch.long)
- if self.shorten_cond_schedule:
- assert self.model.conditioning_key != 'hybrid'
- tc = self.cond_ids[ts].to(cond.device)
- cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
-
- img = self.p_sample(img, cond, ts,
- clip_denoised=self.clip_denoised,
- quantize_denoised=quantize_denoised)
- if mask is not None:
- img_orig = self.q_sample(x0, ts)
- img = img_orig * mask + (1. - mask) * img
-
- if i % log_every_t == 0 or i == timesteps - 1:
- intermediates.append(img)
- if callback: callback(i)
- if img_callback: img_callback(img, i)
-
- if return_intermediates:
- return img, intermediates
- return img
-
- @torch.no_grad()
- def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
- verbose=True, timesteps=None, quantize_denoised=False,
- mask=None, x0=None, shape=None,**kwargs):
- if shape is None:
- shape = (batch_size, self.channels, self.image_size, self.image_size)
- if cond is not None:
- if isinstance(cond, dict):
- cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
- list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
- else:
- cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
- return self.p_sample_loop(cond,
- shape,
- return_intermediates=return_intermediates, x_T=x_T,
- verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
- mask=mask, x0=x0)
-
- @torch.no_grad()
- def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
-
- if ddim:
- ddim_sampler = DDIMSampler(self)
- shape = (self.channels, self.image_size, self.image_size)
- samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
- shape,cond,verbose=False,**kwargs)
-
- else:
- samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
- return_intermediates=True,**kwargs)
-
- return samples, intermediates
-
-
- @torch.no_grad()
- def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
- quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
- plot_diffusion_rows=True, **kwargs):
-
- use_ddim = ddim_steps is not None
-
- log = dict()
- z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
- return_first_stage_outputs=True,
- force_c_encode=True,
- return_original_cond=True,
- bs=N)
- N = min(x.shape[0], N)
- n_row = min(x.shape[0], n_row)
- log["inputs"] = x
- log["reconstruction"] = xrec
- if self.model.conditioning_key is not None:
- if hasattr(self.cond_stage_model, "decode"):
- xc = self.cond_stage_model.decode(c)
- log["conditioning"] = xc
- elif self.cond_stage_key in ["caption"]:
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
- log["conditioning"] = xc
- elif self.cond_stage_key == 'class_label':
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
- log['conditioning'] = xc
- elif isimage(xc):
- log["conditioning"] = xc
- if ismap(xc):
- log["original_conditioning"] = self.to_rgb(xc)
-
- if plot_diffusion_rows:
- # get diffusion row
- diffusion_row = list()
- z_start = z[:n_row]
- for t in range(self.num_timesteps):
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
- t = t.to(self.device).long()
- noise = torch.randn_like(z_start)
- z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
- diffusion_row.append(self.decode_first_stage(z_noisy))
-
- diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
- diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
- diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
- diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
- log["diffusion_row"] = diffusion_grid
-
- if sample:
- # get denoise row
- with self.ema_scope("Plotting"):
- samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
- ddim_steps=ddim_steps,eta=ddim_eta)
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
- x_samples = self.decode_first_stage(samples)
- log["samples"] = x_samples
- if plot_denoise_rows:
- denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
- log["denoise_row"] = denoise_grid
-
- if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
- self.first_stage_model, IdentityFirstStage):
- # also display when quantizing x0 while sampling
- with self.ema_scope("Plotting Quantized Denoised"):
- samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
- ddim_steps=ddim_steps,eta=ddim_eta,
- quantize_denoised=True)
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
- # quantize_denoised=True)
- x_samples = self.decode_first_stage(samples.to(self.device))
- log["samples_x0_quantized"] = x_samples
-
- if inpaint:
- # make a simple center square
- b, h, w = z.shape[0], z.shape[2], z.shape[3]
- mask = torch.ones(N, h, w).to(self.device)
- # zeros will be filled in
- mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
- mask = mask[:, None, ...]
- with self.ema_scope("Plotting Inpaint"):
-
- samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
- ddim_steps=ddim_steps, x0=z[:N], mask=mask)
- x_samples = self.decode_first_stage(samples.to(self.device))
- log["samples_inpainting"] = x_samples
- log["mask"] = mask
-
- # outpaint
- with self.ema_scope("Plotting Outpaint"):
- samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
- ddim_steps=ddim_steps, x0=z[:N], mask=mask)
- x_samples = self.decode_first_stage(samples.to(self.device))
- log["samples_outpainting"] = x_samples
-
- if plot_progressive_rows:
- with self.ema_scope("Plotting Progressives"):
- img, progressives = self.progressive_denoising(c,
- shape=(self.channels, self.image_size, self.image_size),
- batch_size=N)
- prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
- log["progressive_row"] = prog_row
-
- if return_keys:
- if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
- return log
- else:
- return {key: log[key] for key in return_keys}
- return log
-
- def configure_optimizers(self):
- lr = self.learning_rate
- params = list(self.model.parameters())
- if self.cond_stage_trainable:
- print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
- params = params + list(self.cond_stage_model.parameters())
- if self.learn_logvar:
- print('Diffusion model optimizing logvar')
- params.append(self.logvar)
- opt = torch.optim.AdamW(params, lr=lr)
- if self.use_scheduler:
- assert 'target' in self.scheduler_config
- scheduler = instantiate_from_config(self.scheduler_config)
-
- print("Setting up LambdaLR scheduler...")
- scheduler = [
- {
- 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
- 'interval': 'step',
- 'frequency': 1
- }]
- return [opt], scheduler
- return opt
-
- @torch.no_grad()
- def to_rgb(self, x):
- x = x.float()
- if not hasattr(self, "colorize"):
- self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
- x = nn.functional.conv2d(x, weight=self.colorize)
- x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
- return x
-
-
-class DiffusionWrapper(pl.LightningModule):
- def __init__(self, diff_model_config, conditioning_key):
- super().__init__()
- self.diffusion_model = instantiate_from_config(diff_model_config)
- self.conditioning_key = conditioning_key
- assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
-
- def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
- if self.conditioning_key is None:
- out = self.diffusion_model(x, t)
- elif self.conditioning_key == 'concat':
- xc = torch.cat([x] + c_concat, dim=1)
- out = self.diffusion_model(xc, t)
- elif self.conditioning_key == 'crossattn':
- cc = torch.cat(c_crossattn, 1)
- out = self.diffusion_model(x, t, context=cc)
- elif self.conditioning_key == 'hybrid':
- xc = torch.cat([x] + c_concat, dim=1)
- cc = torch.cat(c_crossattn, 1)
- out = self.diffusion_model(xc, t, context=cc)
- elif self.conditioning_key == 'adm':
- cc = c_crossattn[0]
- out = self.diffusion_model(x, t, y=cc)
- else:
- raise NotImplementedError()
-
- return out
-
-
-class Layout2ImgDiffusion(LatentDiffusion):
- # TODO: move all layout-specific hacks to this class
- def __init__(self, cond_stage_key, *args, **kwargs):
- assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
- super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
-
- def log_images(self, batch, N=8, *args, **kwargs):
- logs = super().log_images(batch=batch, N=N, *args, **kwargs)
-
- key = 'train' if self.training else 'validation'
- dset = self.trainer.datamodule.datasets[key]
- mapper = dset.conditional_builders[self.cond_stage_key]
-
- bbox_imgs = []
- map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
- for tknzd_bbox in batch[self.cond_stage_key][:N]:
- bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
- bbox_imgs.append(bboximg)
-
- cond_img = torch.stack(bbox_imgs, dim=0)
- logs['bbox_image'] = cond_img
- return logs
diff --git a/stable_diffusion/ldm/models/diffusion/ddpm_edit.py b/stable_diffusion/ldm/models/diffusion/ddpm_edit.py
deleted file mode 100644
index f3d49c44cafcc78e27a1e4f2b522faa21e135f9f..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/models/diffusion/ddpm_edit.py
+++ /dev/null
@@ -1,1459 +0,0 @@
-"""
-wild mixture of
-https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
-https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
-https://github.com/CompVis/taming-transformers
--- merci
-"""
-
-# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion).
-# See more details in LICENSE.
-
-import torch
-import torch.nn as nn
-import numpy as np
-import pytorch_lightning as pl
-from torch.optim.lr_scheduler import LambdaLR
-from einops import rearrange, repeat
-from contextlib import contextmanager
-from functools import partial
-from tqdm import tqdm
-from torchvision.utils import make_grid
-from pytorch_lightning.utilities.distributed import rank_zero_only
-
-from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
-from ldm.modules.ema import LitEma
-from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
-from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
-from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
-from ldm.models.diffusion.ddim import DDIMSampler
-
-
-__conditioning_keys__ = {'concat': 'c_concat',
- 'crossattn': 'c_crossattn',
- 'adm': 'y'}
-
-
-def disabled_train(self, mode=True):
- """Overwrite model.train with this function to make sure train/eval mode
- does not change anymore."""
- return self
-
-
-def uniform_on_device(r1, r2, shape, device):
- return (r1 - r2) * torch.rand(*shape, device=device) + r2
-
-
-class DDPM(pl.LightningModule):
- # classic DDPM with Gaussian diffusion, in image space
- def __init__(self,
- unet_config,
- timesteps=1000,
- beta_schedule="linear",
- loss_type="l2",
- ckpt_path=None,
- ignore_keys=[],
- load_only_unet=False,
- monitor="val/loss",
- use_ema=True,
- first_stage_key="image",
- image_size=256,
- channels=3,
- log_every_t=100,
- clip_denoised=True,
- linear_start=1e-4,
- linear_end=2e-2,
- cosine_s=8e-3,
- given_betas=None,
- original_elbo_weight=0.,
- v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
- l_simple_weight=1.,
- conditioning_key=None,
- parameterization="eps", # all assuming fixed variance schedules
- scheduler_config=None,
- use_positional_encodings=False,
- learn_logvar=False,
- logvar_init=0.,
- load_ema=True,
- ):
- super().__init__()
- assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
- self.parameterization = parameterization
- print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
- self.cond_stage_model = None
- self.clip_denoised = clip_denoised
- self.log_every_t = log_every_t
- self.first_stage_key = first_stage_key
- self.image_size = image_size # try conv?
- self.channels = channels
- self.use_positional_encodings = use_positional_encodings
- self.model = DiffusionWrapper(unet_config, conditioning_key)
- count_params(self.model, verbose=True)
- self.use_ema = use_ema
-
- self.use_scheduler = scheduler_config is not None
- if self.use_scheduler:
- self.scheduler_config = scheduler_config
-
- self.v_posterior = v_posterior
- self.original_elbo_weight = original_elbo_weight
- self.l_simple_weight = l_simple_weight
-
- if monitor is not None:
- self.monitor = monitor
-
- if self.use_ema and load_ema:
- self.model_ema = LitEma(self.model)
- print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
-
- if ckpt_path is not None:
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
-
- # If initialing from EMA-only checkpoint, create EMA model after loading.
- if self.use_ema and not load_ema:
- self.model_ema = LitEma(self.model)
- print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
-
- self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
- linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
-
- self.loss_type = loss_type
-
- self.learn_logvar = learn_logvar
- self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
- if self.learn_logvar:
- self.logvar = nn.Parameter(self.logvar, requires_grad=True)
-
-
- def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
- linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
- if exists(given_betas):
- betas = given_betas
- else:
- betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
- cosine_s=cosine_s)
- alphas = 1. - betas
- alphas_cumprod = np.cumprod(alphas, axis=0)
- alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
-
- timesteps, = betas.shape
- self.num_timesteps = int(timesteps)
- self.linear_start = linear_start
- self.linear_end = linear_end
- assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
-
- to_torch = partial(torch.tensor, dtype=torch.float32)
-
- self.register_buffer('betas', to_torch(betas))
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
- self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
-
- # calculations for diffusion q(x_t | x_{t-1}) and others
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
-
- # calculations for posterior q(x_{t-1} | x_t, x_0)
- posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
- 1. - alphas_cumprod) + self.v_posterior * betas
- # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
- self.register_buffer('posterior_variance', to_torch(posterior_variance))
- # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
- self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
- self.register_buffer('posterior_mean_coef1', to_torch(
- betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
- self.register_buffer('posterior_mean_coef2', to_torch(
- (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
-
- if self.parameterization == "eps":
- lvlb_weights = self.betas ** 2 / (
- 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
- elif self.parameterization == "x0":
- lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
- else:
- raise NotImplementedError("mu not supported")
- # TODO how to choose this term
- lvlb_weights[0] = lvlb_weights[1]
- self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
- assert not torch.isnan(self.lvlb_weights).all()
-
- @contextmanager
- def ema_scope(self, context=None):
- if self.use_ema:
- self.model_ema.store(self.model.parameters())
- self.model_ema.copy_to(self.model)
- if context is not None:
- print(f"{context}: Switched to EMA weights")
- try:
- yield None
- finally:
- if self.use_ema:
- self.model_ema.restore(self.model.parameters())
- if context is not None:
- print(f"{context}: Restored training weights")
-
- def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
- sd = torch.load(path, map_location="cpu")
- if "state_dict" in list(sd.keys()):
- sd = sd["state_dict"]
- keys = list(sd.keys())
-
- # Our model adds additional channels to the first layer to condition on an input image.
- # For the first layer, copy existing channel weights and initialize new channel weights to zero.
- input_keys = [
- "model.diffusion_model.input_blocks.0.0.weight",
- "model_ema.diffusion_modelinput_blocks00weight",
- ]
-
- self_sd = self.state_dict()
- for input_key in input_keys:
- if input_key not in sd or input_key not in self_sd:
- continue
-
- input_weight = self_sd[input_key]
-
- if input_weight.size() != sd[input_key].size():
- print(f"Manual init: {input_key}")
- input_weight.zero_()
- input_weight[:, :4, :, :].copy_(sd[input_key])
- ignore_keys.append(input_key)
-
- for k in keys:
- for ik in ignore_keys:
- if k.startswith(ik):
- print("Deleting key {} from state_dict.".format(k))
- del sd[k]
- missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
- sd, strict=False)
- print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
- if len(missing) > 0:
- print(f"Missing Keys: {missing}")
- if len(unexpected) > 0:
- print(f"Unexpected Keys: {unexpected}")
-
- def q_mean_variance(self, x_start, t):
- """
- Get the distribution q(x_t | x_0).
- :param x_start: the [N x C x ...] tensor of noiseless inputs.
- :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
- :return: A tuple (mean, variance, log_variance), all of x_start's shape.
- """
- mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
- variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
- log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
- return mean, variance, log_variance
-
- def predict_start_from_noise(self, x_t, t, noise):
- return (
- extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
- )
-
- def q_posterior(self, x_start, x_t, t):
- posterior_mean = (
- extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
- extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
- )
- posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
- posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
- return posterior_mean, posterior_variance, posterior_log_variance_clipped
-
- def p_mean_variance(self, x, t, clip_denoised: bool):
- model_out = self.model(x, t)
- if self.parameterization == "eps":
- x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
- elif self.parameterization == "x0":
- x_recon = model_out
- if clip_denoised:
- x_recon.clamp_(-1., 1.)
-
- model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
- return model_mean, posterior_variance, posterior_log_variance
-
- @torch.no_grad()
- def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
- b, *_, device = *x.shape, x.device
- model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
- noise = noise_like(x.shape, device, repeat_noise)
- # no noise when t == 0
- nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
-
- @torch.no_grad()
- def p_sample_loop(self, shape, return_intermediates=False):
- device = self.betas.device
- b = shape[0]
- img = torch.randn(shape, device=device)
- intermediates = [img]
- for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
- img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
- clip_denoised=self.clip_denoised)
- if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
- intermediates.append(img)
- if return_intermediates:
- return img, intermediates
- return img
-
- @torch.no_grad()
- def sample(self, batch_size=16, return_intermediates=False):
- image_size = self.image_size
- channels = self.channels
- return self.p_sample_loop((batch_size, channels, image_size, image_size),
- return_intermediates=return_intermediates)
-
- def q_sample(self, x_start, t, noise=None):
- noise = default(noise, lambda: torch.randn_like(x_start))
- return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
-
- def get_loss(self, pred, target, mean=True):
- if self.loss_type == 'l1':
- loss = (target - pred).abs()
- if mean:
- loss = loss.mean()
- elif self.loss_type == 'l2':
- if mean:
- loss = torch.nn.functional.mse_loss(target, pred)
- else:
- loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
- else:
- raise NotImplementedError("unknown loss type '{loss_type}'")
-
- return loss
-
- def p_losses(self, x_start, t, noise=None):
- noise = default(noise, lambda: torch.randn_like(x_start))
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
- model_out = self.model(x_noisy, t)
-
- loss_dict = {}
- if self.parameterization == "eps":
- target = noise
- elif self.parameterization == "x0":
- target = x_start
- else:
- raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
-
- loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
-
- log_prefix = 'train' if self.training else 'val'
-
- loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
- loss_simple = loss.mean() * self.l_simple_weight
-
- loss_vlb = (self.lvlb_weights[t] * loss).mean()
- loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
-
- loss = loss_simple + self.original_elbo_weight * loss_vlb
-
- loss_dict.update({f'{log_prefix}/loss': loss})
-
- return loss, loss_dict
-
- def forward(self, x, *args, **kwargs):
- # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
- # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
- t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
- return self.p_losses(x, t, *args, **kwargs)
-
- def get_input(self, batch, k):
- return batch[k]
-
- def shared_step(self, batch):
- x = self.get_input(batch, self.first_stage_key)
- loss, loss_dict = self(x)
- return loss, loss_dict
-
- def training_step(self, batch, batch_idx):
- loss, loss_dict = self.shared_step(batch)
-
- self.log_dict(loss_dict, prog_bar=True,
- logger=True, on_step=True, on_epoch=True)
-
- self.log("global_step", self.global_step,
- prog_bar=True, logger=True, on_step=True, on_epoch=False)
-
- if self.use_scheduler:
- lr = self.optimizers().param_groups[0]['lr']
- self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
-
- return loss
-
- @torch.no_grad()
- def validation_step(self, batch, batch_idx):
- _, loss_dict_no_ema = self.shared_step(batch)
- with self.ema_scope():
- _, loss_dict_ema = self.shared_step(batch)
- loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
- self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
- self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
-
- def on_train_batch_end(self, *args, **kwargs):
- if self.use_ema:
- self.model_ema(self.model)
-
- def _get_rows_from_list(self, samples):
- n_imgs_per_row = len(samples)
- denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
- denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
- denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
- return denoise_grid
-
- @torch.no_grad()
- def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
- log = dict()
- x = self.get_input(batch, self.first_stage_key)
- N = min(x.shape[0], N)
- n_row = min(x.shape[0], n_row)
- x = x.to(self.device)[:N]
- log["inputs"] = x
-
- # get diffusion row
- diffusion_row = list()
- x_start = x[:n_row]
-
- for t in range(self.num_timesteps):
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
- t = t.to(self.device).long()
- noise = torch.randn_like(x_start)
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
- diffusion_row.append(x_noisy)
-
- log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
-
- if sample:
- # get denoise row
- with self.ema_scope("Plotting"):
- samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
-
- log["samples"] = samples
- log["denoise_row"] = self._get_rows_from_list(denoise_row)
-
- if return_keys:
- if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
- return log
- else:
- return {key: log[key] for key in return_keys}
- return log
-
- def configure_optimizers(self):
- lr = self.learning_rate
- params = list(self.model.parameters())
- if self.learn_logvar:
- params = params + [self.logvar]
- opt = torch.optim.AdamW(params, lr=lr)
- return opt
-
-
-class LatentDiffusion(DDPM):
- """main class"""
- def __init__(self,
- first_stage_config,
- cond_stage_config,
- num_timesteps_cond=None,
- cond_stage_key="image",
- cond_stage_trainable=False,
- concat_mode=True,
- cond_stage_forward=None,
- conditioning_key=None,
- scale_factor=1.0,
- scale_by_std=False,
- load_ema=True,
- *args, **kwargs):
- self.num_timesteps_cond = default(num_timesteps_cond, 1)
- self.scale_by_std = scale_by_std
- assert self.num_timesteps_cond <= kwargs['timesteps']
- # for backwards compatibility after implementation of DiffusionWrapper
- if conditioning_key is None:
- conditioning_key = 'concat' if concat_mode else 'crossattn'
- if cond_stage_config == '__is_unconditional__':
- conditioning_key = None
- ckpt_path = kwargs.pop("ckpt_path", None)
- ignore_keys = kwargs.pop("ignore_keys", [])
- super().__init__(conditioning_key=conditioning_key, *args, load_ema=load_ema, **kwargs)
- self.concat_mode = concat_mode
- self.cond_stage_trainable = cond_stage_trainable
- self.cond_stage_key = cond_stage_key
- try:
- self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
- except:
- self.num_downs = 0
- if not scale_by_std:
- self.scale_factor = scale_factor
- else:
- self.register_buffer('scale_factor', torch.tensor(scale_factor))
- self.instantiate_first_stage(first_stage_config)
- self.instantiate_cond_stage(cond_stage_config)
- self.cond_stage_forward = cond_stage_forward
- self.clip_denoised = False
- self.bbox_tokenizer = None
-
- self.restarted_from_ckpt = False
- if ckpt_path is not None:
- self.init_from_ckpt(ckpt_path, ignore_keys)
- self.restarted_from_ckpt = True
-
- if self.use_ema and not load_ema:
- self.model_ema = LitEma(self.model)
- print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
-
- def make_cond_schedule(self, ):
- self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
- ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
- self.cond_ids[:self.num_timesteps_cond] = ids
-
- @rank_zero_only
- @torch.no_grad()
- def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
- # only for very first batch
- if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
- assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
- # set rescale weight to 1./std of encodings
- print("### USING STD-RESCALING ###")
- x = super().get_input(batch, self.first_stage_key)
- x = x.to(self.device)
- encoder_posterior = self.encode_first_stage(x)
- z = self.get_first_stage_encoding(encoder_posterior).detach()
- del self.scale_factor
- self.register_buffer('scale_factor', 1. / z.flatten().std())
- print(f"setting self.scale_factor to {self.scale_factor}")
- print("### USING STD-RESCALING ###")
-
- def register_schedule(self,
- given_betas=None, beta_schedule="linear", timesteps=1000,
- linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
- super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
-
- self.shorten_cond_schedule = self.num_timesteps_cond > 1
- if self.shorten_cond_schedule:
- self.make_cond_schedule()
-
- def instantiate_first_stage(self, config):
- model = instantiate_from_config(config)
- self.first_stage_model = model.eval()
- self.first_stage_model.train = disabled_train
- for param in self.first_stage_model.parameters():
- param.requires_grad = False
-
- def instantiate_cond_stage(self, config):
- if not self.cond_stage_trainable:
- if config == "__is_first_stage__":
- print("Using first stage also as cond stage.")
- self.cond_stage_model = self.first_stage_model
- elif config == "__is_unconditional__":
- print(f"Training {self.__class__.__name__} as an unconditional model.")
- self.cond_stage_model = None
- # self.be_unconditional = True
- else:
- model = instantiate_from_config(config)
- self.cond_stage_model = model.eval()
- self.cond_stage_model.train = disabled_train
- for param in self.cond_stage_model.parameters():
- param.requires_grad = False
- else:
- assert config != '__is_first_stage__'
- assert config != '__is_unconditional__'
- model = instantiate_from_config(config)
- self.cond_stage_model = model
-
- def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
- denoise_row = []
- for zd in tqdm(samples, desc=desc):
- denoise_row.append(self.decode_first_stage(zd.to(self.device),
- force_not_quantize=force_no_decoder_quantization))
- n_imgs_per_row = len(denoise_row)
- denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
- denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
- denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
- denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
- return denoise_grid
-
- def get_first_stage_encoding(self, encoder_posterior):
- if isinstance(encoder_posterior, DiagonalGaussianDistribution):
- z = encoder_posterior.sample()
- elif isinstance(encoder_posterior, torch.Tensor):
- z = encoder_posterior
- else:
- raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
- return self.scale_factor * z
-
- def get_learned_conditioning(self, c):
- if self.cond_stage_forward is None:
- if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
- c = self.cond_stage_model.encode(c)
- if isinstance(c, DiagonalGaussianDistribution):
- c = c.mode()
- else:
- c = self.cond_stage_model(c)
- else:
- assert hasattr(self.cond_stage_model, self.cond_stage_forward)
- c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
- return c
-
- def meshgrid(self, h, w):
- y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
- x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
-
- arr = torch.cat([y, x], dim=-1)
- return arr
-
- def delta_border(self, h, w):
- """
- :param h: height
- :param w: width
- :return: normalized distance to image border,
- wtith min distance = 0 at border and max dist = 0.5 at image center
- """
- lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
- arr = self.meshgrid(h, w) / lower_right_corner
- dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
- dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
- edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
- return edge_dist
-
- def get_weighting(self, h, w, Ly, Lx, device):
- weighting = self.delta_border(h, w)
- weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
- self.split_input_params["clip_max_weight"], )
- weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
-
- if self.split_input_params["tie_braker"]:
- L_weighting = self.delta_border(Ly, Lx)
- L_weighting = torch.clip(L_weighting,
- self.split_input_params["clip_min_tie_weight"],
- self.split_input_params["clip_max_tie_weight"])
-
- L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
- weighting = weighting * L_weighting
- return weighting
-
- def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
- """
- :param x: img of size (bs, c, h, w)
- :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
- """
- bs, nc, h, w = x.shape
-
- # number of crops in image
- Ly = (h - kernel_size[0]) // stride[0] + 1
- Lx = (w - kernel_size[1]) // stride[1] + 1
-
- if uf == 1 and df == 1:
- fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
- unfold = torch.nn.Unfold(**fold_params)
-
- fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
-
- weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
- normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
- weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
-
- elif uf > 1 and df == 1:
- fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
- unfold = torch.nn.Unfold(**fold_params)
-
- fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
- dilation=1, padding=0,
- stride=(stride[0] * uf, stride[1] * uf))
- fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
-
- weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
- normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
- weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
-
- elif df > 1 and uf == 1:
- fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
- unfold = torch.nn.Unfold(**fold_params)
-
- fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
- dilation=1, padding=0,
- stride=(stride[0] // df, stride[1] // df))
- fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
-
- weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
- normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
- weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
-
- else:
- raise NotImplementedError
-
- return fold, unfold, normalization, weighting
-
- @torch.no_grad()
- def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
- cond_key=None, return_original_cond=False, bs=None, uncond=0.05):
- x = super().get_input(batch, k)
- if bs is not None:
- x = x[:bs]
- x = x.to(self.device)
- encoder_posterior = self.encode_first_stage(x)
- z = self.get_first_stage_encoding(encoder_posterior).detach()
- cond_key = cond_key or self.cond_stage_key
- xc = super().get_input(batch, cond_key)
- if bs is not None:
- xc["c_crossattn"] = xc["c_crossattn"][:bs]
- xc["c_concat"] = xc["c_concat"][:bs]
- cond = {}
-
- # To support classifier-free guidance, randomly drop out only text conditioning 5%, only image conditioning 5%, and both 5%.
- random = torch.rand(x.size(0), device=x.device)
- prompt_mask = rearrange(random < 2 * uncond, "n -> n 1 1")
- input_mask = 1 - rearrange((random >= uncond).float() * (random < 3 * uncond).float(), "n -> n 1 1 1")
-
- null_prompt = self.get_learned_conditioning([""])
- cond["c_crossattn"] = [torch.where(prompt_mask, null_prompt, self.get_learned_conditioning(xc["c_crossattn"]).detach())]
- cond["c_concat"] = [input_mask * self.encode_first_stage((xc["c_concat"].to(self.device))).mode().detach()]
-
- out = [z, cond]
- if return_first_stage_outputs:
- xrec = self.decode_first_stage(z)
- out.extend([x, xrec])
- if return_original_cond:
- out.append(xc)
- return out
-
- @torch.no_grad()
- def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
- if predict_cids:
- if z.dim() == 4:
- z = torch.argmax(z.exp(), dim=1).long()
- z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
- z = rearrange(z, 'b h w c -> b c h w').contiguous()
-
- z = 1. / self.scale_factor * z
-
- if hasattr(self, "split_input_params"):
- if self.split_input_params["patch_distributed_vq"]:
- ks = self.split_input_params["ks"] # eg. (128, 128)
- stride = self.split_input_params["stride"] # eg. (64, 64)
- uf = self.split_input_params["vqf"]
- bs, nc, h, w = z.shape
- if ks[0] > h or ks[1] > w:
- ks = (min(ks[0], h), min(ks[1], w))
- print("reducing Kernel")
-
- if stride[0] > h or stride[1] > w:
- stride = (min(stride[0], h), min(stride[1], w))
- print("reducing stride")
-
- fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
-
- z = unfold(z) # (bn, nc * prod(**ks), L)
- # 1. Reshape to img shape
- z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
-
- # 2. apply model loop over last dim
- if isinstance(self.first_stage_model, VQModelInterface):
- output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
- force_not_quantize=predict_cids or force_not_quantize)
- for i in range(z.shape[-1])]
- else:
-
- output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
- for i in range(z.shape[-1])]
-
- o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
- o = o * weighting
- # Reverse 1. reshape to img shape
- o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
- # stitch crops together
- decoded = fold(o)
- decoded = decoded / normalization # norm is shape (1, 1, h, w)
- return decoded
- else:
- if isinstance(self.first_stage_model, VQModelInterface):
- return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
- else:
- return self.first_stage_model.decode(z)
-
- else:
- if isinstance(self.first_stage_model, VQModelInterface):
- return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
- else:
- return self.first_stage_model.decode(z)
-
- # same as above but without decorator
- def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
- if predict_cids:
- if z.dim() == 4:
- z = torch.argmax(z.exp(), dim=1).long()
- z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
- z = rearrange(z, 'b h w c -> b c h w').contiguous()
-
- z = 1. / self.scale_factor * z
-
- if hasattr(self, "split_input_params"):
- if self.split_input_params["patch_distributed_vq"]:
- ks = self.split_input_params["ks"] # eg. (128, 128)
- stride = self.split_input_params["stride"] # eg. (64, 64)
- uf = self.split_input_params["vqf"]
- bs, nc, h, w = z.shape
- if ks[0] > h or ks[1] > w:
- ks = (min(ks[0], h), min(ks[1], w))
- print("reducing Kernel")
-
- if stride[0] > h or stride[1] > w:
- stride = (min(stride[0], h), min(stride[1], w))
- print("reducing stride")
-
- fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
-
- z = unfold(z) # (bn, nc * prod(**ks), L)
- # 1. Reshape to img shape
- z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
-
- # 2. apply model loop over last dim
- if isinstance(self.first_stage_model, VQModelInterface):
- output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
- force_not_quantize=predict_cids or force_not_quantize)
- for i in range(z.shape[-1])]
- else:
-
- output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
- for i in range(z.shape[-1])]
-
- o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
- o = o * weighting
- # Reverse 1. reshape to img shape
- o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
- # stitch crops together
- decoded = fold(o)
- decoded = decoded / normalization # norm is shape (1, 1, h, w)
- return decoded
- else:
- if isinstance(self.first_stage_model, VQModelInterface):
- return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
- else:
- return self.first_stage_model.decode(z)
-
- else:
- if isinstance(self.first_stage_model, VQModelInterface):
- return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
- else:
- return self.first_stage_model.decode(z)
-
- @torch.no_grad()
- def encode_first_stage(self, x):
- if hasattr(self, "split_input_params"):
- if self.split_input_params["patch_distributed_vq"]:
- ks = self.split_input_params["ks"] # eg. (128, 128)
- stride = self.split_input_params["stride"] # eg. (64, 64)
- df = self.split_input_params["vqf"]
- self.split_input_params['original_image_size'] = x.shape[-2:]
- bs, nc, h, w = x.shape
- if ks[0] > h or ks[1] > w:
- ks = (min(ks[0], h), min(ks[1], w))
- print("reducing Kernel")
-
- if stride[0] > h or stride[1] > w:
- stride = (min(stride[0], h), min(stride[1], w))
- print("reducing stride")
-
- fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
- z = unfold(x) # (bn, nc * prod(**ks), L)
- # Reshape to img shape
- z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
-
- output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
- for i in range(z.shape[-1])]
-
- o = torch.stack(output_list, axis=-1)
- o = o * weighting
-
- # Reverse reshape to img shape
- o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
- # stitch crops together
- decoded = fold(o)
- decoded = decoded / normalization
- return decoded
-
- else:
- return self.first_stage_model.encode(x)
- else:
- return self.first_stage_model.encode(x)
-
- def shared_step(self, batch, **kwargs):
- x, c = self.get_input(batch, self.first_stage_key)
- loss = self(x, c)
- return loss
-
- def forward(self, x, c, *args, **kwargs):
- t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
- if self.model.conditioning_key is not None:
- assert c is not None
- if self.cond_stage_trainable:
- c = self.get_learned_conditioning(c)
- if self.shorten_cond_schedule: # TODO: drop this option
- tc = self.cond_ids[t].to(self.device)
- c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
- return self.p_losses(x, c, t, *args, **kwargs)
-
- def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
- def rescale_bbox(bbox):
- x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
- y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
- w = min(bbox[2] / crop_coordinates[2], 1 - x0)
- h = min(bbox[3] / crop_coordinates[3], 1 - y0)
- return x0, y0, w, h
-
- return [rescale_bbox(b) for b in bboxes]
-
- def apply_model(self, x_noisy, t, cond, return_ids=False):
-
- if isinstance(cond, dict):
- # hybrid case, cond is exptected to be a dict
- pass
- else:
- if not isinstance(cond, list):
- cond = [cond]
- key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
- cond = {key: cond}
-
- if hasattr(self, "split_input_params"):
- assert len(cond) == 1 # todo can only deal with one conditioning atm
- assert not return_ids
- ks = self.split_input_params["ks"] # eg. (128, 128)
- stride = self.split_input_params["stride"] # eg. (64, 64)
-
- h, w = x_noisy.shape[-2:]
-
- fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
-
- z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
- # Reshape to img shape
- z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
- z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
-
- if self.cond_stage_key in ["image", "LR_image", "segmentation",
- 'bbox_img'] and self.model.conditioning_key: # todo check for completeness
- c_key = next(iter(cond.keys())) # get key
- c = next(iter(cond.values())) # get value
- assert (len(c) == 1) # todo extend to list with more than one elem
- c = c[0] # get element
-
- c = unfold(c)
- c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
-
- cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
-
- elif self.cond_stage_key == 'coordinates_bbox':
- assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
-
- # assuming padding of unfold is always 0 and its dilation is always 1
- n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
- full_img_h, full_img_w = self.split_input_params['original_image_size']
- # as we are operating on latents, we need the factor from the original image size to the
- # spatial latent size to properly rescale the crops for regenerating the bbox annotations
- num_downs = self.first_stage_model.encoder.num_resolutions - 1
- rescale_latent = 2 ** (num_downs)
-
- # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
- # need to rescale the tl patch coordinates to be in between (0,1)
- tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
- rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
- for patch_nr in range(z.shape[-1])]
-
- # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
- patch_limits = [(x_tl, y_tl,
- rescale_latent * ks[0] / full_img_w,
- rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
- # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
-
- # tokenize crop coordinates for the bounding boxes of the respective patches
- patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
- for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
- print(patch_limits_tknzd[0].shape)
- # cut tknzd crop position from conditioning
- assert isinstance(cond, dict), 'cond must be dict to be fed into model'
- cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
- print(cut_cond.shape)
-
- adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
- adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
- print(adapted_cond.shape)
- adapted_cond = self.get_learned_conditioning(adapted_cond)
- print(adapted_cond.shape)
- adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
- print(adapted_cond.shape)
-
- cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
-
- else:
- cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
-
- # apply model by loop over crops
- output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
- assert not isinstance(output_list[0],
- tuple) # todo cant deal with multiple model outputs check this never happens
-
- o = torch.stack(output_list, axis=-1)
- o = o * weighting
- # Reverse reshape to img shape
- o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
- # stitch crops together
- x_recon = fold(o) / normalization
-
- else:
- x_recon = self.model(x_noisy, t, **cond)
-
- if isinstance(x_recon, tuple) and not return_ids:
- return x_recon[0]
- else:
- return x_recon
-
- def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
- return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
-
- def _prior_bpd(self, x_start):
- """
- Get the prior KL term for the variational lower-bound, measured in
- bits-per-dim.
- This term can't be optimized, as it only depends on the encoder.
- :param x_start: the [N x C x ...] tensor of inputs.
- :return: a batch of [N] KL values (in bits), one per batch element.
- """
- batch_size = x_start.shape[0]
- t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
- qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
- kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
- return mean_flat(kl_prior) / np.log(2.0)
-
- def p_losses(self, x_start, cond, t, noise=None):
- noise = default(noise, lambda: torch.randn_like(x_start))
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
- model_output = self.apply_model(x_noisy, t, cond)
-
- loss_dict = {}
- prefix = 'train' if self.training else 'val'
-
- if self.parameterization == "x0":
- target = x_start
- elif self.parameterization == "eps":
- target = noise
- else:
- raise NotImplementedError()
-
- loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
- loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
-
- logvar_t = self.logvar[t].to(self.device)
- loss = loss_simple / torch.exp(logvar_t) + logvar_t
- # loss = loss_simple / torch.exp(self.logvar) + self.logvar
- if self.learn_logvar:
- loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
- loss_dict.update({'logvar': self.logvar.data.mean()})
-
- loss = self.l_simple_weight * loss.mean()
-
- loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
- loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
- loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
- loss += (self.original_elbo_weight * loss_vlb)
- loss_dict.update({f'{prefix}/loss': loss})
-
- return loss, loss_dict
-
- def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
- return_x0=False, score_corrector=None, corrector_kwargs=None):
- t_in = t
- model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
-
- if score_corrector is not None:
- assert self.parameterization == "eps"
- model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
-
- if return_codebook_ids:
- model_out, logits = model_out
-
- if self.parameterization == "eps":
- x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
- elif self.parameterization == "x0":
- x_recon = model_out
- else:
- raise NotImplementedError()
-
- if clip_denoised:
- x_recon.clamp_(-1., 1.)
- if quantize_denoised:
- x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
- model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
- if return_codebook_ids:
- return model_mean, posterior_variance, posterior_log_variance, logits
- elif return_x0:
- return model_mean, posterior_variance, posterior_log_variance, x_recon
- else:
- return model_mean, posterior_variance, posterior_log_variance
-
- @torch.no_grad()
- def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
- return_codebook_ids=False, quantize_denoised=False, return_x0=False,
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
- b, *_, device = *x.shape, x.device
- outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
- return_codebook_ids=return_codebook_ids,
- quantize_denoised=quantize_denoised,
- return_x0=return_x0,
- score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
- if return_codebook_ids:
- raise DeprecationWarning("Support dropped.")
- model_mean, _, model_log_variance, logits = outputs
- elif return_x0:
- model_mean, _, model_log_variance, x0 = outputs
- else:
- model_mean, _, model_log_variance = outputs
-
- noise = noise_like(x.shape, device, repeat_noise) * temperature
- if noise_dropout > 0.:
- noise = torch.nn.functional.dropout(noise, p=noise_dropout)
- # no noise when t == 0
- nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
-
- if return_codebook_ids:
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
- if return_x0:
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
- else:
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
-
- @torch.no_grad()
- def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
- img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
- score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
- log_every_t=None):
- if not log_every_t:
- log_every_t = self.log_every_t
- timesteps = self.num_timesteps
- if batch_size is not None:
- b = batch_size if batch_size is not None else shape[0]
- shape = [batch_size] + list(shape)
- else:
- b = batch_size = shape[0]
- if x_T is None:
- img = torch.randn(shape, device=self.device)
- else:
- img = x_T
- intermediates = []
- if cond is not None:
- if isinstance(cond, dict):
- cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
- list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
- else:
- cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
-
- if start_T is not None:
- timesteps = min(timesteps, start_T)
- iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
- total=timesteps) if verbose else reversed(
- range(0, timesteps))
- if type(temperature) == float:
- temperature = [temperature] * timesteps
-
- for i in iterator:
- ts = torch.full((b,), i, device=self.device, dtype=torch.long)
- if self.shorten_cond_schedule:
- assert self.model.conditioning_key != 'hybrid'
- tc = self.cond_ids[ts].to(cond.device)
- cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
-
- img, x0_partial = self.p_sample(img, cond, ts,
- clip_denoised=self.clip_denoised,
- quantize_denoised=quantize_denoised, return_x0=True,
- temperature=temperature[i], noise_dropout=noise_dropout,
- score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
- if mask is not None:
- assert x0 is not None
- img_orig = self.q_sample(x0, ts)
- img = img_orig * mask + (1. - mask) * img
-
- if i % log_every_t == 0 or i == timesteps - 1:
- intermediates.append(x0_partial)
- if callback: callback(i)
- if img_callback: img_callback(img, i)
- return img, intermediates
-
- @torch.no_grad()
- def p_sample_loop(self, cond, shape, return_intermediates=False,
- x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
- mask=None, x0=None, img_callback=None, start_T=None,
- log_every_t=None):
-
- if not log_every_t:
- log_every_t = self.log_every_t
- device = self.betas.device
- b = shape[0]
- if x_T is None:
- img = torch.randn(shape, device=device)
- else:
- img = x_T
-
- intermediates = [img]
- if timesteps is None:
- timesteps = self.num_timesteps
-
- if start_T is not None:
- timesteps = min(timesteps, start_T)
- iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
- range(0, timesteps))
-
- if mask is not None:
- assert x0 is not None
- assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
-
- for i in iterator:
- ts = torch.full((b,), i, device=device, dtype=torch.long)
- if self.shorten_cond_schedule:
- assert self.model.conditioning_key != 'hybrid'
- tc = self.cond_ids[ts].to(cond.device)
- cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
-
- img = self.p_sample(img, cond, ts,
- clip_denoised=self.clip_denoised,
- quantize_denoised=quantize_denoised)
- if mask is not None:
- img_orig = self.q_sample(x0, ts)
- img = img_orig * mask + (1. - mask) * img
-
- if i % log_every_t == 0 or i == timesteps - 1:
- intermediates.append(img)
- if callback: callback(i)
- if img_callback: img_callback(img, i)
-
- if return_intermediates:
- return img, intermediates
- return img
-
- @torch.no_grad()
- def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
- verbose=True, timesteps=None, quantize_denoised=False,
- mask=None, x0=None, shape=None,**kwargs):
- if shape is None:
- shape = (batch_size, self.channels, self.image_size, self.image_size)
- if cond is not None:
- if isinstance(cond, dict):
- cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
- list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
- else:
- cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
- return self.p_sample_loop(cond,
- shape,
- return_intermediates=return_intermediates, x_T=x_T,
- verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
- mask=mask, x0=x0)
-
- @torch.no_grad()
- def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
-
- if ddim:
- ddim_sampler = DDIMSampler(self)
- shape = (self.channels, self.image_size, self.image_size)
- samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
- shape,cond,verbose=False,**kwargs)
-
- else:
- samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
- return_intermediates=True,**kwargs)
-
- return samples, intermediates
-
-
- @torch.no_grad()
- def log_images(self, batch, N=4, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
- quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=False,
- plot_diffusion_rows=False, **kwargs):
-
- use_ddim = False
-
- log = dict()
- z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
- return_first_stage_outputs=True,
- force_c_encode=True,
- return_original_cond=True,
- bs=N, uncond=0)
- N = min(x.shape[0], N)
- n_row = min(x.shape[0], n_row)
- log["inputs"] = x
- log["reals"] = xc["c_concat"]
- log["reconstruction"] = xrec
- if self.model.conditioning_key is not None:
- if hasattr(self.cond_stage_model, "decode"):
- xc = self.cond_stage_model.decode(c)
- log["conditioning"] = xc
- elif self.cond_stage_key in ["caption"]:
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
- log["conditioning"] = xc
- elif self.cond_stage_key == 'class_label':
- xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
- log['conditioning'] = xc
- elif isimage(xc):
- log["conditioning"] = xc
- if ismap(xc):
- log["original_conditioning"] = self.to_rgb(xc)
-
- if plot_diffusion_rows:
- # get diffusion row
- diffusion_row = list()
- z_start = z[:n_row]
- for t in range(self.num_timesteps):
- if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
- t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
- t = t.to(self.device).long()
- noise = torch.randn_like(z_start)
- z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
- diffusion_row.append(self.decode_first_stage(z_noisy))
-
- diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
- diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
- diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
- diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
- log["diffusion_row"] = diffusion_grid
-
- if sample:
- # get denoise row
- with self.ema_scope("Plotting"):
- samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
- ddim_steps=ddim_steps,eta=ddim_eta)
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
- x_samples = self.decode_first_stage(samples)
- log["samples"] = x_samples
- if plot_denoise_rows:
- denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
- log["denoise_row"] = denoise_grid
-
- if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
- self.first_stage_model, IdentityFirstStage):
- # also display when quantizing x0 while sampling
- with self.ema_scope("Plotting Quantized Denoised"):
- samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
- ddim_steps=ddim_steps,eta=ddim_eta,
- quantize_denoised=True)
- # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
- # quantize_denoised=True)
- x_samples = self.decode_first_stage(samples.to(self.device))
- log["samples_x0_quantized"] = x_samples
-
- if inpaint:
- # make a simple center square
- b, h, w = z.shape[0], z.shape[2], z.shape[3]
- mask = torch.ones(N, h, w).to(self.device)
- # zeros will be filled in
- mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
- mask = mask[:, None, ...]
- with self.ema_scope("Plotting Inpaint"):
-
- samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
- ddim_steps=ddim_steps, x0=z[:N], mask=mask)
- x_samples = self.decode_first_stage(samples.to(self.device))
- log["samples_inpainting"] = x_samples
- log["mask"] = mask
-
- # outpaint
- with self.ema_scope("Plotting Outpaint"):
- samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
- ddim_steps=ddim_steps, x0=z[:N], mask=mask)
- x_samples = self.decode_first_stage(samples.to(self.device))
- log["samples_outpainting"] = x_samples
-
- if plot_progressive_rows:
- with self.ema_scope("Plotting Progressives"):
- img, progressives = self.progressive_denoising(c,
- shape=(self.channels, self.image_size, self.image_size),
- batch_size=N)
- prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
- log["progressive_row"] = prog_row
-
- if return_keys:
- if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
- return log
- else:
- return {key: log[key] for key in return_keys}
- return log
-
- def configure_optimizers(self):
- lr = self.learning_rate
- params = list(self.model.parameters())
- if self.cond_stage_trainable:
- print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
- params = params + list(self.cond_stage_model.parameters())
- if self.learn_logvar:
- print('Diffusion model optimizing logvar')
- params.append(self.logvar)
- opt = torch.optim.AdamW(params, lr=lr)
- if self.use_scheduler:
- assert 'target' in self.scheduler_config
- scheduler = instantiate_from_config(self.scheduler_config)
-
- print("Setting up LambdaLR scheduler...")
- scheduler = [
- {
- 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
- 'interval': 'step',
- 'frequency': 1
- }]
- return [opt], scheduler
- return opt
-
- @torch.no_grad()
- def to_rgb(self, x):
- x = x.float()
- if not hasattr(self, "colorize"):
- self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
- x = nn.functional.conv2d(x, weight=self.colorize)
- x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
- return x
-
-
-class DiffusionWrapper(pl.LightningModule):
- def __init__(self, diff_model_config, conditioning_key):
- super().__init__()
- self.diffusion_model = instantiate_from_config(diff_model_config)
- self.conditioning_key = conditioning_key
- assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
-
- def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
- if self.conditioning_key is None:
- out = self.diffusion_model(x, t)
- elif self.conditioning_key == 'concat':
- xc = torch.cat([x] + c_concat, dim=1)
- out = self.diffusion_model(xc, t)
- elif self.conditioning_key == 'crossattn':
- cc = torch.cat(c_crossattn, 1)
- out = self.diffusion_model(x, t, context=cc)
- elif self.conditioning_key == 'hybrid':
- xc = torch.cat([x] + c_concat, dim=1)
- cc = torch.cat(c_crossattn, 1)
- out = self.diffusion_model(xc, t, context=cc)
- elif self.conditioning_key == 'adm':
- cc = c_crossattn[0]
- out = self.diffusion_model(x, t, y=cc)
- else:
- raise NotImplementedError()
-
- return out
-
-
-class Layout2ImgDiffusion(LatentDiffusion):
- # TODO: move all layout-specific hacks to this class
- def __init__(self, cond_stage_key, *args, **kwargs):
- assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
- super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
-
- def log_images(self, batch, N=8, *args, **kwargs):
- logs = super().log_images(batch=batch, N=N, *args, **kwargs)
-
- key = 'train' if self.training else 'validation'
- dset = self.trainer.datamodule.datasets[key]
- mapper = dset.conditional_builders[self.cond_stage_key]
-
- bbox_imgs = []
- map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
- for tknzd_bbox in batch[self.cond_stage_key][:N]:
- bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
- bbox_imgs.append(bboximg)
-
- cond_img = torch.stack(bbox_imgs, dim=0)
- logs['bbox_image'] = cond_img
- return logs
diff --git a/stable_diffusion/ldm/models/diffusion/dpm_solver/__init__.py b/stable_diffusion/ldm/models/diffusion/dpm_solver/__init__.py
deleted file mode 100644
index 7427f38c07530afbab79154ea8aaf88c4bf70a08..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/models/diffusion/dpm_solver/__init__.py
+++ /dev/null
@@ -1 +0,0 @@
-from .sampler import DPMSolverSampler
\ No newline at end of file
diff --git a/stable_diffusion/ldm/models/diffusion/dpm_solver/dpm_solver.py b/stable_diffusion/ldm/models/diffusion/dpm_solver/dpm_solver.py
deleted file mode 100644
index bdb64e0c78cc3520f92d79db3124c85fc3cfb9b4..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/models/diffusion/dpm_solver/dpm_solver.py
+++ /dev/null
@@ -1,1184 +0,0 @@
-import torch
-import torch.nn.functional as F
-import math
-
-
-class NoiseScheduleVP:
- def __init__(
- self,
- schedule='discrete',
- betas=None,
- alphas_cumprod=None,
- continuous_beta_0=0.1,
- continuous_beta_1=20.,
- ):
- """Create a wrapper class for the forward SDE (VP type).
-
- ***
- Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
- We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
- ***
-
- The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
- We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
- Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
-
- log_alpha_t = self.marginal_log_mean_coeff(t)
- sigma_t = self.marginal_std(t)
- lambda_t = self.marginal_lambda(t)
-
- Moreover, as lambda(t) is an invertible function, we also support its inverse function:
-
- t = self.inverse_lambda(lambda_t)
-
- ===============================================================
-
- We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
-
- 1. For discrete-time DPMs:
-
- For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
- t_i = (i + 1) / N
- e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
- We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
-
- Args:
- betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
- alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
-
- Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
-
- **Important**: Please pay special attention for the args for `alphas_cumprod`:
- The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
- q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
- Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
- alpha_{t_n} = \sqrt{\hat{alpha_n}},
- and
- log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
-
-
- 2. For continuous-time DPMs:
-
- We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
- schedule are the default settings in DDPM and improved-DDPM:
-
- Args:
- beta_min: A `float` number. The smallest beta for the linear schedule.
- beta_max: A `float` number. The largest beta for the linear schedule.
- cosine_s: A `float` number. The hyperparameter in the cosine schedule.
- cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
- T: A `float` number. The ending time of the forward process.
-
- ===============================================================
-
- Args:
- schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
- 'linear' or 'cosine' for continuous-time DPMs.
- Returns:
- A wrapper object of the forward SDE (VP type).
-
- ===============================================================
-
- Example:
-
- # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
- >>> ns = NoiseScheduleVP('discrete', betas=betas)
-
- # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
- >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
-
- # For continuous-time DPMs (VPSDE), linear schedule:
- >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
-
- """
-
- if schedule not in ['discrete', 'linear', 'cosine']:
- raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
-
- self.schedule = schedule
- if schedule == 'discrete':
- if betas is not None:
- log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
- else:
- assert alphas_cumprod is not None
- log_alphas = 0.5 * torch.log(alphas_cumprod)
- self.total_N = len(log_alphas)
- self.T = 1.
- self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
- self.log_alpha_array = log_alphas.reshape((1, -1,))
- else:
- self.total_N = 1000
- self.beta_0 = continuous_beta_0
- self.beta_1 = continuous_beta_1
- self.cosine_s = 0.008
- self.cosine_beta_max = 999.
- self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
- self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
- self.schedule = schedule
- if schedule == 'cosine':
- # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
- # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
- self.T = 0.9946
- else:
- self.T = 1.
-
- def marginal_log_mean_coeff(self, t):
- """
- Compute log(alpha_t) of a given continuous-time label t in [0, T].
- """
- if self.schedule == 'discrete':
- return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
- elif self.schedule == 'linear':
- return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
- elif self.schedule == 'cosine':
- log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
- log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
- return log_alpha_t
-
- def marginal_alpha(self, t):
- """
- Compute alpha_t of a given continuous-time label t in [0, T].
- """
- return torch.exp(self.marginal_log_mean_coeff(t))
-
- def marginal_std(self, t):
- """
- Compute sigma_t of a given continuous-time label t in [0, T].
- """
- return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
-
- def marginal_lambda(self, t):
- """
- Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
- """
- log_mean_coeff = self.marginal_log_mean_coeff(t)
- log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
- return log_mean_coeff - log_std
-
- def inverse_lambda(self, lamb):
- """
- Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
- """
- if self.schedule == 'linear':
- tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
- Delta = self.beta_0**2 + tmp
- return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
- elif self.schedule == 'discrete':
- log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
- t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
- return t.reshape((-1,))
- else:
- log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
- t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
- t = t_fn(log_alpha)
- return t
-
-
-def model_wrapper(
- model,
- noise_schedule,
- model_type="noise",
- model_kwargs={},
- guidance_type="uncond",
- condition=None,
- unconditional_condition=None,
- guidance_scale=1.,
- classifier_fn=None,
- classifier_kwargs={},
-):
- """Create a wrapper function for the noise prediction model.
-
- DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
- firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
-
- We support four types of the diffusion model by setting `model_type`:
-
- 1. "noise": noise prediction model. (Trained by predicting noise).
-
- 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
-
- 3. "v": velocity prediction model. (Trained by predicting the velocity).
- The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
-
- [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
- arXiv preprint arXiv:2202.00512 (2022).
- [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
- arXiv preprint arXiv:2210.02303 (2022).
-
- 4. "score": marginal score function. (Trained by denoising score matching).
- Note that the score function and the noise prediction model follows a simple relationship:
- ```
- noise(x_t, t) = -sigma_t * score(x_t, t)
- ```
-
- We support three types of guided sampling by DPMs by setting `guidance_type`:
- 1. "uncond": unconditional sampling by DPMs.
- The input `model` has the following format:
- ``
- model(x, t_input, **model_kwargs) -> noise | x_start | v | score
- ``
-
- 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
- The input `model` has the following format:
- ``
- model(x, t_input, **model_kwargs) -> noise | x_start | v | score
- ``
-
- The input `classifier_fn` has the following format:
- ``
- classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
- ``
-
- [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
- in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
-
- 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
- The input `model` has the following format:
- ``
- model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
- ``
- And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
-
- [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
- arXiv preprint arXiv:2207.12598 (2022).
-
-
- The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
- or continuous-time labels (i.e. epsilon to T).
-
- We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
- ``
- def model_fn(x, t_continuous) -> noise:
- t_input = get_model_input_time(t_continuous)
- return noise_pred(model, x, t_input, **model_kwargs)
- ``
- where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
-
- ===============================================================
-
- Args:
- model: A diffusion model with the corresponding format described above.
- noise_schedule: A noise schedule object, such as NoiseScheduleVP.
- model_type: A `str`. The parameterization type of the diffusion model.
- "noise" or "x_start" or "v" or "score".
- model_kwargs: A `dict`. A dict for the other inputs of the model function.
- guidance_type: A `str`. The type of the guidance for sampling.
- "uncond" or "classifier" or "classifier-free".
- condition: A pytorch tensor. The condition for the guided sampling.
- Only used for "classifier" or "classifier-free" guidance type.
- unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
- Only used for "classifier-free" guidance type.
- guidance_scale: A `float`. The scale for the guided sampling.
- classifier_fn: A classifier function. Only used for the classifier guidance.
- classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
- Returns:
- A noise prediction model that accepts the noised data and the continuous time as the inputs.
- """
-
- def get_model_input_time(t_continuous):
- """
- Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
- For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
- For continuous-time DPMs, we just use `t_continuous`.
- """
- if noise_schedule.schedule == 'discrete':
- return (t_continuous - 1. / noise_schedule.total_N) * 1000.
- else:
- return t_continuous
-
- def noise_pred_fn(x, t_continuous, cond=None):
- if t_continuous.reshape((-1,)).shape[0] == 1:
- t_continuous = t_continuous.expand((x.shape[0]))
- t_input = get_model_input_time(t_continuous)
- if cond is None:
- output = model(x, t_input, **model_kwargs)
- else:
- output = model(x, t_input, cond, **model_kwargs)
- if model_type == "noise":
- return output
- elif model_type == "x_start":
- alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
- dims = x.dim()
- return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
- elif model_type == "v":
- alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
- dims = x.dim()
- return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
- elif model_type == "score":
- sigma_t = noise_schedule.marginal_std(t_continuous)
- dims = x.dim()
- return -expand_dims(sigma_t, dims) * output
-
- def cond_grad_fn(x, t_input):
- """
- Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
- """
- with torch.enable_grad():
- x_in = x.detach().requires_grad_(True)
- log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
- return torch.autograd.grad(log_prob.sum(), x_in)[0]
-
- def model_fn(x, t_continuous):
- """
- The noise predicition model function that is used for DPM-Solver.
- """
- if t_continuous.reshape((-1,)).shape[0] == 1:
- t_continuous = t_continuous.expand((x.shape[0]))
- if guidance_type == "uncond":
- return noise_pred_fn(x, t_continuous)
- elif guidance_type == "classifier":
- assert classifier_fn is not None
- t_input = get_model_input_time(t_continuous)
- cond_grad = cond_grad_fn(x, t_input)
- sigma_t = noise_schedule.marginal_std(t_continuous)
- noise = noise_pred_fn(x, t_continuous)
- return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
- elif guidance_type == "classifier-free":
- if guidance_scale == 1. or unconditional_condition is None:
- return noise_pred_fn(x, t_continuous, cond=condition)
- else:
- x_in = torch.cat([x] * 2)
- t_in = torch.cat([t_continuous] * 2)
- c_in = torch.cat([unconditional_condition, condition])
- noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
- return noise_uncond + guidance_scale * (noise - noise_uncond)
-
- assert model_type in ["noise", "x_start", "v"]
- assert guidance_type in ["uncond", "classifier", "classifier-free"]
- return model_fn
-
-
-class DPM_Solver:
- def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
- """Construct a DPM-Solver.
-
- We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
- If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
- If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
- In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
- The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
-
- Args:
- model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
- ``
- def model_fn(x, t_continuous):
- return noise
- ``
- noise_schedule: A noise schedule object, such as NoiseScheduleVP.
- predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
- thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
- max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
-
- [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
- """
- self.model = model_fn
- self.noise_schedule = noise_schedule
- self.predict_x0 = predict_x0
- self.thresholding = thresholding
- self.max_val = max_val
-
- def noise_prediction_fn(self, x, t):
- """
- Return the noise prediction model.
- """
- return self.model(x, t)
-
- def data_prediction_fn(self, x, t):
- """
- Return the data prediction model (with thresholding).
- """
- noise = self.noise_prediction_fn(x, t)
- dims = x.dim()
- alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
- x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
- if self.thresholding:
- p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
- s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
- s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
- x0 = torch.clamp(x0, -s, s) / s
- return x0
-
- def model_fn(self, x, t):
- """
- Convert the model to the noise prediction model or the data prediction model.
- """
- if self.predict_x0:
- return self.data_prediction_fn(x, t)
- else:
- return self.noise_prediction_fn(x, t)
-
- def get_time_steps(self, skip_type, t_T, t_0, N, device):
- """Compute the intermediate time steps for sampling.
-
- Args:
- skip_type: A `str`. The type for the spacing of the time steps. We support three types:
- - 'logSNR': uniform logSNR for the time steps.
- - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
- - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
- t_T: A `float`. The starting time of the sampling (default is T).
- t_0: A `float`. The ending time of the sampling (default is epsilon).
- N: A `int`. The total number of the spacing of the time steps.
- device: A torch device.
- Returns:
- A pytorch tensor of the time steps, with the shape (N + 1,).
- """
- if skip_type == 'logSNR':
- lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
- lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
- logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
- return self.noise_schedule.inverse_lambda(logSNR_steps)
- elif skip_type == 'time_uniform':
- return torch.linspace(t_T, t_0, N + 1).to(device)
- elif skip_type == 'time_quadratic':
- t_order = 2
- t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
- return t
- else:
- raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
-
- def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
- """
- Get the order of each step for sampling by the singlestep DPM-Solver.
-
- We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
- Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
- - If order == 1:
- We take `steps` of DPM-Solver-1 (i.e. DDIM).
- - If order == 2:
- - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
- - If steps % 2 == 0, we use K steps of DPM-Solver-2.
- - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
- - If order == 3:
- - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
- - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
- - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
- - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
-
- ============================================
- Args:
- order: A `int`. The max order for the solver (2 or 3).
- steps: A `int`. The total number of function evaluations (NFE).
- skip_type: A `str`. The type for the spacing of the time steps. We support three types:
- - 'logSNR': uniform logSNR for the time steps.
- - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
- - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
- t_T: A `float`. The starting time of the sampling (default is T).
- t_0: A `float`. The ending time of the sampling (default is epsilon).
- device: A torch device.
- Returns:
- orders: A list of the solver order of each step.
- """
- if order == 3:
- K = steps // 3 + 1
- if steps % 3 == 0:
- orders = [3,] * (K - 2) + [2, 1]
- elif steps % 3 == 1:
- orders = [3,] * (K - 1) + [1]
- else:
- orders = [3,] * (K - 1) + [2]
- elif order == 2:
- if steps % 2 == 0:
- K = steps // 2
- orders = [2,] * K
- else:
- K = steps // 2 + 1
- orders = [2,] * (K - 1) + [1]
- elif order == 1:
- K = 1
- orders = [1,] * steps
- else:
- raise ValueError("'order' must be '1' or '2' or '3'.")
- if skip_type == 'logSNR':
- # To reproduce the results in DPM-Solver paper
- timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
- else:
- timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders)).to(device)]
- return timesteps_outer, orders
-
- def denoise_to_zero_fn(self, x, s):
- """
- Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
- """
- return self.data_prediction_fn(x, s)
-
- def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
- """
- DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
-
- Args:
- x: A pytorch tensor. The initial value at time `s`.
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
- model_s: A pytorch tensor. The model function evaluated at time `s`.
- If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
- return_intermediate: A `bool`. If true, also return the model value at time `s`.
- Returns:
- x_t: A pytorch tensor. The approximated solution at time `t`.
- """
- ns = self.noise_schedule
- dims = x.dim()
- lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
- h = lambda_t - lambda_s
- log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
- sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
- alpha_t = torch.exp(log_alpha_t)
-
- if self.predict_x0:
- phi_1 = torch.expm1(-h)
- if model_s is None:
- model_s = self.model_fn(x, s)
- x_t = (
- expand_dims(sigma_t / sigma_s, dims) * x
- - expand_dims(alpha_t * phi_1, dims) * model_s
- )
- if return_intermediate:
- return x_t, {'model_s': model_s}
- else:
- return x_t
- else:
- phi_1 = torch.expm1(h)
- if model_s is None:
- model_s = self.model_fn(x, s)
- x_t = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
- - expand_dims(sigma_t * phi_1, dims) * model_s
- )
- if return_intermediate:
- return x_t, {'model_s': model_s}
- else:
- return x_t
-
- def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type='dpm_solver'):
- """
- Singlestep solver DPM-Solver-2 from time `s` to time `t`.
-
- Args:
- x: A pytorch tensor. The initial value at time `s`.
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
- r1: A `float`. The hyperparameter of the second-order solver.
- model_s: A pytorch tensor. The model function evaluated at time `s`.
- If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
- return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
- Returns:
- x_t: A pytorch tensor. The approximated solution at time `t`.
- """
- if solver_type not in ['dpm_solver', 'taylor']:
- raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
- if r1 is None:
- r1 = 0.5
- ns = self.noise_schedule
- dims = x.dim()
- lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
- h = lambda_t - lambda_s
- lambda_s1 = lambda_s + r1 * h
- s1 = ns.inverse_lambda(lambda_s1)
- log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(t)
- sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
- alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
-
- if self.predict_x0:
- phi_11 = torch.expm1(-r1 * h)
- phi_1 = torch.expm1(-h)
-
- if model_s is None:
- model_s = self.model_fn(x, s)
- x_s1 = (
- expand_dims(sigma_s1 / sigma_s, dims) * x
- - expand_dims(alpha_s1 * phi_11, dims) * model_s
- )
- model_s1 = self.model_fn(x_s1, s1)
- if solver_type == 'dpm_solver':
- x_t = (
- expand_dims(sigma_t / sigma_s, dims) * x
- - expand_dims(alpha_t * phi_1, dims) * model_s
- - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
- )
- elif solver_type == 'taylor':
- x_t = (
- expand_dims(sigma_t / sigma_s, dims) * x
- - expand_dims(alpha_t * phi_1, dims) * model_s
- + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (model_s1 - model_s)
- )
- else:
- phi_11 = torch.expm1(r1 * h)
- phi_1 = torch.expm1(h)
-
- if model_s is None:
- model_s = self.model_fn(x, s)
- x_s1 = (
- expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
- - expand_dims(sigma_s1 * phi_11, dims) * model_s
- )
- model_s1 = self.model_fn(x_s1, s1)
- if solver_type == 'dpm_solver':
- x_t = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
- - expand_dims(sigma_t * phi_1, dims) * model_s
- - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
- )
- elif solver_type == 'taylor':
- x_t = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
- - expand_dims(sigma_t * phi_1, dims) * model_s
- - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
- )
- if return_intermediate:
- return x_t, {'model_s': model_s, 'model_s1': model_s1}
- else:
- return x_t
-
- def singlestep_dpm_solver_third_update(self, x, s, t, r1=1./3., r2=2./3., model_s=None, model_s1=None, return_intermediate=False, solver_type='dpm_solver'):
- """
- Singlestep solver DPM-Solver-3 from time `s` to time `t`.
-
- Args:
- x: A pytorch tensor. The initial value at time `s`.
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
- r1: A `float`. The hyperparameter of the third-order solver.
- r2: A `float`. The hyperparameter of the third-order solver.
- model_s: A pytorch tensor. The model function evaluated at time `s`.
- If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
- model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
- If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
- return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
- Returns:
- x_t: A pytorch tensor. The approximated solution at time `t`.
- """
- if solver_type not in ['dpm_solver', 'taylor']:
- raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
- if r1 is None:
- r1 = 1. / 3.
- if r2 is None:
- r2 = 2. / 3.
- ns = self.noise_schedule
- dims = x.dim()
- lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
- h = lambda_t - lambda_s
- lambda_s1 = lambda_s + r1 * h
- lambda_s2 = lambda_s + r2 * h
- s1 = ns.inverse_lambda(lambda_s1)
- s2 = ns.inverse_lambda(lambda_s2)
- log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
- sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(s2), ns.marginal_std(t)
- alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
-
- if self.predict_x0:
- phi_11 = torch.expm1(-r1 * h)
- phi_12 = torch.expm1(-r2 * h)
- phi_1 = torch.expm1(-h)
- phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
- phi_2 = phi_1 / h + 1.
- phi_3 = phi_2 / h - 0.5
-
- if model_s is None:
- model_s = self.model_fn(x, s)
- if model_s1 is None:
- x_s1 = (
- expand_dims(sigma_s1 / sigma_s, dims) * x
- - expand_dims(alpha_s1 * phi_11, dims) * model_s
- )
- model_s1 = self.model_fn(x_s1, s1)
- x_s2 = (
- expand_dims(sigma_s2 / sigma_s, dims) * x
- - expand_dims(alpha_s2 * phi_12, dims) * model_s
- + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
- )
- model_s2 = self.model_fn(x_s2, s2)
- if solver_type == 'dpm_solver':
- x_t = (
- expand_dims(sigma_t / sigma_s, dims) * x
- - expand_dims(alpha_t * phi_1, dims) * model_s
- + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
- )
- elif solver_type == 'taylor':
- D1_0 = (1. / r1) * (model_s1 - model_s)
- D1_1 = (1. / r2) * (model_s2 - model_s)
- D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
- D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
- x_t = (
- expand_dims(sigma_t / sigma_s, dims) * x
- - expand_dims(alpha_t * phi_1, dims) * model_s
- + expand_dims(alpha_t * phi_2, dims) * D1
- - expand_dims(alpha_t * phi_3, dims) * D2
- )
- else:
- phi_11 = torch.expm1(r1 * h)
- phi_12 = torch.expm1(r2 * h)
- phi_1 = torch.expm1(h)
- phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
- phi_2 = phi_1 / h - 1.
- phi_3 = phi_2 / h - 0.5
-
- if model_s is None:
- model_s = self.model_fn(x, s)
- if model_s1 is None:
- x_s1 = (
- expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
- - expand_dims(sigma_s1 * phi_11, dims) * model_s
- )
- model_s1 = self.model_fn(x_s1, s1)
- x_s2 = (
- expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
- - expand_dims(sigma_s2 * phi_12, dims) * model_s
- - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
- )
- model_s2 = self.model_fn(x_s2, s2)
- if solver_type == 'dpm_solver':
- x_t = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
- - expand_dims(sigma_t * phi_1, dims) * model_s
- - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
- )
- elif solver_type == 'taylor':
- D1_0 = (1. / r1) * (model_s1 - model_s)
- D1_1 = (1. / r2) * (model_s2 - model_s)
- D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
- D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
- x_t = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
- - expand_dims(sigma_t * phi_1, dims) * model_s
- - expand_dims(sigma_t * phi_2, dims) * D1
- - expand_dims(sigma_t * phi_3, dims) * D2
- )
-
- if return_intermediate:
- return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
- else:
- return x_t
-
- def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
- """
- Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
-
- Args:
- x: A pytorch tensor. The initial value at time `s`.
- model_prev_list: A list of pytorch tensor. The previous computed model values.
- t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
- Returns:
- x_t: A pytorch tensor. The approximated solution at time `t`.
- """
- if solver_type not in ['dpm_solver', 'taylor']:
- raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
- ns = self.noise_schedule
- dims = x.dim()
- model_prev_1, model_prev_0 = model_prev_list
- t_prev_1, t_prev_0 = t_prev_list
- lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
- log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
- sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
- alpha_t = torch.exp(log_alpha_t)
-
- h_0 = lambda_prev_0 - lambda_prev_1
- h = lambda_t - lambda_prev_0
- r0 = h_0 / h
- D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
- if self.predict_x0:
- if solver_type == 'dpm_solver':
- x_t = (
- expand_dims(sigma_t / sigma_prev_0, dims) * x
- - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
- - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
- )
- elif solver_type == 'taylor':
- x_t = (
- expand_dims(sigma_t / sigma_prev_0, dims) * x
- - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
- + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
- )
- else:
- if solver_type == 'dpm_solver':
- x_t = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
- - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
- )
- elif solver_type == 'taylor':
- x_t = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
- - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
- )
- return x_t
-
- def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
- """
- Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
-
- Args:
- x: A pytorch tensor. The initial value at time `s`.
- model_prev_list: A list of pytorch tensor. The previous computed model values.
- t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
- Returns:
- x_t: A pytorch tensor. The approximated solution at time `t`.
- """
- ns = self.noise_schedule
- dims = x.dim()
- model_prev_2, model_prev_1, model_prev_0 = model_prev_list
- t_prev_2, t_prev_1, t_prev_0 = t_prev_list
- lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
- log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
- sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
- alpha_t = torch.exp(log_alpha_t)
-
- h_1 = lambda_prev_1 - lambda_prev_2
- h_0 = lambda_prev_0 - lambda_prev_1
- h = lambda_t - lambda_prev_0
- r0, r1 = h_0 / h, h_1 / h
- D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
- D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
- D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
- D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
- if self.predict_x0:
- x_t = (
- expand_dims(sigma_t / sigma_prev_0, dims) * x
- - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
- + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
- - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h**2 - 0.5), dims) * D2
- )
- else:
- x_t = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
- - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
- - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h**2 - 0.5), dims) * D2
- )
- return x_t
-
- def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None, r2=None):
- """
- Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
-
- Args:
- x: A pytorch tensor. The initial value at time `s`.
- s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
- order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
- return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
- r1: A `float`. The hyperparameter of the second-order or third-order solver.
- r2: A `float`. The hyperparameter of the third-order solver.
- Returns:
- x_t: A pytorch tensor. The approximated solution at time `t`.
- """
- if order == 1:
- return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
- elif order == 2:
- return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1)
- elif order == 3:
- return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2)
- else:
- raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
-
- def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
- """
- Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
-
- Args:
- x: A pytorch tensor. The initial value at time `s`.
- model_prev_list: A list of pytorch tensor. The previous computed model values.
- t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
- t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
- order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
- Returns:
- x_t: A pytorch tensor. The approximated solution at time `t`.
- """
- if order == 1:
- return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
- elif order == 2:
- return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
- elif order == 3:
- return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
- else:
- raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
-
- def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type='dpm_solver'):
- """
- The adaptive step size solver based on singlestep DPM-Solver.
-
- Args:
- x: A pytorch tensor. The initial value at time `t_T`.
- order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
- t_T: A `float`. The starting time of the sampling (default is T).
- t_0: A `float`. The ending time of the sampling (default is epsilon).
- h_init: A `float`. The initial step size (for logSNR).
- atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
- rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
- theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
- t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
- current time and `t_0` is less than `t_err`. The default setting is 1e-5.
- solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
- The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
- Returns:
- x_0: A pytorch tensor. The approximated solution at time `t_0`.
-
- [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
- """
- ns = self.noise_schedule
- s = t_T * torch.ones((x.shape[0],)).to(x)
- lambda_s = ns.marginal_lambda(s)
- lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
- h = h_init * torch.ones_like(s).to(x)
- x_prev = x
- nfe = 0
- if order == 2:
- r1 = 0.5
- lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
- higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs)
- elif order == 3:
- r1, r2 = 1. / 3., 2. / 3.
- lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type)
- higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs)
- else:
- raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
- while torch.abs((s - t_0)).mean() > t_err:
- t = ns.inverse_lambda(lambda_s + h)
- x_lower, lower_noise_kwargs = lower_update(x, s, t)
- x_higher = higher_update(x, s, t, **lower_noise_kwargs)
- delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
- norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
- E = norm_fn((x_higher - x_lower) / delta).max()
- if torch.all(E <= 1.):
- x = x_higher
- s = t
- x_prev = x_lower
- lambda_s = ns.marginal_lambda(s)
- h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
- nfe += order
- print('adaptive solver nfe', nfe)
- return x
-
- def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
- method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
- atol=0.0078, rtol=0.05,
- ):
- """
- Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
-
- =====================================================
-
- We support the following algorithms for both noise prediction model and data prediction model:
- - 'singlestep':
- Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
- We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
- The total number of function evaluations (NFE) == `steps`.
- Given a fixed NFE == `steps`, the sampling procedure is:
- - If `order` == 1:
- - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
- - If `order` == 2:
- - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
- - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
- - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
- - If `order` == 3:
- - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
- - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
- - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
- - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
- - 'multistep':
- Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
- We initialize the first `order` values by lower order multistep solvers.
- Given a fixed NFE == `steps`, the sampling procedure is:
- Denote K = steps.
- - If `order` == 1:
- - We use K steps of DPM-Solver-1 (i.e. DDIM).
- - If `order` == 2:
- - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
- - If `order` == 3:
- - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
- - 'singlestep_fixed':
- Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
- We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
- - 'adaptive':
- Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
- We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
- You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
- (NFE) and the sample quality.
- - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
- - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
-
- =====================================================
-
- Some advices for choosing the algorithm:
- - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
- Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
- e.g.
- >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
- >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
- skip_type='time_uniform', method='singlestep')
- - For **guided sampling with large guidance scale** by DPMs:
- Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
- e.g.
- >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
- >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
- skip_type='time_uniform', method='multistep')
-
- We support three types of `skip_type`:
- - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
- - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
- - 'time_quadratic': quadratic time for the time steps.
-
- =====================================================
- Args:
- x: A pytorch tensor. The initial value at time `t_start`
- e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
- steps: A `int`. The total number of function evaluations (NFE).
- t_start: A `float`. The starting time of the sampling.
- If `T` is None, we use self.noise_schedule.T (default is 1.0).
- t_end: A `float`. The ending time of the sampling.
- If `t_end` is None, we use 1. / self.noise_schedule.total_N.
- e.g. if total_N == 1000, we have `t_end` == 1e-3.
- For discrete-time DPMs:
- - We recommend `t_end` == 1. / self.noise_schedule.total_N.
- For continuous-time DPMs:
- - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
- order: A `int`. The order of DPM-Solver.
- skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
- method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
- denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
- Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
-
- This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
- score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
- for diffusion models sampling by diffusion SDEs for low-resolutional images
- (such as CIFAR-10). However, we observed that such trick does not matter for
- high-resolutional images. As it needs an additional NFE, we do not recommend
- it for high-resolutional images.
- lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
- Only valid for `method=multistep` and `steps < 15`. We empirically find that
- this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
- (especially for steps <= 10). So we recommend to set it to be `True`.
- solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
- atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
- rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
- Returns:
- x_end: A pytorch tensor. The approximated solution at time `t_end`.
-
- """
- t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
- t_T = self.noise_schedule.T if t_start is None else t_start
- device = x.device
- if method == 'adaptive':
- with torch.no_grad():
- x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type)
- elif method == 'multistep':
- assert steps >= order
- timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
- assert timesteps.shape[0] - 1 == steps
- with torch.no_grad():
- vec_t = timesteps[0].expand((x.shape[0]))
- model_prev_list = [self.model_fn(x, vec_t)]
- t_prev_list = [vec_t]
- # Init the first `order` values by lower order multistep DPM-Solver.
- for init_order in range(1, order):
- vec_t = timesteps[init_order].expand(x.shape[0])
- x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order, solver_type=solver_type)
- model_prev_list.append(self.model_fn(x, vec_t))
- t_prev_list.append(vec_t)
- # Compute the remaining values by `order`-th order multistep DPM-Solver.
- for step in range(order, steps + 1):
- vec_t = timesteps[step].expand(x.shape[0])
- if lower_order_final and steps < 15:
- step_order = min(order, steps + 1 - step)
- else:
- step_order = order
- x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order, solver_type=solver_type)
- for i in range(order - 1):
- t_prev_list[i] = t_prev_list[i + 1]
- model_prev_list[i] = model_prev_list[i + 1]
- t_prev_list[-1] = vec_t
- # We do not need to evaluate the final model value.
- if step < steps:
- model_prev_list[-1] = self.model_fn(x, vec_t)
- elif method in ['singlestep', 'singlestep_fixed']:
- if method == 'singlestep':
- timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order, skip_type=skip_type, t_T=t_T, t_0=t_0, device=device)
- elif method == 'singlestep_fixed':
- K = steps // order
- orders = [order,] * K
- timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
- for i, order in enumerate(orders):
- t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
- timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(), N=order, device=device)
- lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
- vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
- h = lambda_inner[-1] - lambda_inner[0]
- r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
- r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
- x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
- if denoise_to_zero:
- x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
- return x
-
-
-
-#############################################################
-# other utility functions
-#############################################################
-
-def interpolate_fn(x, xp, yp):
- """
- A piecewise linear function y = f(x), using xp and yp as keypoints.
- We implement f(x) in a differentiable way (i.e. applicable for autograd).
- The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
-
- Args:
- x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
- xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
- yp: PyTorch tensor with shape [C, K].
- Returns:
- The function values f(x), with shape [N, C].
- """
- N, K = x.shape[0], xp.shape[1]
- all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
- sorted_all_x, x_indices = torch.sort(all_x, dim=2)
- x_idx = torch.argmin(x_indices, dim=2)
- cand_start_idx = x_idx - 1
- start_idx = torch.where(
- torch.eq(x_idx, 0),
- torch.tensor(1, device=x.device),
- torch.where(
- torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
- ),
- )
- end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
- start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
- end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
- start_idx2 = torch.where(
- torch.eq(x_idx, 0),
- torch.tensor(0, device=x.device),
- torch.where(
- torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
- ),
- )
- y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
- start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
- end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
- cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
- return cand
-
-
-def expand_dims(v, dims):
- """
- Expand the tensor `v` to the dim `dims`.
-
- Args:
- `v`: a PyTorch tensor with shape [N].
- `dim`: a `int`.
- Returns:
- a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
- """
- return v[(...,) + (None,)*(dims - 1)]
\ No newline at end of file
diff --git a/stable_diffusion/ldm/models/diffusion/dpm_solver/sampler.py b/stable_diffusion/ldm/models/diffusion/dpm_solver/sampler.py
deleted file mode 100644
index 2c42d6f964d92658e769df95a81dec92250e5a99..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/models/diffusion/dpm_solver/sampler.py
+++ /dev/null
@@ -1,82 +0,0 @@
-"""SAMPLING ONLY."""
-
-import torch
-
-from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
-
-
-class DPMSolverSampler(object):
- def __init__(self, model, **kwargs):
- super().__init__()
- self.model = model
- to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
- self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
-
- def register_buffer(self, name, attr):
- if type(attr) == torch.Tensor:
- if attr.device != torch.device("cuda"):
- attr = attr.to(torch.device("cuda"))
- setattr(self, name, attr)
-
- @torch.no_grad()
- def sample(self,
- S,
- batch_size,
- shape,
- conditioning=None,
- callback=None,
- normals_sequence=None,
- img_callback=None,
- quantize_x0=False,
- eta=0.,
- mask=None,
- x0=None,
- temperature=1.,
- noise_dropout=0.,
- score_corrector=None,
- corrector_kwargs=None,
- verbose=True,
- x_T=None,
- log_every_t=100,
- unconditional_guidance_scale=1.,
- unconditional_conditioning=None,
- # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
- **kwargs
- ):
- if conditioning is not None:
- if isinstance(conditioning, dict):
- cbs = conditioning[list(conditioning.keys())[0]].shape[0]
- if cbs != batch_size:
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
- else:
- if conditioning.shape[0] != batch_size:
- print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
-
- # sampling
- C, H, W = shape
- size = (batch_size, C, H, W)
-
- # print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
-
- device = self.model.betas.device
- if x_T is None:
- img = torch.randn(size, device=device)
- else:
- img = x_T
-
- ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
-
- model_fn = model_wrapper(
- lambda x, t, c: self.model.apply_model(x, t, c),
- ns,
- model_type="noise",
- guidance_type="classifier-free",
- condition=conditioning,
- unconditional_condition=unconditional_conditioning,
- guidance_scale=unconditional_guidance_scale,
- )
-
- dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
- x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
-
- return x.to(device), None
diff --git a/stable_diffusion/ldm/models/diffusion/plms.py b/stable_diffusion/ldm/models/diffusion/plms.py
deleted file mode 100644
index 78eeb1003aa45d27bdbfc6b4a1d7ccbff57cd2e3..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/models/diffusion/plms.py
+++ /dev/null
@@ -1,236 +0,0 @@
-"""SAMPLING ONLY."""
-
-import torch
-import numpy as np
-from tqdm import tqdm
-from functools import partial
-
-from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
-
-
-class PLMSSampler(object):
- def __init__(self, model, schedule="linear", **kwargs):
- super().__init__()
- self.model = model
- self.ddpm_num_timesteps = model.num_timesteps
- self.schedule = schedule
-
- def register_buffer(self, name, attr):
- if type(attr) == torch.Tensor:
- if attr.device != torch.device("cuda"):
- attr = attr.to(torch.device("cuda"))
- setattr(self, name, attr)
-
- def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
- if ddim_eta != 0:
- raise ValueError('ddim_eta must be 0 for PLMS')
- self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
- num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
- alphas_cumprod = self.model.alphas_cumprod
- assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
- to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
-
- self.register_buffer('betas', to_torch(self.model.betas))
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
- self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
-
- # calculations for diffusion q(x_t | x_{t-1}) and others
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
-
- # ddim sampling parameters
- ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
- ddim_timesteps=self.ddim_timesteps,
- eta=ddim_eta,verbose=verbose)
- self.register_buffer('ddim_sigmas', ddim_sigmas)
- self.register_buffer('ddim_alphas', ddim_alphas)
- self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
- self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
- sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
- (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
- 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
- self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
-
- @torch.no_grad()
- def sample(self,
- S,
- batch_size,
- shape,
- conditioning=None,
- callback=None,
- normals_sequence=None,
- img_callback=None,
- quantize_x0=False,
- eta=0.,
- mask=None,
- x0=None,
- temperature=1.,
- noise_dropout=0.,
- score_corrector=None,
- corrector_kwargs=None,
- verbose=True,
- x_T=None,
- log_every_t=100,
- unconditional_guidance_scale=1.,
- unconditional_conditioning=None,
- # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
- **kwargs
- ):
- if conditioning is not None:
- if isinstance(conditioning, dict):
- cbs = conditioning[list(conditioning.keys())[0]].shape[0]
- if cbs != batch_size:
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
- else:
- if conditioning.shape[0] != batch_size:
- print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
-
- self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
- # sampling
- C, H, W = shape
- size = (batch_size, C, H, W)
- print(f'Data shape for PLMS sampling is {size}')
-
- samples, intermediates = self.plms_sampling(conditioning, size,
- callback=callback,
- img_callback=img_callback,
- quantize_denoised=quantize_x0,
- mask=mask, x0=x0,
- ddim_use_original_steps=False,
- noise_dropout=noise_dropout,
- temperature=temperature,
- score_corrector=score_corrector,
- corrector_kwargs=corrector_kwargs,
- x_T=x_T,
- log_every_t=log_every_t,
- unconditional_guidance_scale=unconditional_guidance_scale,
- unconditional_conditioning=unconditional_conditioning,
- )
- return samples, intermediates
-
- @torch.no_grad()
- def plms_sampling(self, cond, shape,
- x_T=None, ddim_use_original_steps=False,
- callback=None, timesteps=None, quantize_denoised=False,
- mask=None, x0=None, img_callback=None, log_every_t=100,
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
- unconditional_guidance_scale=1., unconditional_conditioning=None,):
- device = self.model.betas.device
- b = shape[0]
- if x_T is None:
- img = torch.randn(shape, device=device)
- else:
- img = x_T
-
- if timesteps is None:
- timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
- elif timesteps is not None and not ddim_use_original_steps:
- subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
- timesteps = self.ddim_timesteps[:subset_end]
-
- intermediates = {'x_inter': [img], 'pred_x0': [img]}
- time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
- total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
- print(f"Running PLMS Sampling with {total_steps} timesteps")
-
- iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
- old_eps = []
-
- for i, step in enumerate(iterator):
- index = total_steps - i - 1
- ts = torch.full((b,), step, device=device, dtype=torch.long)
- ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
-
- if mask is not None:
- assert x0 is not None
- img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
- img = img_orig * mask + (1. - mask) * img
-
- outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
- quantize_denoised=quantize_denoised, temperature=temperature,
- noise_dropout=noise_dropout, score_corrector=score_corrector,
- corrector_kwargs=corrector_kwargs,
- unconditional_guidance_scale=unconditional_guidance_scale,
- unconditional_conditioning=unconditional_conditioning,
- old_eps=old_eps, t_next=ts_next)
- img, pred_x0, e_t = outs
- old_eps.append(e_t)
- if len(old_eps) >= 4:
- old_eps.pop(0)
- if callback: callback(i)
- if img_callback: img_callback(pred_x0, i)
-
- if index % log_every_t == 0 or index == total_steps - 1:
- intermediates['x_inter'].append(img)
- intermediates['pred_x0'].append(pred_x0)
-
- return img, intermediates
-
- @torch.no_grad()
- def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
- unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
- b, *_, device = *x.shape, x.device
-
- def get_model_output(x, t):
- if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
- e_t = self.model.apply_model(x, t, c)
- else:
- x_in = torch.cat([x] * 2)
- t_in = torch.cat([t] * 2)
- c_in = torch.cat([unconditional_conditioning, c])
- e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
- e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
-
- if score_corrector is not None:
- assert self.model.parameterization == "eps"
- e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
-
- return e_t
-
- alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
- alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
- sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
- sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
-
- def get_x_prev_and_pred_x0(e_t, index):
- # select parameters corresponding to the currently considered timestep
- a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
- a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
- sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
- sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
-
- # current prediction for x_0
- pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
- if quantize_denoised:
- pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
- # direction pointing to x_t
- dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
- noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
- if noise_dropout > 0.:
- noise = torch.nn.functional.dropout(noise, p=noise_dropout)
- x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
- return x_prev, pred_x0
-
- e_t = get_model_output(x, t)
- if len(old_eps) == 0:
- # Pseudo Improved Euler (2nd order)
- x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
- e_t_next = get_model_output(x_prev, t_next)
- e_t_prime = (e_t + e_t_next) / 2
- elif len(old_eps) == 1:
- # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
- e_t_prime = (3 * e_t - old_eps[-1]) / 2
- elif len(old_eps) == 2:
- # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
- e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
- elif len(old_eps) >= 3:
- # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
- e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
-
- x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
-
- return x_prev, pred_x0, e_t
diff --git a/stable_diffusion/ldm/modules/attention.py b/stable_diffusion/ldm/modules/attention.py
deleted file mode 100644
index 96f8689eddbd3ecf251051a52386e6b82422eeb2..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/modules/attention.py
+++ /dev/null
@@ -1,275 +0,0 @@
-# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion).
-# See more details in LICENSE.
-
-from inspect import isfunction
-import math
-import torch
-import torch.nn.functional as F
-from torch import nn, einsum
-from einops import rearrange, repeat
-
-from ldm.modules.diffusionmodules.util import checkpoint
-
-
-def exists(val):
- return val is not None
-
-
-def uniq(arr):
- return{el: True for el in arr}.keys()
-
-
-def default(val, d):
- if exists(val):
- return val
- return d() if isfunction(d) else d
-
-
-def max_neg_value(t):
- return -torch.finfo(t.dtype).max
-
-
-def init_(tensor):
- dim = tensor.shape[-1]
- std = 1 / math.sqrt(dim)
- tensor.uniform_(-std, std)
- return tensor
-
-
-# feedforward
-class GEGLU(nn.Module):
- def __init__(self, dim_in, dim_out):
- super().__init__()
- self.proj = nn.Linear(dim_in, dim_out * 2)
-
- def forward(self, x):
- x, gate = self.proj(x).chunk(2, dim=-1)
- return x * F.gelu(gate)
-
-
-class FeedForward(nn.Module):
- def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
- super().__init__()
- inner_dim = int(dim * mult)
- dim_out = default(dim_out, dim)
- project_in = nn.Sequential(
- nn.Linear(dim, inner_dim),
- nn.GELU()
- ) if not glu else GEGLU(dim, inner_dim)
-
- self.net = nn.Sequential(
- project_in,
- nn.Dropout(dropout),
- nn.Linear(inner_dim, dim_out)
- )
-
- def forward(self, x):
- return self.net(x)
-
-
-def zero_module(module):
- """
- Zero out the parameters of a module and return it.
- """
- for p in module.parameters():
- p.detach().zero_()
- return module
-
-
-def Normalize(in_channels):
- return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
-
-
-class LinearAttention(nn.Module):
- def __init__(self, dim, heads=4, dim_head=32):
- super().__init__()
- self.heads = heads
- hidden_dim = dim_head * heads
- self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
- self.to_out = nn.Conv2d(hidden_dim, dim, 1)
-
- def forward(self, x):
- b, c, h, w = x.shape
- qkv = self.to_qkv(x)
- q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
- k = k.softmax(dim=-1)
- context = torch.einsum('bhdn,bhen->bhde', k, v)
- out = torch.einsum('bhde,bhdn->bhen', context, q)
- out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
- return self.to_out(out)
-
-
-class SpatialSelfAttention(nn.Module):
- def __init__(self, in_channels):
- super().__init__()
- self.in_channels = in_channels
-
- self.norm = Normalize(in_channels)
- self.q = torch.nn.Conv2d(in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0)
- self.k = torch.nn.Conv2d(in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0)
- self.v = torch.nn.Conv2d(in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0)
- self.proj_out = torch.nn.Conv2d(in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0)
-
- def forward(self, x):
- h_ = x
- h_ = self.norm(h_)
- q = self.q(h_)
- k = self.k(h_)
- v = self.v(h_)
-
- # compute attention
- b,c,h,w = q.shape
- q = rearrange(q, 'b c h w -> b (h w) c')
- k = rearrange(k, 'b c h w -> b c (h w)')
- w_ = torch.einsum('bij,bjk->bik', q, k)
-
- w_ = w_ * (int(c)**(-0.5))
- w_ = torch.nn.functional.softmax(w_, dim=2)
-
- # attend to values
- v = rearrange(v, 'b c h w -> b c (h w)')
- w_ = rearrange(w_, 'b i j -> b j i')
- h_ = torch.einsum('bij,bjk->bik', v, w_)
- h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
- h_ = self.proj_out(h_)
-
- return x+h_
-
-
-class CrossAttention(nn.Module):
- def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
- super().__init__()
- inner_dim = dim_head * heads
- context_dim = default(context_dim, query_dim)
-
- self.scale = dim_head ** -0.5
- self.heads = heads
-
- self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
- self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
- self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
-
- self.to_out = nn.Sequential(
- nn.Linear(inner_dim, query_dim),
- nn.Dropout(dropout)
- )
-
- self.prompt_to_prompt = False
-
- def forward(self, x, context=None, mask=None):
- is_self_attn = context is None
-
- h = self.heads
-
- q = self.to_q(x)
- context = default(context, x)
- k = self.to_k(context)
- v = self.to_v(context)
-
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
-
- sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
-
- if self.prompt_to_prompt and is_self_attn:
- # Unlike the original Prompt-to-Prompt which uses cross-attention layers, we copy attention maps for self-attention layers.
- # There must be 4 elements in the batch: {conditional, unconditional} x {prompt 1, prompt 2}
- assert x.size(0) == 4
- sims = sim.chunk(4)
- sim = torch.cat((sims[0], sims[0], sims[2], sims[2]))
-
- if exists(mask):
- mask = rearrange(mask, 'b ... -> b (...)')
- max_neg_value = -torch.finfo(sim.dtype).max
- mask = repeat(mask, 'b j -> (b h) () j', h=h)
- sim.masked_fill_(~mask, max_neg_value)
-
- # attention, what we cannot get enough of
- attn = sim.softmax(dim=-1)
-
- out = einsum('b i j, b j d -> b i d', attn, v)
- out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
- return self.to_out(out)
-
-
-class BasicTransformerBlock(nn.Module):
- def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
- super().__init__()
- self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
- self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
- self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
- heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
- self.norm1 = nn.LayerNorm(dim)
- self.norm2 = nn.LayerNorm(dim)
- self.norm3 = nn.LayerNorm(dim)
- self.checkpoint = checkpoint
-
- def forward(self, x, context=None):
- return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
-
- def _forward(self, x, context=None):
- x = self.attn1(self.norm1(x)) + x
- x = self.attn2(self.norm2(x), context=context) + x
- x = self.ff(self.norm3(x)) + x
- return x
-
-
-class SpatialTransformer(nn.Module):
- """
- Transformer block for image-like data.
- First, project the input (aka embedding)
- and reshape to b, t, d.
- Then apply standard transformer action.
- Finally, reshape to image
- """
- def __init__(self, in_channels, n_heads, d_head,
- depth=1, dropout=0., context_dim=None):
- super().__init__()
- self.in_channels = in_channels
- inner_dim = n_heads * d_head
- self.norm = Normalize(in_channels)
-
- self.proj_in = nn.Conv2d(in_channels,
- inner_dim,
- kernel_size=1,
- stride=1,
- padding=0)
-
- self.transformer_blocks = nn.ModuleList(
- [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
- for d in range(depth)]
- )
-
- self.proj_out = zero_module(nn.Conv2d(inner_dim,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0))
-
- def forward(self, x, context=None):
- # note: if no context is given, cross-attention defaults to self-attention
- b, c, h, w = x.shape
- x_in = x
- x = self.norm(x)
- x = self.proj_in(x)
- x = rearrange(x, 'b c h w -> b (h w) c')
- for block in self.transformer_blocks:
- x = block(x, context=context)
- x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
- x = self.proj_out(x)
- return x + x_in
diff --git a/stable_diffusion/ldm/modules/diffusionmodules/__init__.py b/stable_diffusion/ldm/modules/diffusionmodules/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/stable_diffusion/ldm/modules/diffusionmodules/model.py b/stable_diffusion/ldm/modules/diffusionmodules/model.py
deleted file mode 100644
index 533e589a2024f1d7c52093d8c472c3b1b6617e26..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/modules/diffusionmodules/model.py
+++ /dev/null
@@ -1,835 +0,0 @@
-# pytorch_diffusion + derived encoder decoder
-import math
-import torch
-import torch.nn as nn
-import numpy as np
-from einops import rearrange
-
-from ldm.util import instantiate_from_config
-from ldm.modules.attention import LinearAttention
-
-
-def get_timestep_embedding(timesteps, embedding_dim):
- """
- This matches the implementation in Denoising Diffusion Probabilistic Models:
- From Fairseq.
- Build sinusoidal embeddings.
- This matches the implementation in tensor2tensor, but differs slightly
- from the description in Section 3.5 of "Attention Is All You Need".
- """
- assert len(timesteps.shape) == 1
-
- half_dim = embedding_dim // 2
- emb = math.log(10000) / (half_dim - 1)
- emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
- emb = emb.to(device=timesteps.device)
- emb = timesteps.float()[:, None] * emb[None, :]
- emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
- if embedding_dim % 2 == 1: # zero pad
- emb = torch.nn.functional.pad(emb, (0,1,0,0))
- return emb
-
-
-def nonlinearity(x):
- # swish
- return x*torch.sigmoid(x)
-
-
-def Normalize(in_channels, num_groups=32):
- return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
-
-
-class Upsample(nn.Module):
- def __init__(self, in_channels, with_conv):
- super().__init__()
- self.with_conv = with_conv
- if self.with_conv:
- self.conv = torch.nn.Conv2d(in_channels,
- in_channels,
- kernel_size=3,
- stride=1,
- padding=1)
-
- def forward(self, x):
- x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
- if self.with_conv:
- x = self.conv(x)
- return x
-
-
-class Downsample(nn.Module):
- def __init__(self, in_channels, with_conv):
- super().__init__()
- self.with_conv = with_conv
- if self.with_conv:
- # no asymmetric padding in torch conv, must do it ourselves
- self.conv = torch.nn.Conv2d(in_channels,
- in_channels,
- kernel_size=3,
- stride=2,
- padding=0)
-
- def forward(self, x):
- if self.with_conv:
- pad = (0,1,0,1)
- x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
- x = self.conv(x)
- else:
- x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
- return x
-
-
-class ResnetBlock(nn.Module):
- def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
- dropout, temb_channels=512):
- super().__init__()
- self.in_channels = in_channels
- out_channels = in_channels if out_channels is None else out_channels
- self.out_channels = out_channels
- self.use_conv_shortcut = conv_shortcut
-
- self.norm1 = Normalize(in_channels)
- self.conv1 = torch.nn.Conv2d(in_channels,
- out_channels,
- kernel_size=3,
- stride=1,
- padding=1)
- if temb_channels > 0:
- self.temb_proj = torch.nn.Linear(temb_channels,
- out_channels)
- self.norm2 = Normalize(out_channels)
- self.dropout = torch.nn.Dropout(dropout)
- self.conv2 = torch.nn.Conv2d(out_channels,
- out_channels,
- kernel_size=3,
- stride=1,
- padding=1)
- if self.in_channels != self.out_channels:
- if self.use_conv_shortcut:
- self.conv_shortcut = torch.nn.Conv2d(in_channels,
- out_channels,
- kernel_size=3,
- stride=1,
- padding=1)
- else:
- self.nin_shortcut = torch.nn.Conv2d(in_channels,
- out_channels,
- kernel_size=1,
- stride=1,
- padding=0)
-
- def forward(self, x, temb):
- h = x
- h = self.norm1(h)
- h = nonlinearity(h)
- h = self.conv1(h)
-
- if temb is not None:
- h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
-
- h = self.norm2(h)
- h = nonlinearity(h)
- h = self.dropout(h)
- h = self.conv2(h)
-
- if self.in_channels != self.out_channels:
- if self.use_conv_shortcut:
- x = self.conv_shortcut(x)
- else:
- x = self.nin_shortcut(x)
-
- return x+h
-
-
-class LinAttnBlock(LinearAttention):
- """to match AttnBlock usage"""
- def __init__(self, in_channels):
- super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
-
-
-class AttnBlock(nn.Module):
- def __init__(self, in_channels):
- super().__init__()
- self.in_channels = in_channels
-
- self.norm = Normalize(in_channels)
- self.q = torch.nn.Conv2d(in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0)
- self.k = torch.nn.Conv2d(in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0)
- self.v = torch.nn.Conv2d(in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0)
- self.proj_out = torch.nn.Conv2d(in_channels,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0)
-
-
- def forward(self, x):
- h_ = x
- h_ = self.norm(h_)
- q = self.q(h_)
- k = self.k(h_)
- v = self.v(h_)
-
- # compute attention
- b,c,h,w = q.shape
- q = q.reshape(b,c,h*w)
- q = q.permute(0,2,1) # b,hw,c
- k = k.reshape(b,c,h*w) # b,c,hw
- w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
- w_ = w_ * (int(c)**(-0.5))
- w_ = torch.nn.functional.softmax(w_, dim=2)
-
- # attend to values
- v = v.reshape(b,c,h*w)
- w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
- h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
- h_ = h_.reshape(b,c,h,w)
-
- h_ = self.proj_out(h_)
-
- return x+h_
-
-
-def make_attn(in_channels, attn_type="vanilla"):
- assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
- print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
- if attn_type == "vanilla":
- return AttnBlock(in_channels)
- elif attn_type == "none":
- return nn.Identity(in_channels)
- else:
- return LinAttnBlock(in_channels)
-
-
-class Model(nn.Module):
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
- resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
- super().__init__()
- if use_linear_attn: attn_type = "linear"
- self.ch = ch
- self.temb_ch = self.ch*4
- self.num_resolutions = len(ch_mult)
- self.num_res_blocks = num_res_blocks
- self.resolution = resolution
- self.in_channels = in_channels
-
- self.use_timestep = use_timestep
- if self.use_timestep:
- # timestep embedding
- self.temb = nn.Module()
- self.temb.dense = nn.ModuleList([
- torch.nn.Linear(self.ch,
- self.temb_ch),
- torch.nn.Linear(self.temb_ch,
- self.temb_ch),
- ])
-
- # downsampling
- self.conv_in = torch.nn.Conv2d(in_channels,
- self.ch,
- kernel_size=3,
- stride=1,
- padding=1)
-
- curr_res = resolution
- in_ch_mult = (1,)+tuple(ch_mult)
- self.down = nn.ModuleList()
- for i_level in range(self.num_resolutions):
- block = nn.ModuleList()
- attn = nn.ModuleList()
- block_in = ch*in_ch_mult[i_level]
- block_out = ch*ch_mult[i_level]
- for i_block in range(self.num_res_blocks):
- block.append(ResnetBlock(in_channels=block_in,
- out_channels=block_out,
- temb_channels=self.temb_ch,
- dropout=dropout))
- block_in = block_out
- if curr_res in attn_resolutions:
- attn.append(make_attn(block_in, attn_type=attn_type))
- down = nn.Module()
- down.block = block
- down.attn = attn
- if i_level != self.num_resolutions-1:
- down.downsample = Downsample(block_in, resamp_with_conv)
- curr_res = curr_res // 2
- self.down.append(down)
-
- # middle
- self.mid = nn.Module()
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
- out_channels=block_in,
- temb_channels=self.temb_ch,
- dropout=dropout)
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
- out_channels=block_in,
- temb_channels=self.temb_ch,
- dropout=dropout)
-
- # upsampling
- self.up = nn.ModuleList()
- for i_level in reversed(range(self.num_resolutions)):
- block = nn.ModuleList()
- attn = nn.ModuleList()
- block_out = ch*ch_mult[i_level]
- skip_in = ch*ch_mult[i_level]
- for i_block in range(self.num_res_blocks+1):
- if i_block == self.num_res_blocks:
- skip_in = ch*in_ch_mult[i_level]
- block.append(ResnetBlock(in_channels=block_in+skip_in,
- out_channels=block_out,
- temb_channels=self.temb_ch,
- dropout=dropout))
- block_in = block_out
- if curr_res in attn_resolutions:
- attn.append(make_attn(block_in, attn_type=attn_type))
- up = nn.Module()
- up.block = block
- up.attn = attn
- if i_level != 0:
- up.upsample = Upsample(block_in, resamp_with_conv)
- curr_res = curr_res * 2
- self.up.insert(0, up) # prepend to get consistent order
-
- # end
- self.norm_out = Normalize(block_in)
- self.conv_out = torch.nn.Conv2d(block_in,
- out_ch,
- kernel_size=3,
- stride=1,
- padding=1)
-
- def forward(self, x, t=None, context=None):
- #assert x.shape[2] == x.shape[3] == self.resolution
- if context is not None:
- # assume aligned context, cat along channel axis
- x = torch.cat((x, context), dim=1)
- if self.use_timestep:
- # timestep embedding
- assert t is not None
- temb = get_timestep_embedding(t, self.ch)
- temb = self.temb.dense[0](temb)
- temb = nonlinearity(temb)
- temb = self.temb.dense[1](temb)
- else:
- temb = None
-
- # downsampling
- hs = [self.conv_in(x)]
- for i_level in range(self.num_resolutions):
- for i_block in range(self.num_res_blocks):
- h = self.down[i_level].block[i_block](hs[-1], temb)
- if len(self.down[i_level].attn) > 0:
- h = self.down[i_level].attn[i_block](h)
- hs.append(h)
- if i_level != self.num_resolutions-1:
- hs.append(self.down[i_level].downsample(hs[-1]))
-
- # middle
- h = hs[-1]
- h = self.mid.block_1(h, temb)
- h = self.mid.attn_1(h)
- h = self.mid.block_2(h, temb)
-
- # upsampling
- for i_level in reversed(range(self.num_resolutions)):
- for i_block in range(self.num_res_blocks+1):
- h = self.up[i_level].block[i_block](
- torch.cat([h, hs.pop()], dim=1), temb)
- if len(self.up[i_level].attn) > 0:
- h = self.up[i_level].attn[i_block](h)
- if i_level != 0:
- h = self.up[i_level].upsample(h)
-
- # end
- h = self.norm_out(h)
- h = nonlinearity(h)
- h = self.conv_out(h)
- return h
-
- def get_last_layer(self):
- return self.conv_out.weight
-
-
-class Encoder(nn.Module):
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
- resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
- **ignore_kwargs):
- super().__init__()
- if use_linear_attn: attn_type = "linear"
- self.ch = ch
- self.temb_ch = 0
- self.num_resolutions = len(ch_mult)
- self.num_res_blocks = num_res_blocks
- self.resolution = resolution
- self.in_channels = in_channels
-
- # downsampling
- self.conv_in = torch.nn.Conv2d(in_channels,
- self.ch,
- kernel_size=3,
- stride=1,
- padding=1)
-
- curr_res = resolution
- in_ch_mult = (1,)+tuple(ch_mult)
- self.in_ch_mult = in_ch_mult
- self.down = nn.ModuleList()
- for i_level in range(self.num_resolutions):
- block = nn.ModuleList()
- attn = nn.ModuleList()
- block_in = ch*in_ch_mult[i_level]
- block_out = ch*ch_mult[i_level]
- for i_block in range(self.num_res_blocks):
- block.append(ResnetBlock(in_channels=block_in,
- out_channels=block_out,
- temb_channels=self.temb_ch,
- dropout=dropout))
- block_in = block_out
- if curr_res in attn_resolutions:
- attn.append(make_attn(block_in, attn_type=attn_type))
- down = nn.Module()
- down.block = block
- down.attn = attn
- if i_level != self.num_resolutions-1:
- down.downsample = Downsample(block_in, resamp_with_conv)
- curr_res = curr_res // 2
- self.down.append(down)
-
- # middle
- self.mid = nn.Module()
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
- out_channels=block_in,
- temb_channels=self.temb_ch,
- dropout=dropout)
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
- out_channels=block_in,
- temb_channels=self.temb_ch,
- dropout=dropout)
-
- # end
- self.norm_out = Normalize(block_in)
- self.conv_out = torch.nn.Conv2d(block_in,
- 2*z_channels if double_z else z_channels,
- kernel_size=3,
- stride=1,
- padding=1)
-
- def forward(self, x):
- # timestep embedding
- temb = None
-
- # downsampling
- hs = [self.conv_in(x)]
- for i_level in range(self.num_resolutions):
- for i_block in range(self.num_res_blocks):
- h = self.down[i_level].block[i_block](hs[-1], temb)
- if len(self.down[i_level].attn) > 0:
- h = self.down[i_level].attn[i_block](h)
- hs.append(h)
- if i_level != self.num_resolutions-1:
- hs.append(self.down[i_level].downsample(hs[-1]))
-
- # middle
- h = hs[-1]
- h = self.mid.block_1(h, temb)
- h = self.mid.attn_1(h)
- h = self.mid.block_2(h, temb)
-
- # end
- h = self.norm_out(h)
- h = nonlinearity(h)
- h = self.conv_out(h)
- return h
-
-
-class Decoder(nn.Module):
- def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
- attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
- resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
- attn_type="vanilla", **ignorekwargs):
- super().__init__()
- if use_linear_attn: attn_type = "linear"
- self.ch = ch
- self.temb_ch = 0
- self.num_resolutions = len(ch_mult)
- self.num_res_blocks = num_res_blocks
- self.resolution = resolution
- self.in_channels = in_channels
- self.give_pre_end = give_pre_end
- self.tanh_out = tanh_out
-
- # compute in_ch_mult, block_in and curr_res at lowest res
- in_ch_mult = (1,)+tuple(ch_mult)
- block_in = ch*ch_mult[self.num_resolutions-1]
- curr_res = resolution // 2**(self.num_resolutions-1)
- self.z_shape = (1,z_channels,curr_res,curr_res)
- print("Working with z of shape {} = {} dimensions.".format(
- self.z_shape, np.prod(self.z_shape)))
-
- # z to block_in
- self.conv_in = torch.nn.Conv2d(z_channels,
- block_in,
- kernel_size=3,
- stride=1,
- padding=1)
-
- # middle
- self.mid = nn.Module()
- self.mid.block_1 = ResnetBlock(in_channels=block_in,
- out_channels=block_in,
- temb_channels=self.temb_ch,
- dropout=dropout)
- self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
- self.mid.block_2 = ResnetBlock(in_channels=block_in,
- out_channels=block_in,
- temb_channels=self.temb_ch,
- dropout=dropout)
-
- # upsampling
- self.up = nn.ModuleList()
- for i_level in reversed(range(self.num_resolutions)):
- block = nn.ModuleList()
- attn = nn.ModuleList()
- block_out = ch*ch_mult[i_level]
- for i_block in range(self.num_res_blocks+1):
- block.append(ResnetBlock(in_channels=block_in,
- out_channels=block_out,
- temb_channels=self.temb_ch,
- dropout=dropout))
- block_in = block_out
- if curr_res in attn_resolutions:
- attn.append(make_attn(block_in, attn_type=attn_type))
- up = nn.Module()
- up.block = block
- up.attn = attn
- if i_level != 0:
- up.upsample = Upsample(block_in, resamp_with_conv)
- curr_res = curr_res * 2
- self.up.insert(0, up) # prepend to get consistent order
-
- # end
- self.norm_out = Normalize(block_in)
- self.conv_out = torch.nn.Conv2d(block_in,
- out_ch,
- kernel_size=3,
- stride=1,
- padding=1)
-
- def forward(self, z):
- #assert z.shape[1:] == self.z_shape[1:]
- self.last_z_shape = z.shape
-
- # timestep embedding
- temb = None
-
- # z to block_in
- h = self.conv_in(z)
-
- # middle
- h = self.mid.block_1(h, temb)
- h = self.mid.attn_1(h)
- h = self.mid.block_2(h, temb)
-
- # upsampling
- for i_level in reversed(range(self.num_resolutions)):
- for i_block in range(self.num_res_blocks+1):
- h = self.up[i_level].block[i_block](h, temb)
- if len(self.up[i_level].attn) > 0:
- h = self.up[i_level].attn[i_block](h)
- if i_level != 0:
- h = self.up[i_level].upsample(h)
-
- # end
- if self.give_pre_end:
- return h
-
- h = self.norm_out(h)
- h = nonlinearity(h)
- h = self.conv_out(h)
- if self.tanh_out:
- h = torch.tanh(h)
- return h
-
-
-class SimpleDecoder(nn.Module):
- def __init__(self, in_channels, out_channels, *args, **kwargs):
- super().__init__()
- self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
- ResnetBlock(in_channels=in_channels,
- out_channels=2 * in_channels,
- temb_channels=0, dropout=0.0),
- ResnetBlock(in_channels=2 * in_channels,
- out_channels=4 * in_channels,
- temb_channels=0, dropout=0.0),
- ResnetBlock(in_channels=4 * in_channels,
- out_channels=2 * in_channels,
- temb_channels=0, dropout=0.0),
- nn.Conv2d(2*in_channels, in_channels, 1),
- Upsample(in_channels, with_conv=True)])
- # end
- self.norm_out = Normalize(in_channels)
- self.conv_out = torch.nn.Conv2d(in_channels,
- out_channels,
- kernel_size=3,
- stride=1,
- padding=1)
-
- def forward(self, x):
- for i, layer in enumerate(self.model):
- if i in [1,2,3]:
- x = layer(x, None)
- else:
- x = layer(x)
-
- h = self.norm_out(x)
- h = nonlinearity(h)
- x = self.conv_out(h)
- return x
-
-
-class UpsampleDecoder(nn.Module):
- def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
- ch_mult=(2,2), dropout=0.0):
- super().__init__()
- # upsampling
- self.temb_ch = 0
- self.num_resolutions = len(ch_mult)
- self.num_res_blocks = num_res_blocks
- block_in = in_channels
- curr_res = resolution // 2 ** (self.num_resolutions - 1)
- self.res_blocks = nn.ModuleList()
- self.upsample_blocks = nn.ModuleList()
- for i_level in range(self.num_resolutions):
- res_block = []
- block_out = ch * ch_mult[i_level]
- for i_block in range(self.num_res_blocks + 1):
- res_block.append(ResnetBlock(in_channels=block_in,
- out_channels=block_out,
- temb_channels=self.temb_ch,
- dropout=dropout))
- block_in = block_out
- self.res_blocks.append(nn.ModuleList(res_block))
- if i_level != self.num_resolutions - 1:
- self.upsample_blocks.append(Upsample(block_in, True))
- curr_res = curr_res * 2
-
- # end
- self.norm_out = Normalize(block_in)
- self.conv_out = torch.nn.Conv2d(block_in,
- out_channels,
- kernel_size=3,
- stride=1,
- padding=1)
-
- def forward(self, x):
- # upsampling
- h = x
- for k, i_level in enumerate(range(self.num_resolutions)):
- for i_block in range(self.num_res_blocks + 1):
- h = self.res_blocks[i_level][i_block](h, None)
- if i_level != self.num_resolutions - 1:
- h = self.upsample_blocks[k](h)
- h = self.norm_out(h)
- h = nonlinearity(h)
- h = self.conv_out(h)
- return h
-
-
-class LatentRescaler(nn.Module):
- def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
- super().__init__()
- # residual block, interpolate, residual block
- self.factor = factor
- self.conv_in = nn.Conv2d(in_channels,
- mid_channels,
- kernel_size=3,
- stride=1,
- padding=1)
- self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
- out_channels=mid_channels,
- temb_channels=0,
- dropout=0.0) for _ in range(depth)])
- self.attn = AttnBlock(mid_channels)
- self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
- out_channels=mid_channels,
- temb_channels=0,
- dropout=0.0) for _ in range(depth)])
-
- self.conv_out = nn.Conv2d(mid_channels,
- out_channels,
- kernel_size=1,
- )
-
- def forward(self, x):
- x = self.conv_in(x)
- for block in self.res_block1:
- x = block(x, None)
- x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
- x = self.attn(x)
- for block in self.res_block2:
- x = block(x, None)
- x = self.conv_out(x)
- return x
-
-
-class MergedRescaleEncoder(nn.Module):
- def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
- attn_resolutions, dropout=0.0, resamp_with_conv=True,
- ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
- super().__init__()
- intermediate_chn = ch * ch_mult[-1]
- self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
- z_channels=intermediate_chn, double_z=False, resolution=resolution,
- attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
- out_ch=None)
- self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
- mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
-
- def forward(self, x):
- x = self.encoder(x)
- x = self.rescaler(x)
- return x
-
-
-class MergedRescaleDecoder(nn.Module):
- def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
- dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
- super().__init__()
- tmp_chn = z_channels*ch_mult[-1]
- self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
- resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
- ch_mult=ch_mult, resolution=resolution, ch=ch)
- self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
- out_channels=tmp_chn, depth=rescale_module_depth)
-
- def forward(self, x):
- x = self.rescaler(x)
- x = self.decoder(x)
- return x
-
-
-class Upsampler(nn.Module):
- def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
- super().__init__()
- assert out_size >= in_size
- num_blocks = int(np.log2(out_size//in_size))+1
- factor_up = 1.+ (out_size % in_size)
- print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
- self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
- out_channels=in_channels)
- self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
- attn_resolutions=[], in_channels=None, ch=in_channels,
- ch_mult=[ch_mult for _ in range(num_blocks)])
-
- def forward(self, x):
- x = self.rescaler(x)
- x = self.decoder(x)
- return x
-
-
-class Resize(nn.Module):
- def __init__(self, in_channels=None, learned=False, mode="bilinear"):
- super().__init__()
- self.with_conv = learned
- self.mode = mode
- if self.with_conv:
- print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
- raise NotImplementedError()
- assert in_channels is not None
- # no asymmetric padding in torch conv, must do it ourselves
- self.conv = torch.nn.Conv2d(in_channels,
- in_channels,
- kernel_size=4,
- stride=2,
- padding=1)
-
- def forward(self, x, scale_factor=1.0):
- if scale_factor==1.0:
- return x
- else:
- x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
- return x
-
-class FirstStagePostProcessor(nn.Module):
-
- def __init__(self, ch_mult:list, in_channels,
- pretrained_model:nn.Module=None,
- reshape=False,
- n_channels=None,
- dropout=0.,
- pretrained_config=None):
- super().__init__()
- if pretrained_config is None:
- assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
- self.pretrained_model = pretrained_model
- else:
- assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
- self.instantiate_pretrained(pretrained_config)
-
- self.do_reshape = reshape
-
- if n_channels is None:
- n_channels = self.pretrained_model.encoder.ch
-
- self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
- self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
- stride=1,padding=1)
-
- blocks = []
- downs = []
- ch_in = n_channels
- for m in ch_mult:
- blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
- ch_in = m * n_channels
- downs.append(Downsample(ch_in, with_conv=False))
-
- self.model = nn.ModuleList(blocks)
- self.downsampler = nn.ModuleList(downs)
-
-
- def instantiate_pretrained(self, config):
- model = instantiate_from_config(config)
- self.pretrained_model = model.eval()
- # self.pretrained_model.train = False
- for param in self.pretrained_model.parameters():
- param.requires_grad = False
-
-
- @torch.no_grad()
- def encode_with_pretrained(self,x):
- c = self.pretrained_model.encode(x)
- if isinstance(c, DiagonalGaussianDistribution):
- c = c.mode()
- return c
-
- def forward(self,x):
- z_fs = self.encode_with_pretrained(x)
- z = self.proj_norm(z_fs)
- z = self.proj(z)
- z = nonlinearity(z)
-
- for submodel, downmodel in zip(self.model,self.downsampler):
- z = submodel(z,temb=None)
- z = downmodel(z)
-
- if self.do_reshape:
- z = rearrange(z,'b c h w -> b (h w) c')
- return z
-
diff --git a/stable_diffusion/ldm/modules/diffusionmodules/openaimodel.py b/stable_diffusion/ldm/modules/diffusionmodules/openaimodel.py
deleted file mode 100644
index fcf95d1ea8a078dd259915109203789f78f0643a..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/modules/diffusionmodules/openaimodel.py
+++ /dev/null
@@ -1,961 +0,0 @@
-from abc import abstractmethod
-from functools import partial
-import math
-from typing import Iterable
-
-import numpy as np
-import torch as th
-import torch.nn as nn
-import torch.nn.functional as F
-
-from ldm.modules.diffusionmodules.util import (
- checkpoint,
- conv_nd,
- linear,
- avg_pool_nd,
- zero_module,
- normalization,
- timestep_embedding,
-)
-from ldm.modules.attention import SpatialTransformer
-
-
-# dummy replace
-def convert_module_to_f16(x):
- pass
-
-def convert_module_to_f32(x):
- pass
-
-
-## go
-class AttentionPool2d(nn.Module):
- """
- Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
- """
-
- def __init__(
- self,
- spacial_dim: int,
- embed_dim: int,
- num_heads_channels: int,
- output_dim: int = None,
- ):
- super().__init__()
- self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
- self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
- self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
- self.num_heads = embed_dim // num_heads_channels
- self.attention = QKVAttention(self.num_heads)
-
- def forward(self, x):
- b, c, *_spatial = x.shape
- x = x.reshape(b, c, -1) # NC(HW)
- x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
- x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
- x = self.qkv_proj(x)
- x = self.attention(x)
- x = self.c_proj(x)
- return x[:, :, 0]
-
-
-class TimestepBlock(nn.Module):
- """
- Any module where forward() takes timestep embeddings as a second argument.
- """
-
- @abstractmethod
- def forward(self, x, emb):
- """
- Apply the module to `x` given `emb` timestep embeddings.
- """
-
-
-class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
- """
- A sequential module that passes timestep embeddings to the children that
- support it as an extra input.
- """
-
- def forward(self, x, emb, context=None):
- for layer in self:
- if isinstance(layer, TimestepBlock):
- x = layer(x, emb)
- elif isinstance(layer, SpatialTransformer):
- x = layer(x, context)
- else:
- x = layer(x)
- return x
-
-
-class Upsample(nn.Module):
- """
- An upsampling layer with an optional convolution.
- :param channels: channels in the inputs and outputs.
- :param use_conv: a bool determining if a convolution is applied.
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
- upsampling occurs in the inner-two dimensions.
- """
-
- def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
- super().__init__()
- self.channels = channels
- self.out_channels = out_channels or channels
- self.use_conv = use_conv
- self.dims = dims
- if use_conv:
- self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
-
- def forward(self, x):
- assert x.shape[1] == self.channels
- if self.dims == 3:
- x = F.interpolate(
- x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
- )
- else:
- x = F.interpolate(x, scale_factor=2, mode="nearest")
- if self.use_conv:
- x = self.conv(x)
- return x
-
-class TransposedUpsample(nn.Module):
- 'Learned 2x upsampling without padding'
- def __init__(self, channels, out_channels=None, ks=5):
- super().__init__()
- self.channels = channels
- self.out_channels = out_channels or channels
-
- self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
-
- def forward(self,x):
- return self.up(x)
-
-
-class Downsample(nn.Module):
- """
- A downsampling layer with an optional convolution.
- :param channels: channels in the inputs and outputs.
- :param use_conv: a bool determining if a convolution is applied.
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
- downsampling occurs in the inner-two dimensions.
- """
-
- def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
- super().__init__()
- self.channels = channels
- self.out_channels = out_channels or channels
- self.use_conv = use_conv
- self.dims = dims
- stride = 2 if dims != 3 else (1, 2, 2)
- if use_conv:
- self.op = conv_nd(
- dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
- )
- else:
- assert self.channels == self.out_channels
- self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
-
- def forward(self, x):
- assert x.shape[1] == self.channels
- return self.op(x)
-
-
-class ResBlock(TimestepBlock):
- """
- A residual block that can optionally change the number of channels.
- :param channels: the number of input channels.
- :param emb_channels: the number of timestep embedding channels.
- :param dropout: the rate of dropout.
- :param out_channels: if specified, the number of out channels.
- :param use_conv: if True and out_channels is specified, use a spatial
- convolution instead of a smaller 1x1 convolution to change the
- channels in the skip connection.
- :param dims: determines if the signal is 1D, 2D, or 3D.
- :param use_checkpoint: if True, use gradient checkpointing on this module.
- :param up: if True, use this block for upsampling.
- :param down: if True, use this block for downsampling.
- """
-
- def __init__(
- self,
- channels,
- emb_channels,
- dropout,
- out_channels=None,
- use_conv=False,
- use_scale_shift_norm=False,
- dims=2,
- use_checkpoint=False,
- up=False,
- down=False,
- ):
- super().__init__()
- self.channels = channels
- self.emb_channels = emb_channels
- self.dropout = dropout
- self.out_channels = out_channels or channels
- self.use_conv = use_conv
- self.use_checkpoint = use_checkpoint
- self.use_scale_shift_norm = use_scale_shift_norm
-
- self.in_layers = nn.Sequential(
- normalization(channels),
- nn.SiLU(),
- conv_nd(dims, channels, self.out_channels, 3, padding=1),
- )
-
- self.updown = up or down
-
- if up:
- self.h_upd = Upsample(channels, False, dims)
- self.x_upd = Upsample(channels, False, dims)
- elif down:
- self.h_upd = Downsample(channels, False, dims)
- self.x_upd = Downsample(channels, False, dims)
- else:
- self.h_upd = self.x_upd = nn.Identity()
-
- self.emb_layers = nn.Sequential(
- nn.SiLU(),
- linear(
- emb_channels,
- 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
- ),
- )
- self.out_layers = nn.Sequential(
- normalization(self.out_channels),
- nn.SiLU(),
- nn.Dropout(p=dropout),
- zero_module(
- conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
- ),
- )
-
- if self.out_channels == channels:
- self.skip_connection = nn.Identity()
- elif use_conv:
- self.skip_connection = conv_nd(
- dims, channels, self.out_channels, 3, padding=1
- )
- else:
- self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
-
- def forward(self, x, emb):
- """
- Apply the block to a Tensor, conditioned on a timestep embedding.
- :param x: an [N x C x ...] Tensor of features.
- :param emb: an [N x emb_channels] Tensor of timestep embeddings.
- :return: an [N x C x ...] Tensor of outputs.
- """
- return checkpoint(
- self._forward, (x, emb), self.parameters(), self.use_checkpoint
- )
-
-
- def _forward(self, x, emb):
- if self.updown:
- in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
- h = in_rest(x)
- h = self.h_upd(h)
- x = self.x_upd(x)
- h = in_conv(h)
- else:
- h = self.in_layers(x)
- emb_out = self.emb_layers(emb).type(h.dtype)
- while len(emb_out.shape) < len(h.shape):
- emb_out = emb_out[..., None]
- if self.use_scale_shift_norm:
- out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
- scale, shift = th.chunk(emb_out, 2, dim=1)
- h = out_norm(h) * (1 + scale) + shift
- h = out_rest(h)
- else:
- h = h + emb_out
- h = self.out_layers(h)
- return self.skip_connection(x) + h
-
-
-class AttentionBlock(nn.Module):
- """
- An attention block that allows spatial positions to attend to each other.
- Originally ported from here, but adapted to the N-d case.
- https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
- """
-
- def __init__(
- self,
- channels,
- num_heads=1,
- num_head_channels=-1,
- use_checkpoint=False,
- use_new_attention_order=False,
- ):
- super().__init__()
- self.channels = channels
- if num_head_channels == -1:
- self.num_heads = num_heads
- else:
- assert (
- channels % num_head_channels == 0
- ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
- self.num_heads = channels // num_head_channels
- self.use_checkpoint = use_checkpoint
- self.norm = normalization(channels)
- self.qkv = conv_nd(1, channels, channels * 3, 1)
- if use_new_attention_order:
- # split qkv before split heads
- self.attention = QKVAttention(self.num_heads)
- else:
- # split heads before split qkv
- self.attention = QKVAttentionLegacy(self.num_heads)
-
- self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
-
- def forward(self, x):
- return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
- #return pt_checkpoint(self._forward, x) # pytorch
-
- def _forward(self, x):
- b, c, *spatial = x.shape
- x = x.reshape(b, c, -1)
- qkv = self.qkv(self.norm(x))
- h = self.attention(qkv)
- h = self.proj_out(h)
- return (x + h).reshape(b, c, *spatial)
-
-
-def count_flops_attn(model, _x, y):
- """
- A counter for the `thop` package to count the operations in an
- attention operation.
- Meant to be used like:
- macs, params = thop.profile(
- model,
- inputs=(inputs, timestamps),
- custom_ops={QKVAttention: QKVAttention.count_flops},
- )
- """
- b, c, *spatial = y[0].shape
- num_spatial = int(np.prod(spatial))
- # We perform two matmuls with the same number of ops.
- # The first computes the weight matrix, the second computes
- # the combination of the value vectors.
- matmul_ops = 2 * b * (num_spatial ** 2) * c
- model.total_ops += th.DoubleTensor([matmul_ops])
-
-
-class QKVAttentionLegacy(nn.Module):
- """
- A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
- """
-
- def __init__(self, n_heads):
- super().__init__()
- self.n_heads = n_heads
-
- def forward(self, qkv):
- """
- Apply QKV attention.
- :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
- :return: an [N x (H * C) x T] tensor after attention.
- """
- bs, width, length = qkv.shape
- assert width % (3 * self.n_heads) == 0
- ch = width // (3 * self.n_heads)
- q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
- scale = 1 / math.sqrt(math.sqrt(ch))
- weight = th.einsum(
- "bct,bcs->bts", q * scale, k * scale
- ) # More stable with f16 than dividing afterwards
- weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
- a = th.einsum("bts,bcs->bct", weight, v)
- return a.reshape(bs, -1, length)
-
- @staticmethod
- def count_flops(model, _x, y):
- return count_flops_attn(model, _x, y)
-
-
-class QKVAttention(nn.Module):
- """
- A module which performs QKV attention and splits in a different order.
- """
-
- def __init__(self, n_heads):
- super().__init__()
- self.n_heads = n_heads
-
- def forward(self, qkv):
- """
- Apply QKV attention.
- :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
- :return: an [N x (H * C) x T] tensor after attention.
- """
- bs, width, length = qkv.shape
- assert width % (3 * self.n_heads) == 0
- ch = width // (3 * self.n_heads)
- q, k, v = qkv.chunk(3, dim=1)
- scale = 1 / math.sqrt(math.sqrt(ch))
- weight = th.einsum(
- "bct,bcs->bts",
- (q * scale).view(bs * self.n_heads, ch, length),
- (k * scale).view(bs * self.n_heads, ch, length),
- ) # More stable with f16 than dividing afterwards
- weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
- a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
- return a.reshape(bs, -1, length)
-
- @staticmethod
- def count_flops(model, _x, y):
- return count_flops_attn(model, _x, y)
-
-
-class UNetModel(nn.Module):
- """
- The full UNet model with attention and timestep embedding.
- :param in_channels: channels in the input Tensor.
- :param model_channels: base channel count for the model.
- :param out_channels: channels in the output Tensor.
- :param num_res_blocks: number of residual blocks per downsample.
- :param attention_resolutions: a collection of downsample rates at which
- attention will take place. May be a set, list, or tuple.
- For example, if this contains 4, then at 4x downsampling, attention
- will be used.
- :param dropout: the dropout probability.
- :param channel_mult: channel multiplier for each level of the UNet.
- :param conv_resample: if True, use learned convolutions for upsampling and
- downsampling.
- :param dims: determines if the signal is 1D, 2D, or 3D.
- :param num_classes: if specified (as an int), then this model will be
- class-conditional with `num_classes` classes.
- :param use_checkpoint: use gradient checkpointing to reduce memory usage.
- :param num_heads: the number of attention heads in each attention layer.
- :param num_heads_channels: if specified, ignore num_heads and instead use
- a fixed channel width per attention head.
- :param num_heads_upsample: works with num_heads to set a different number
- of heads for upsampling. Deprecated.
- :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
- :param resblock_updown: use residual blocks for up/downsampling.
- :param use_new_attention_order: use a different attention pattern for potentially
- increased efficiency.
- """
-
- def __init__(
- self,
- image_size,
- in_channels,
- model_channels,
- out_channels,
- num_res_blocks,
- attention_resolutions,
- dropout=0,
- channel_mult=(1, 2, 4, 8),
- conv_resample=True,
- dims=2,
- num_classes=None,
- use_checkpoint=False,
- use_fp16=False,
- num_heads=-1,
- num_head_channels=-1,
- num_heads_upsample=-1,
- use_scale_shift_norm=False,
- resblock_updown=False,
- use_new_attention_order=False,
- use_spatial_transformer=False, # custom transformer support
- transformer_depth=1, # custom transformer support
- context_dim=None, # custom transformer support
- n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
- legacy=True,
- ):
- super().__init__()
- if use_spatial_transformer:
- assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
-
- if context_dim is not None:
- assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
- from omegaconf.listconfig import ListConfig
- if type(context_dim) == ListConfig:
- context_dim = list(context_dim)
-
- if num_heads_upsample == -1:
- num_heads_upsample = num_heads
-
- if num_heads == -1:
- assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
-
- if num_head_channels == -1:
- assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
-
- self.image_size = image_size
- self.in_channels = in_channels
- self.model_channels = model_channels
- self.out_channels = out_channels
- self.num_res_blocks = num_res_blocks
- self.attention_resolutions = attention_resolutions
- self.dropout = dropout
- self.channel_mult = channel_mult
- self.conv_resample = conv_resample
- self.num_classes = num_classes
- self.use_checkpoint = use_checkpoint
- self.dtype = th.float16 if use_fp16 else th.float32
- self.num_heads = num_heads
- self.num_head_channels = num_head_channels
- self.num_heads_upsample = num_heads_upsample
- self.predict_codebook_ids = n_embed is not None
-
- time_embed_dim = model_channels * 4
- self.time_embed = nn.Sequential(
- linear(model_channels, time_embed_dim),
- nn.SiLU(),
- linear(time_embed_dim, time_embed_dim),
- )
-
- if self.num_classes is not None:
- self.label_emb = nn.Embedding(num_classes, time_embed_dim)
-
- self.input_blocks = nn.ModuleList(
- [
- TimestepEmbedSequential(
- conv_nd(dims, in_channels, model_channels, 3, padding=1)
- )
- ]
- )
- self._feature_size = model_channels
- input_block_chans = [model_channels]
- ch = model_channels
- ds = 1
- for level, mult in enumerate(channel_mult):
- for _ in range(num_res_blocks):
- layers = [
- ResBlock(
- ch,
- time_embed_dim,
- dropout,
- out_channels=mult * model_channels,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- )
- ]
- ch = mult * model_channels
- if ds in attention_resolutions:
- if num_head_channels == -1:
- dim_head = ch // num_heads
- else:
- num_heads = ch // num_head_channels
- dim_head = num_head_channels
- if legacy:
- #num_heads = 1
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
- layers.append(
- AttentionBlock(
- ch,
- use_checkpoint=use_checkpoint,
- num_heads=num_heads,
- num_head_channels=dim_head,
- use_new_attention_order=use_new_attention_order,
- ) if not use_spatial_transformer else SpatialTransformer(
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
- )
- )
- self.input_blocks.append(TimestepEmbedSequential(*layers))
- self._feature_size += ch
- input_block_chans.append(ch)
- if level != len(channel_mult) - 1:
- out_ch = ch
- self.input_blocks.append(
- TimestepEmbedSequential(
- ResBlock(
- ch,
- time_embed_dim,
- dropout,
- out_channels=out_ch,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- down=True,
- )
- if resblock_updown
- else Downsample(
- ch, conv_resample, dims=dims, out_channels=out_ch
- )
- )
- )
- ch = out_ch
- input_block_chans.append(ch)
- ds *= 2
- self._feature_size += ch
-
- if num_head_channels == -1:
- dim_head = ch // num_heads
- else:
- num_heads = ch // num_head_channels
- dim_head = num_head_channels
- if legacy:
- #num_heads = 1
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
- self.middle_block = TimestepEmbedSequential(
- ResBlock(
- ch,
- time_embed_dim,
- dropout,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- ),
- AttentionBlock(
- ch,
- use_checkpoint=use_checkpoint,
- num_heads=num_heads,
- num_head_channels=dim_head,
- use_new_attention_order=use_new_attention_order,
- ) if not use_spatial_transformer else SpatialTransformer(
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
- ),
- ResBlock(
- ch,
- time_embed_dim,
- dropout,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- ),
- )
- self._feature_size += ch
-
- self.output_blocks = nn.ModuleList([])
- for level, mult in list(enumerate(channel_mult))[::-1]:
- for i in range(num_res_blocks + 1):
- ich = input_block_chans.pop()
- layers = [
- ResBlock(
- ch + ich,
- time_embed_dim,
- dropout,
- out_channels=model_channels * mult,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- )
- ]
- ch = model_channels * mult
- if ds in attention_resolutions:
- if num_head_channels == -1:
- dim_head = ch // num_heads
- else:
- num_heads = ch // num_head_channels
- dim_head = num_head_channels
- if legacy:
- #num_heads = 1
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
- layers.append(
- AttentionBlock(
- ch,
- use_checkpoint=use_checkpoint,
- num_heads=num_heads_upsample,
- num_head_channels=dim_head,
- use_new_attention_order=use_new_attention_order,
- ) if not use_spatial_transformer else SpatialTransformer(
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
- )
- )
- if level and i == num_res_blocks:
- out_ch = ch
- layers.append(
- ResBlock(
- ch,
- time_embed_dim,
- dropout,
- out_channels=out_ch,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- up=True,
- )
- if resblock_updown
- else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
- )
- ds //= 2
- self.output_blocks.append(TimestepEmbedSequential(*layers))
- self._feature_size += ch
-
- self.out = nn.Sequential(
- normalization(ch),
- nn.SiLU(),
- zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
- )
- if self.predict_codebook_ids:
- self.id_predictor = nn.Sequential(
- normalization(ch),
- conv_nd(dims, model_channels, n_embed, 1),
- #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
- )
-
- def convert_to_fp16(self):
- """
- Convert the torso of the model to float16.
- """
- self.input_blocks.apply(convert_module_to_f16)
- self.middle_block.apply(convert_module_to_f16)
- self.output_blocks.apply(convert_module_to_f16)
-
- def convert_to_fp32(self):
- """
- Convert the torso of the model to float32.
- """
- self.input_blocks.apply(convert_module_to_f32)
- self.middle_block.apply(convert_module_to_f32)
- self.output_blocks.apply(convert_module_to_f32)
-
- def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
- """
- Apply the model to an input batch.
- :param x: an [N x C x ...] Tensor of inputs.
- :param timesteps: a 1-D batch of timesteps.
- :param context: conditioning plugged in via crossattn
- :param y: an [N] Tensor of labels, if class-conditional.
- :return: an [N x C x ...] Tensor of outputs.
- """
- assert (y is not None) == (
- self.num_classes is not None
- ), "must specify y if and only if the model is class-conditional"
- hs = []
- t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
- emb = self.time_embed(t_emb)
-
- if self.num_classes is not None:
- assert y.shape == (x.shape[0],)
- emb = emb + self.label_emb(y)
-
- h = x.type(self.dtype)
- for module in self.input_blocks:
- h = module(h, emb, context)
- hs.append(h)
- h = self.middle_block(h, emb, context)
- for module in self.output_blocks:
- h = th.cat([h, hs.pop()], dim=1)
- h = module(h, emb, context)
- h = h.type(x.dtype)
- if self.predict_codebook_ids:
- return self.id_predictor(h)
- else:
- return self.out(h)
-
-
-class EncoderUNetModel(nn.Module):
- """
- The half UNet model with attention and timestep embedding.
- For usage, see UNet.
- """
-
- def __init__(
- self,
- image_size,
- in_channels,
- model_channels,
- out_channels,
- num_res_blocks,
- attention_resolutions,
- dropout=0,
- channel_mult=(1, 2, 4, 8),
- conv_resample=True,
- dims=2,
- use_checkpoint=False,
- use_fp16=False,
- num_heads=1,
- num_head_channels=-1,
- num_heads_upsample=-1,
- use_scale_shift_norm=False,
- resblock_updown=False,
- use_new_attention_order=False,
- pool="adaptive",
- *args,
- **kwargs
- ):
- super().__init__()
-
- if num_heads_upsample == -1:
- num_heads_upsample = num_heads
-
- self.in_channels = in_channels
- self.model_channels = model_channels
- self.out_channels = out_channels
- self.num_res_blocks = num_res_blocks
- self.attention_resolutions = attention_resolutions
- self.dropout = dropout
- self.channel_mult = channel_mult
- self.conv_resample = conv_resample
- self.use_checkpoint = use_checkpoint
- self.dtype = th.float16 if use_fp16 else th.float32
- self.num_heads = num_heads
- self.num_head_channels = num_head_channels
- self.num_heads_upsample = num_heads_upsample
-
- time_embed_dim = model_channels * 4
- self.time_embed = nn.Sequential(
- linear(model_channels, time_embed_dim),
- nn.SiLU(),
- linear(time_embed_dim, time_embed_dim),
- )
-
- self.input_blocks = nn.ModuleList(
- [
- TimestepEmbedSequential(
- conv_nd(dims, in_channels, model_channels, 3, padding=1)
- )
- ]
- )
- self._feature_size = model_channels
- input_block_chans = [model_channels]
- ch = model_channels
- ds = 1
- for level, mult in enumerate(channel_mult):
- for _ in range(num_res_blocks):
- layers = [
- ResBlock(
- ch,
- time_embed_dim,
- dropout,
- out_channels=mult * model_channels,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- )
- ]
- ch = mult * model_channels
- if ds in attention_resolutions:
- layers.append(
- AttentionBlock(
- ch,
- use_checkpoint=use_checkpoint,
- num_heads=num_heads,
- num_head_channels=num_head_channels,
- use_new_attention_order=use_new_attention_order,
- )
- )
- self.input_blocks.append(TimestepEmbedSequential(*layers))
- self._feature_size += ch
- input_block_chans.append(ch)
- if level != len(channel_mult) - 1:
- out_ch = ch
- self.input_blocks.append(
- TimestepEmbedSequential(
- ResBlock(
- ch,
- time_embed_dim,
- dropout,
- out_channels=out_ch,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- down=True,
- )
- if resblock_updown
- else Downsample(
- ch, conv_resample, dims=dims, out_channels=out_ch
- )
- )
- )
- ch = out_ch
- input_block_chans.append(ch)
- ds *= 2
- self._feature_size += ch
-
- self.middle_block = TimestepEmbedSequential(
- ResBlock(
- ch,
- time_embed_dim,
- dropout,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- ),
- AttentionBlock(
- ch,
- use_checkpoint=use_checkpoint,
- num_heads=num_heads,
- num_head_channels=num_head_channels,
- use_new_attention_order=use_new_attention_order,
- ),
- ResBlock(
- ch,
- time_embed_dim,
- dropout,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- ),
- )
- self._feature_size += ch
- self.pool = pool
- if pool == "adaptive":
- self.out = nn.Sequential(
- normalization(ch),
- nn.SiLU(),
- nn.AdaptiveAvgPool2d((1, 1)),
- zero_module(conv_nd(dims, ch, out_channels, 1)),
- nn.Flatten(),
- )
- elif pool == "attention":
- assert num_head_channels != -1
- self.out = nn.Sequential(
- normalization(ch),
- nn.SiLU(),
- AttentionPool2d(
- (image_size // ds), ch, num_head_channels, out_channels
- ),
- )
- elif pool == "spatial":
- self.out = nn.Sequential(
- nn.Linear(self._feature_size, 2048),
- nn.ReLU(),
- nn.Linear(2048, self.out_channels),
- )
- elif pool == "spatial_v2":
- self.out = nn.Sequential(
- nn.Linear(self._feature_size, 2048),
- normalization(2048),
- nn.SiLU(),
- nn.Linear(2048, self.out_channels),
- )
- else:
- raise NotImplementedError(f"Unexpected {pool} pooling")
-
- def convert_to_fp16(self):
- """
- Convert the torso of the model to float16.
- """
- self.input_blocks.apply(convert_module_to_f16)
- self.middle_block.apply(convert_module_to_f16)
-
- def convert_to_fp32(self):
- """
- Convert the torso of the model to float32.
- """
- self.input_blocks.apply(convert_module_to_f32)
- self.middle_block.apply(convert_module_to_f32)
-
- def forward(self, x, timesteps):
- """
- Apply the model to an input batch.
- :param x: an [N x C x ...] Tensor of inputs.
- :param timesteps: a 1-D batch of timesteps.
- :return: an [N x K] Tensor of outputs.
- """
- emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
-
- results = []
- h = x.type(self.dtype)
- for module in self.input_blocks:
- h = module(h, emb)
- if self.pool.startswith("spatial"):
- results.append(h.type(x.dtype).mean(dim=(2, 3)))
- h = self.middle_block(h, emb)
- if self.pool.startswith("spatial"):
- results.append(h.type(x.dtype).mean(dim=(2, 3)))
- h = th.cat(results, axis=-1)
- return self.out(h)
- else:
- h = h.type(x.dtype)
- return self.out(h)
-
diff --git a/stable_diffusion/ldm/modules/diffusionmodules/util.py b/stable_diffusion/ldm/modules/diffusionmodules/util.py
deleted file mode 100644
index a952e6c40308c33edd422da0ce6a60f47e73661b..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/modules/diffusionmodules/util.py
+++ /dev/null
@@ -1,267 +0,0 @@
-# adopted from
-# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
-# and
-# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
-# and
-# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
-#
-# thanks!
-
-
-import os
-import math
-import torch
-import torch.nn as nn
-import numpy as np
-from einops import repeat
-
-from ldm.util import instantiate_from_config
-
-
-def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
- if schedule == "linear":
- betas = (
- torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
- )
-
- elif schedule == "cosine":
- timesteps = (
- torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
- )
- alphas = timesteps / (1 + cosine_s) * np.pi / 2
- alphas = torch.cos(alphas).pow(2)
- alphas = alphas / alphas[0]
- betas = 1 - alphas[1:] / alphas[:-1]
- betas = np.clip(betas, a_min=0, a_max=0.999)
-
- elif schedule == "sqrt_linear":
- betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
- elif schedule == "sqrt":
- betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
- else:
- raise ValueError(f"schedule '{schedule}' unknown.")
- return betas.numpy()
-
-
-def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
- if ddim_discr_method == 'uniform':
- c = num_ddpm_timesteps // num_ddim_timesteps
- ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
- elif ddim_discr_method == 'quad':
- ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
- else:
- raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
-
- # assert ddim_timesteps.shape[0] == num_ddim_timesteps
- # add one to get the final alpha values right (the ones from first scale to data during sampling)
- steps_out = ddim_timesteps + 1
- if verbose:
- print(f'Selected timesteps for ddim sampler: {steps_out}')
- return steps_out
-
-
-def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
- # select alphas for computing the variance schedule
- alphas = alphacums[ddim_timesteps]
- alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
-
- # according the the formula provided in https://arxiv.org/abs/2010.02502
- sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
- if verbose:
- print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
- print(f'For the chosen value of eta, which is {eta}, '
- f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
- return sigmas, alphas, alphas_prev
-
-
-def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
- """
- Create a beta schedule that discretizes the given alpha_t_bar function,
- which defines the cumulative product of (1-beta) over time from t = [0,1].
- :param num_diffusion_timesteps: the number of betas to produce.
- :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
- produces the cumulative product of (1-beta) up to that
- part of the diffusion process.
- :param max_beta: the maximum beta to use; use values lower than 1 to
- prevent singularities.
- """
- betas = []
- for i in range(num_diffusion_timesteps):
- t1 = i / num_diffusion_timesteps
- t2 = (i + 1) / num_diffusion_timesteps
- betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
- return np.array(betas)
-
-
-def extract_into_tensor(a, t, x_shape):
- b, *_ = t.shape
- out = a.gather(-1, t)
- return out.reshape(b, *((1,) * (len(x_shape) - 1)))
-
-
-def checkpoint(func, inputs, params, flag):
- """
- Evaluate a function without caching intermediate activations, allowing for
- reduced memory at the expense of extra compute in the backward pass.
- :param func: the function to evaluate.
- :param inputs: the argument sequence to pass to `func`.
- :param params: a sequence of parameters `func` depends on but does not
- explicitly take as arguments.
- :param flag: if False, disable gradient checkpointing.
- """
- if flag:
- args = tuple(inputs) + tuple(params)
- return CheckpointFunction.apply(func, len(inputs), *args)
- else:
- return func(*inputs)
-
-
-class CheckpointFunction(torch.autograd.Function):
- @staticmethod
- def forward(ctx, run_function, length, *args):
- ctx.run_function = run_function
- ctx.input_tensors = list(args[:length])
- ctx.input_params = list(args[length:])
-
- with torch.no_grad():
- output_tensors = ctx.run_function(*ctx.input_tensors)
- return output_tensors
-
- @staticmethod
- def backward(ctx, *output_grads):
- ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
- with torch.enable_grad():
- # Fixes a bug where the first op in run_function modifies the
- # Tensor storage in place, which is not allowed for detach()'d
- # Tensors.
- shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
- output_tensors = ctx.run_function(*shallow_copies)
- input_grads = torch.autograd.grad(
- output_tensors,
- ctx.input_tensors + ctx.input_params,
- output_grads,
- allow_unused=True,
- )
- del ctx.input_tensors
- del ctx.input_params
- del output_tensors
- return (None, None) + input_grads
-
-
-def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
- """
- Create sinusoidal timestep embeddings.
- :param timesteps: a 1-D Tensor of N indices, one per batch element.
- These may be fractional.
- :param dim: the dimension of the output.
- :param max_period: controls the minimum frequency of the embeddings.
- :return: an [N x dim] Tensor of positional embeddings.
- """
- if not repeat_only:
- half = dim // 2
- freqs = torch.exp(
- -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
- ).to(device=timesteps.device)
- args = timesteps[:, None].float() * freqs[None]
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
- if dim % 2:
- embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
- else:
- embedding = repeat(timesteps, 'b -> b d', d=dim)
- return embedding
-
-
-def zero_module(module):
- """
- Zero out the parameters of a module and return it.
- """
- for p in module.parameters():
- p.detach().zero_()
- return module
-
-
-def scale_module(module, scale):
- """
- Scale the parameters of a module and return it.
- """
- for p in module.parameters():
- p.detach().mul_(scale)
- return module
-
-
-def mean_flat(tensor):
- """
- Take the mean over all non-batch dimensions.
- """
- return tensor.mean(dim=list(range(1, len(tensor.shape))))
-
-
-def normalization(channels):
- """
- Make a standard normalization layer.
- :param channels: number of input channels.
- :return: an nn.Module for normalization.
- """
- return GroupNorm32(32, channels)
-
-
-# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
-class SiLU(nn.Module):
- def forward(self, x):
- return x * torch.sigmoid(x)
-
-
-class GroupNorm32(nn.GroupNorm):
- def forward(self, x):
- return super().forward(x.float()).type(x.dtype)
-
-def conv_nd(dims, *args, **kwargs):
- """
- Create a 1D, 2D, or 3D convolution module.
- """
- if dims == 1:
- return nn.Conv1d(*args, **kwargs)
- elif dims == 2:
- return nn.Conv2d(*args, **kwargs)
- elif dims == 3:
- return nn.Conv3d(*args, **kwargs)
- raise ValueError(f"unsupported dimensions: {dims}")
-
-
-def linear(*args, **kwargs):
- """
- Create a linear module.
- """
- return nn.Linear(*args, **kwargs)
-
-
-def avg_pool_nd(dims, *args, **kwargs):
- """
- Create a 1D, 2D, or 3D average pooling module.
- """
- if dims == 1:
- return nn.AvgPool1d(*args, **kwargs)
- elif dims == 2:
- return nn.AvgPool2d(*args, **kwargs)
- elif dims == 3:
- return nn.AvgPool3d(*args, **kwargs)
- raise ValueError(f"unsupported dimensions: {dims}")
-
-
-class HybridConditioner(nn.Module):
-
- def __init__(self, c_concat_config, c_crossattn_config):
- super().__init__()
- self.concat_conditioner = instantiate_from_config(c_concat_config)
- self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
-
- def forward(self, c_concat, c_crossattn):
- c_concat = self.concat_conditioner(c_concat)
- c_crossattn = self.crossattn_conditioner(c_crossattn)
- return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
-
-
-def noise_like(shape, device, repeat=False):
- repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
- noise = lambda: torch.randn(shape, device=device)
- return repeat_noise() if repeat else noise()
\ No newline at end of file
diff --git a/stable_diffusion/ldm/modules/distributions/__init__.py b/stable_diffusion/ldm/modules/distributions/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/stable_diffusion/ldm/modules/distributions/distributions.py b/stable_diffusion/ldm/modules/distributions/distributions.py
deleted file mode 100644
index f2b8ef901130efc171aa69742ca0244d94d3f2e9..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/modules/distributions/distributions.py
+++ /dev/null
@@ -1,92 +0,0 @@
-import torch
-import numpy as np
-
-
-class AbstractDistribution:
- def sample(self):
- raise NotImplementedError()
-
- def mode(self):
- raise NotImplementedError()
-
-
-class DiracDistribution(AbstractDistribution):
- def __init__(self, value):
- self.value = value
-
- def sample(self):
- return self.value
-
- def mode(self):
- return self.value
-
-
-class DiagonalGaussianDistribution(object):
- def __init__(self, parameters, deterministic=False):
- self.parameters = parameters
- self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
- self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
- self.deterministic = deterministic
- self.std = torch.exp(0.5 * self.logvar)
- self.var = torch.exp(self.logvar)
- if self.deterministic:
- self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
-
- def sample(self):
- x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
- return x
-
- def kl(self, other=None):
- if self.deterministic:
- return torch.Tensor([0.])
- else:
- if other is None:
- return 0.5 * torch.sum(torch.pow(self.mean, 2)
- + self.var - 1.0 - self.logvar,
- dim=[1, 2, 3])
- else:
- return 0.5 * torch.sum(
- torch.pow(self.mean - other.mean, 2) / other.var
- + self.var / other.var - 1.0 - self.logvar + other.logvar,
- dim=[1, 2, 3])
-
- def nll(self, sample, dims=[1,2,3]):
- if self.deterministic:
- return torch.Tensor([0.])
- logtwopi = np.log(2.0 * np.pi)
- return 0.5 * torch.sum(
- logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
- dim=dims)
-
- def mode(self):
- return self.mean
-
-
-def normal_kl(mean1, logvar1, mean2, logvar2):
- """
- source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
- Compute the KL divergence between two gaussians.
- Shapes are automatically broadcasted, so batches can be compared to
- scalars, among other use cases.
- """
- tensor = None
- for obj in (mean1, logvar1, mean2, logvar2):
- if isinstance(obj, torch.Tensor):
- tensor = obj
- break
- assert tensor is not None, "at least one argument must be a Tensor"
-
- # Force variances to be Tensors. Broadcasting helps convert scalars to
- # Tensors, but it does not work for torch.exp().
- logvar1, logvar2 = [
- x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
- for x in (logvar1, logvar2)
- ]
-
- return 0.5 * (
- -1.0
- + logvar2
- - logvar1
- + torch.exp(logvar1 - logvar2)
- + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
- )
diff --git a/stable_diffusion/ldm/modules/ema.py b/stable_diffusion/ldm/modules/ema.py
deleted file mode 100644
index c8c75af43565f6e140287644aaaefa97dd6e67c5..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/modules/ema.py
+++ /dev/null
@@ -1,76 +0,0 @@
-import torch
-from torch import nn
-
-
-class LitEma(nn.Module):
- def __init__(self, model, decay=0.9999, use_num_upates=True):
- super().__init__()
- if decay < 0.0 or decay > 1.0:
- raise ValueError('Decay must be between 0 and 1')
-
- self.m_name2s_name = {}
- self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
- self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
- else torch.tensor(-1,dtype=torch.int))
-
- for name, p in model.named_parameters():
- if p.requires_grad:
- #remove as '.'-character is not allowed in buffers
- s_name = name.replace('.','')
- self.m_name2s_name.update({name:s_name})
- self.register_buffer(s_name,p.clone().detach().data)
-
- self.collected_params = []
-
- def forward(self,model):
- decay = self.decay
-
- if self.num_updates >= 0:
- self.num_updates += 1
- decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
-
- one_minus_decay = 1.0 - decay
-
- with torch.no_grad():
- m_param = dict(model.named_parameters())
- shadow_params = dict(self.named_buffers())
-
- for key in m_param:
- if m_param[key].requires_grad:
- sname = self.m_name2s_name[key]
- shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
- shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
- else:
- assert not key in self.m_name2s_name
-
- def copy_to(self, model):
- m_param = dict(model.named_parameters())
- shadow_params = dict(self.named_buffers())
- for key in m_param:
- if m_param[key].requires_grad:
- m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
- else:
- assert not key in self.m_name2s_name
-
- def store(self, parameters):
- """
- Save the current parameters for restoring later.
- Args:
- parameters: Iterable of `torch.nn.Parameter`; the parameters to be
- temporarily stored.
- """
- self.collected_params = [param.clone() for param in parameters]
-
- def restore(self, parameters):
- """
- Restore the parameters stored with the `store` method.
- Useful to validate the model with EMA parameters without affecting the
- original optimization process. Store the parameters before the
- `copy_to` method. After validation (or model saving), use this to
- restore the former parameters.
- Args:
- parameters: Iterable of `torch.nn.Parameter`; the parameters to be
- updated with the stored parameters.
- """
- for c_param, param in zip(self.collected_params, parameters):
- param.data.copy_(c_param.data)
diff --git a/stable_diffusion/ldm/modules/encoders/__init__.py b/stable_diffusion/ldm/modules/encoders/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/stable_diffusion/ldm/modules/encoders/modules.py b/stable_diffusion/ldm/modules/encoders/modules.py
deleted file mode 100644
index ededbe43e9e0466b9979079060692e38f561d4d3..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/modules/encoders/modules.py
+++ /dev/null
@@ -1,234 +0,0 @@
-import torch
-import torch.nn as nn
-from functools import partial
-import clip
-from einops import rearrange, repeat
-from transformers import CLIPTokenizer, CLIPTextModel
-import kornia
-
-from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
-
-
-class AbstractEncoder(nn.Module):
- def __init__(self):
- super().__init__()
-
- def encode(self, *args, **kwargs):
- raise NotImplementedError
-
-
-
-class ClassEmbedder(nn.Module):
- def __init__(self, embed_dim, n_classes=1000, key='class'):
- super().__init__()
- self.key = key
- self.embedding = nn.Embedding(n_classes, embed_dim)
-
- def forward(self, batch, key=None):
- if key is None:
- key = self.key
- # this is for use in crossattn
- c = batch[key][:, None]
- c = self.embedding(c)
- return c
-
-
-class TransformerEmbedder(AbstractEncoder):
- """Some transformer encoder layers"""
- def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
- super().__init__()
- self.device = device
- self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
- attn_layers=Encoder(dim=n_embed, depth=n_layer))
-
- def forward(self, tokens):
- tokens = tokens.to(self.device) # meh
- z = self.transformer(tokens, return_embeddings=True)
- return z
-
- def encode(self, x):
- return self(x)
-
-
-class BERTTokenizer(AbstractEncoder):
- """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
- def __init__(self, device="cuda", vq_interface=True, max_length=77):
- super().__init__()
- from transformers import BertTokenizerFast # TODO: add to reuquirements
- self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
- self.device = device
- self.vq_interface = vq_interface
- self.max_length = max_length
-
- def forward(self, text):
- batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
- return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
- tokens = batch_encoding["input_ids"].to(self.device)
- return tokens
-
- @torch.no_grad()
- def encode(self, text):
- tokens = self(text)
- if not self.vq_interface:
- return tokens
- return None, None, [None, None, tokens]
-
- def decode(self, text):
- return text
-
-
-class BERTEmbedder(AbstractEncoder):
- """Uses the BERT tokenizr model and add some transformer encoder layers"""
- def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
- device="cuda",use_tokenizer=True, embedding_dropout=0.0):
- super().__init__()
- self.use_tknz_fn = use_tokenizer
- if self.use_tknz_fn:
- self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
- self.device = device
- self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
- attn_layers=Encoder(dim=n_embed, depth=n_layer),
- emb_dropout=embedding_dropout)
-
- def forward(self, text):
- if self.use_tknz_fn:
- tokens = self.tknz_fn(text)#.to(self.device)
- else:
- tokens = text
- z = self.transformer(tokens, return_embeddings=True)
- return z
-
- def encode(self, text):
- # output of length 77
- return self(text)
-
-
-class SpatialRescaler(nn.Module):
- def __init__(self,
- n_stages=1,
- method='bilinear',
- multiplier=0.5,
- in_channels=3,
- out_channels=None,
- bias=False):
- super().__init__()
- self.n_stages = n_stages
- assert self.n_stages >= 0
- assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
- self.multiplier = multiplier
- self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
- self.remap_output = out_channels is not None
- if self.remap_output:
- print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
- self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
-
- def forward(self,x):
- for stage in range(self.n_stages):
- x = self.interpolator(x, scale_factor=self.multiplier)
-
-
- if self.remap_output:
- x = self.channel_mapper(x)
- return x
-
- def encode(self, x):
- return self(x)
-
-class FrozenCLIPEmbedder(AbstractEncoder):
- """Uses the CLIP transformer encoder for text (from Hugging Face)"""
- def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
- super().__init__()
- self.tokenizer = CLIPTokenizer.from_pretrained(version)
- self.transformer = CLIPTextModel.from_pretrained(version)
- self.device = device
- self.max_length = max_length
- self.freeze()
-
- def freeze(self):
- self.transformer = self.transformer.eval()
- for param in self.parameters():
- param.requires_grad = False
-
- def forward(self, text):
- batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
- return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
- tokens = batch_encoding["input_ids"].to(self.device)
- outputs = self.transformer(input_ids=tokens)
-
- z = outputs.last_hidden_state
- return z
-
- def encode(self, text):
- return self(text)
-
-
-class FrozenCLIPTextEmbedder(nn.Module):
- """
- Uses the CLIP transformer encoder for text.
- """
- def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True):
- super().__init__()
- self.model, _ = clip.load(version, jit=False, device="cpu")
- self.device = device
- self.max_length = max_length
- self.n_repeat = n_repeat
- self.normalize = normalize
-
- def freeze(self):
- self.model = self.model.eval()
- for param in self.parameters():
- param.requires_grad = False
-
- def forward(self, text):
- tokens = clip.tokenize(text).to(self.device)
- z = self.model.encode_text(tokens)
- if self.normalize:
- z = z / torch.linalg.norm(z, dim=1, keepdim=True)
- return z
-
- def encode(self, text):
- z = self(text)
- if z.ndim==2:
- z = z[:, None, :]
- z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
- return z
-
-
-class FrozenClipImageEmbedder(nn.Module):
- """
- Uses the CLIP image encoder.
- """
- def __init__(
- self,
- model,
- jit=False,
- device='cuda' if torch.cuda.is_available() else 'cpu',
- antialias=False,
- ):
- super().__init__()
- self.model, _ = clip.load(name=model, device=device, jit=jit)
-
- self.antialias = antialias
-
- self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
- self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
-
- def preprocess(self, x):
- # normalize to [0,1]
- x = kornia.geometry.resize(x, (224, 224),
- interpolation='bicubic',align_corners=True,
- antialias=self.antialias)
- x = (x + 1.) / 2.
- # renormalize according to clip
- x = kornia.enhance.normalize(x, self.mean, self.std)
- return x
-
- def forward(self, x):
- # x is assumed to be in range [-1,1]
- return self.model.encode_image(self.preprocess(x))
-
-
-if __name__ == "__main__":
- from ldm.util import count_params
- model = FrozenCLIPEmbedder()
- count_params(model, verbose=True)
\ No newline at end of file
diff --git a/stable_diffusion/ldm/modules/image_degradation/__init__.py b/stable_diffusion/ldm/modules/image_degradation/__init__.py
deleted file mode 100644
index 7836cada81f90ded99c58d5942eea4c3477f58fc..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/modules/image_degradation/__init__.py
+++ /dev/null
@@ -1,2 +0,0 @@
-from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
-from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
diff --git a/stable_diffusion/ldm/modules/image_degradation/bsrgan.py b/stable_diffusion/ldm/modules/image_degradation/bsrgan.py
deleted file mode 100644
index 32ef56169978e550090261cddbcf5eb611a6173b..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/modules/image_degradation/bsrgan.py
+++ /dev/null
@@ -1,730 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-# --------------------------------------------
-# Super-Resolution
-# --------------------------------------------
-#
-# Kai Zhang (cskaizhang@gmail.com)
-# https://github.com/cszn
-# From 2019/03--2021/08
-# --------------------------------------------
-"""
-
-import numpy as np
-import cv2
-import torch
-
-from functools import partial
-import random
-from scipy import ndimage
-import scipy
-import scipy.stats as ss
-from scipy.interpolate import interp2d
-from scipy.linalg import orth
-import albumentations
-
-import ldm.modules.image_degradation.utils_image as util
-
-
-def modcrop_np(img, sf):
- '''
- Args:
- img: numpy image, WxH or WxHxC
- sf: scale factor
- Return:
- cropped image
- '''
- w, h = img.shape[:2]
- im = np.copy(img)
- return im[:w - w % sf, :h - h % sf, ...]
-
-
-"""
-# --------------------------------------------
-# anisotropic Gaussian kernels
-# --------------------------------------------
-"""
-
-
-def analytic_kernel(k):
- """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
- k_size = k.shape[0]
- # Calculate the big kernels size
- big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
- # Loop over the small kernel to fill the big one
- for r in range(k_size):
- for c in range(k_size):
- big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
- # Crop the edges of the big kernel to ignore very small values and increase run time of SR
- crop = k_size // 2
- cropped_big_k = big_k[crop:-crop, crop:-crop]
- # Normalize to 1
- return cropped_big_k / cropped_big_k.sum()
-
-
-def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
- """ generate an anisotropic Gaussian kernel
- Args:
- ksize : e.g., 15, kernel size
- theta : [0, pi], rotation angle range
- l1 : [0.1,50], scaling of eigenvalues
- l2 : [0.1,l1], scaling of eigenvalues
- If l1 = l2, will get an isotropic Gaussian kernel.
- Returns:
- k : kernel
- """
-
- v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
- V = np.array([[v[0], v[1]], [v[1], -v[0]]])
- D = np.array([[l1, 0], [0, l2]])
- Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
- k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
-
- return k
-
-
-def gm_blur_kernel(mean, cov, size=15):
- center = size / 2.0 + 0.5
- k = np.zeros([size, size])
- for y in range(size):
- for x in range(size):
- cy = y - center + 1
- cx = x - center + 1
- k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
-
- k = k / np.sum(k)
- return k
-
-
-def shift_pixel(x, sf, upper_left=True):
- """shift pixel for super-resolution with different scale factors
- Args:
- x: WxHxC or WxH
- sf: scale factor
- upper_left: shift direction
- """
- h, w = x.shape[:2]
- shift = (sf - 1) * 0.5
- xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
- if upper_left:
- x1 = xv + shift
- y1 = yv + shift
- else:
- x1 = xv - shift
- y1 = yv - shift
-
- x1 = np.clip(x1, 0, w - 1)
- y1 = np.clip(y1, 0, h - 1)
-
- if x.ndim == 2:
- x = interp2d(xv, yv, x)(x1, y1)
- if x.ndim == 3:
- for i in range(x.shape[-1]):
- x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
-
- return x
-
-
-def blur(x, k):
- '''
- x: image, NxcxHxW
- k: kernel, Nx1xhxw
- '''
- n, c = x.shape[:2]
- p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
- x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
- k = k.repeat(1, c, 1, 1)
- k = k.view(-1, 1, k.shape[2], k.shape[3])
- x = x.view(1, -1, x.shape[2], x.shape[3])
- x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
- x = x.view(n, c, x.shape[2], x.shape[3])
-
- return x
-
-
-def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
- """"
- # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
- # Kai Zhang
- # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
- # max_var = 2.5 * sf
- """
- # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
- lambda_1 = min_var + np.random.rand() * (max_var - min_var)
- lambda_2 = min_var + np.random.rand() * (max_var - min_var)
- theta = np.random.rand() * np.pi # random theta
- noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
-
- # Set COV matrix using Lambdas and Theta
- LAMBDA = np.diag([lambda_1, lambda_2])
- Q = np.array([[np.cos(theta), -np.sin(theta)],
- [np.sin(theta), np.cos(theta)]])
- SIGMA = Q @ LAMBDA @ Q.T
- INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
-
- # Set expectation position (shifting kernel for aligned image)
- MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
- MU = MU[None, None, :, None]
-
- # Create meshgrid for Gaussian
- [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
- Z = np.stack([X, Y], 2)[:, :, :, None]
-
- # Calcualte Gaussian for every pixel of the kernel
- ZZ = Z - MU
- ZZ_t = ZZ.transpose(0, 1, 3, 2)
- raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
-
- # shift the kernel so it will be centered
- # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
-
- # Normalize the kernel and return
- # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
- kernel = raw_kernel / np.sum(raw_kernel)
- return kernel
-
-
-def fspecial_gaussian(hsize, sigma):
- hsize = [hsize, hsize]
- siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
- std = sigma
- [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
- arg = -(x * x + y * y) / (2 * std * std)
- h = np.exp(arg)
- h[h < scipy.finfo(float).eps * h.max()] = 0
- sumh = h.sum()
- if sumh != 0:
- h = h / sumh
- return h
-
-
-def fspecial_laplacian(alpha):
- alpha = max([0, min([alpha, 1])])
- h1 = alpha / (alpha + 1)
- h2 = (1 - alpha) / (alpha + 1)
- h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
- h = np.array(h)
- return h
-
-
-def fspecial(filter_type, *args, **kwargs):
- '''
- python code from:
- https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
- '''
- if filter_type == 'gaussian':
- return fspecial_gaussian(*args, **kwargs)
- if filter_type == 'laplacian':
- return fspecial_laplacian(*args, **kwargs)
-
-
-"""
-# --------------------------------------------
-# degradation models
-# --------------------------------------------
-"""
-
-
-def bicubic_degradation(x, sf=3):
- '''
- Args:
- x: HxWxC image, [0, 1]
- sf: down-scale factor
- Return:
- bicubicly downsampled LR image
- '''
- x = util.imresize_np(x, scale=1 / sf)
- return x
-
-
-def srmd_degradation(x, k, sf=3):
- ''' blur + bicubic downsampling
- Args:
- x: HxWxC image, [0, 1]
- k: hxw, double
- sf: down-scale factor
- Return:
- downsampled LR image
- Reference:
- @inproceedings{zhang2018learning,
- title={Learning a single convolutional super-resolution network for multiple degradations},
- author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
- booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
- pages={3262--3271},
- year={2018}
- }
- '''
- x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
- x = bicubic_degradation(x, sf=sf)
- return x
-
-
-def dpsr_degradation(x, k, sf=3):
- ''' bicubic downsampling + blur
- Args:
- x: HxWxC image, [0, 1]
- k: hxw, double
- sf: down-scale factor
- Return:
- downsampled LR image
- Reference:
- @inproceedings{zhang2019deep,
- title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
- author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
- booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
- pages={1671--1681},
- year={2019}
- }
- '''
- x = bicubic_degradation(x, sf=sf)
- x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
- return x
-
-
-def classical_degradation(x, k, sf=3):
- ''' blur + downsampling
- Args:
- x: HxWxC image, [0, 1]/[0, 255]
- k: hxw, double
- sf: down-scale factor
- Return:
- downsampled LR image
- '''
- x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
- # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
- st = 0
- return x[st::sf, st::sf, ...]
-
-
-def add_sharpening(img, weight=0.5, radius=50, threshold=10):
- """USM sharpening. borrowed from real-ESRGAN
- Input image: I; Blurry image: B.
- 1. K = I + weight * (I - B)
- 2. Mask = 1 if abs(I - B) > threshold, else: 0
- 3. Blur mask:
- 4. Out = Mask * K + (1 - Mask) * I
- Args:
- img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
- weight (float): Sharp weight. Default: 1.
- radius (float): Kernel size of Gaussian blur. Default: 50.
- threshold (int):
- """
- if radius % 2 == 0:
- radius += 1
- blur = cv2.GaussianBlur(img, (radius, radius), 0)
- residual = img - blur
- mask = np.abs(residual) * 255 > threshold
- mask = mask.astype('float32')
- soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
-
- K = img + weight * residual
- K = np.clip(K, 0, 1)
- return soft_mask * K + (1 - soft_mask) * img
-
-
-def add_blur(img, sf=4):
- wd2 = 4.0 + sf
- wd = 2.0 + 0.2 * sf
- if random.random() < 0.5:
- l1 = wd2 * random.random()
- l2 = wd2 * random.random()
- k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
- else:
- k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
- img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
-
- return img
-
-
-def add_resize(img, sf=4):
- rnum = np.random.rand()
- if rnum > 0.8: # up
- sf1 = random.uniform(1, 2)
- elif rnum < 0.7: # down
- sf1 = random.uniform(0.5 / sf, 1)
- else:
- sf1 = 1.0
- img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
- img = np.clip(img, 0.0, 1.0)
-
- return img
-
-
-# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
-# noise_level = random.randint(noise_level1, noise_level2)
-# rnum = np.random.rand()
-# if rnum > 0.6: # add color Gaussian noise
-# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
-# elif rnum < 0.4: # add grayscale Gaussian noise
-# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
-# else: # add noise
-# L = noise_level2 / 255.
-# D = np.diag(np.random.rand(3))
-# U = orth(np.random.rand(3, 3))
-# conv = np.dot(np.dot(np.transpose(U), D), U)
-# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
-# img = np.clip(img, 0.0, 1.0)
-# return img
-
-def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
- noise_level = random.randint(noise_level1, noise_level2)
- rnum = np.random.rand()
- if rnum > 0.6: # add color Gaussian noise
- img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
- elif rnum < 0.4: # add grayscale Gaussian noise
- img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
- else: # add noise
- L = noise_level2 / 255.
- D = np.diag(np.random.rand(3))
- U = orth(np.random.rand(3, 3))
- conv = np.dot(np.dot(np.transpose(U), D), U)
- img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
- img = np.clip(img, 0.0, 1.0)
- return img
-
-
-def add_speckle_noise(img, noise_level1=2, noise_level2=25):
- noise_level = random.randint(noise_level1, noise_level2)
- img = np.clip(img, 0.0, 1.0)
- rnum = random.random()
- if rnum > 0.6:
- img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
- elif rnum < 0.4:
- img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
- else:
- L = noise_level2 / 255.
- D = np.diag(np.random.rand(3))
- U = orth(np.random.rand(3, 3))
- conv = np.dot(np.dot(np.transpose(U), D), U)
- img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
- img = np.clip(img, 0.0, 1.0)
- return img
-
-
-def add_Poisson_noise(img):
- img = np.clip((img * 255.0).round(), 0, 255) / 255.
- vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
- if random.random() < 0.5:
- img = np.random.poisson(img * vals).astype(np.float32) / vals
- else:
- img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
- img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
- noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
- img += noise_gray[:, :, np.newaxis]
- img = np.clip(img, 0.0, 1.0)
- return img
-
-
-def add_JPEG_noise(img):
- quality_factor = random.randint(30, 95)
- img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
- result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
- img = cv2.imdecode(encimg, 1)
- img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
- return img
-
-
-def random_crop(lq, hq, sf=4, lq_patchsize=64):
- h, w = lq.shape[:2]
- rnd_h = random.randint(0, h - lq_patchsize)
- rnd_w = random.randint(0, w - lq_patchsize)
- lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
-
- rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
- hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
- return lq, hq
-
-
-def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
- """
- This is the degradation model of BSRGAN from the paper
- "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
- ----------
- img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
- sf: scale factor
- isp_model: camera ISP model
- Returns
- -------
- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
- hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
- """
- isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
- sf_ori = sf
-
- h1, w1 = img.shape[:2]
- img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
- h, w = img.shape[:2]
-
- if h < lq_patchsize * sf or w < lq_patchsize * sf:
- raise ValueError(f'img size ({h1}X{w1}) is too small!')
-
- hq = img.copy()
-
- if sf == 4 and random.random() < scale2_prob: # downsample1
- if np.random.rand() < 0.5:
- img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
- interpolation=random.choice([1, 2, 3]))
- else:
- img = util.imresize_np(img, 1 / 2, True)
- img = np.clip(img, 0.0, 1.0)
- sf = 2
-
- shuffle_order = random.sample(range(7), 7)
- idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
- if idx1 > idx2: # keep downsample3 last
- shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
-
- for i in shuffle_order:
-
- if i == 0:
- img = add_blur(img, sf=sf)
-
- elif i == 1:
- img = add_blur(img, sf=sf)
-
- elif i == 2:
- a, b = img.shape[1], img.shape[0]
- # downsample2
- if random.random() < 0.75:
- sf1 = random.uniform(1, 2 * sf)
- img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
- interpolation=random.choice([1, 2, 3]))
- else:
- k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
- k_shifted = shift_pixel(k, sf)
- k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
- img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
- img = img[0::sf, 0::sf, ...] # nearest downsampling
- img = np.clip(img, 0.0, 1.0)
-
- elif i == 3:
- # downsample3
- img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
- img = np.clip(img, 0.0, 1.0)
-
- elif i == 4:
- # add Gaussian noise
- img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
-
- elif i == 5:
- # add JPEG noise
- if random.random() < jpeg_prob:
- img = add_JPEG_noise(img)
-
- elif i == 6:
- # add processed camera sensor noise
- if random.random() < isp_prob and isp_model is not None:
- with torch.no_grad():
- img, hq = isp_model.forward(img.copy(), hq)
-
- # add final JPEG compression noise
- img = add_JPEG_noise(img)
-
- # random crop
- img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
-
- return img, hq
-
-
-# todo no isp_model?
-def degradation_bsrgan_variant(image, sf=4, isp_model=None):
- """
- This is the degradation model of BSRGAN from the paper
- "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
- ----------
- sf: scale factor
- isp_model: camera ISP model
- Returns
- -------
- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
- hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
- """
- image = util.uint2single(image)
- isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
- sf_ori = sf
-
- h1, w1 = image.shape[:2]
- image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
- h, w = image.shape[:2]
-
- hq = image.copy()
-
- if sf == 4 and random.random() < scale2_prob: # downsample1
- if np.random.rand() < 0.5:
- image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
- interpolation=random.choice([1, 2, 3]))
- else:
- image = util.imresize_np(image, 1 / 2, True)
- image = np.clip(image, 0.0, 1.0)
- sf = 2
-
- shuffle_order = random.sample(range(7), 7)
- idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
- if idx1 > idx2: # keep downsample3 last
- shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
-
- for i in shuffle_order:
-
- if i == 0:
- image = add_blur(image, sf=sf)
-
- elif i == 1:
- image = add_blur(image, sf=sf)
-
- elif i == 2:
- a, b = image.shape[1], image.shape[0]
- # downsample2
- if random.random() < 0.75:
- sf1 = random.uniform(1, 2 * sf)
- image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
- interpolation=random.choice([1, 2, 3]))
- else:
- k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
- k_shifted = shift_pixel(k, sf)
- k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
- image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
- image = image[0::sf, 0::sf, ...] # nearest downsampling
- image = np.clip(image, 0.0, 1.0)
-
- elif i == 3:
- # downsample3
- image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
- image = np.clip(image, 0.0, 1.0)
-
- elif i == 4:
- # add Gaussian noise
- image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
-
- elif i == 5:
- # add JPEG noise
- if random.random() < jpeg_prob:
- image = add_JPEG_noise(image)
-
- # elif i == 6:
- # # add processed camera sensor noise
- # if random.random() < isp_prob and isp_model is not None:
- # with torch.no_grad():
- # img, hq = isp_model.forward(img.copy(), hq)
-
- # add final JPEG compression noise
- image = add_JPEG_noise(image)
- image = util.single2uint(image)
- example = {"image":image}
- return example
-
-
-# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
-def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
- """
- This is an extended degradation model by combining
- the degradation models of BSRGAN and Real-ESRGAN
- ----------
- img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
- sf: scale factor
- use_shuffle: the degradation shuffle
- use_sharp: sharpening the img
- Returns
- -------
- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
- hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
- """
-
- h1, w1 = img.shape[:2]
- img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
- h, w = img.shape[:2]
-
- if h < lq_patchsize * sf or w < lq_patchsize * sf:
- raise ValueError(f'img size ({h1}X{w1}) is too small!')
-
- if use_sharp:
- img = add_sharpening(img)
- hq = img.copy()
-
- if random.random() < shuffle_prob:
- shuffle_order = random.sample(range(13), 13)
- else:
- shuffle_order = list(range(13))
- # local shuffle for noise, JPEG is always the last one
- shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
- shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
-
- poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
-
- for i in shuffle_order:
- if i == 0:
- img = add_blur(img, sf=sf)
- elif i == 1:
- img = add_resize(img, sf=sf)
- elif i == 2:
- img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
- elif i == 3:
- if random.random() < poisson_prob:
- img = add_Poisson_noise(img)
- elif i == 4:
- if random.random() < speckle_prob:
- img = add_speckle_noise(img)
- elif i == 5:
- if random.random() < isp_prob and isp_model is not None:
- with torch.no_grad():
- img, hq = isp_model.forward(img.copy(), hq)
- elif i == 6:
- img = add_JPEG_noise(img)
- elif i == 7:
- img = add_blur(img, sf=sf)
- elif i == 8:
- img = add_resize(img, sf=sf)
- elif i == 9:
- img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
- elif i == 10:
- if random.random() < poisson_prob:
- img = add_Poisson_noise(img)
- elif i == 11:
- if random.random() < speckle_prob:
- img = add_speckle_noise(img)
- elif i == 12:
- if random.random() < isp_prob and isp_model is not None:
- with torch.no_grad():
- img, hq = isp_model.forward(img.copy(), hq)
- else:
- print('check the shuffle!')
-
- # resize to desired size
- img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
- interpolation=random.choice([1, 2, 3]))
-
- # add final JPEG compression noise
- img = add_JPEG_noise(img)
-
- # random crop
- img, hq = random_crop(img, hq, sf, lq_patchsize)
-
- return img, hq
-
-
-if __name__ == '__main__':
- print("hey")
- img = util.imread_uint('utils/test.png', 3)
- print(img)
- img = util.uint2single(img)
- print(img)
- img = img[:448, :448]
- h = img.shape[0] // 4
- print("resizing to", h)
- sf = 4
- deg_fn = partial(degradation_bsrgan_variant, sf=sf)
- for i in range(20):
- print(i)
- img_lq = deg_fn(img)
- print(img_lq)
- img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
- print(img_lq.shape)
- print("bicubic", img_lq_bicubic.shape)
- print(img_hq.shape)
- lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
- interpolation=0)
- lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
- interpolation=0)
- img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
- util.imsave(img_concat, str(i) + '.png')
-
-
diff --git a/stable_diffusion/ldm/modules/image_degradation/bsrgan_light.py b/stable_diffusion/ldm/modules/image_degradation/bsrgan_light.py
deleted file mode 100644
index 9e1f823996bf559e9b015ea9aa2b3cd38dd13af1..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/modules/image_degradation/bsrgan_light.py
+++ /dev/null
@@ -1,650 +0,0 @@
-# -*- coding: utf-8 -*-
-import numpy as np
-import cv2
-import torch
-
-from functools import partial
-import random
-from scipy import ndimage
-import scipy
-import scipy.stats as ss
-from scipy.interpolate import interp2d
-from scipy.linalg import orth
-import albumentations
-
-import ldm.modules.image_degradation.utils_image as util
-
-"""
-# --------------------------------------------
-# Super-Resolution
-# --------------------------------------------
-#
-# Kai Zhang (cskaizhang@gmail.com)
-# https://github.com/cszn
-# From 2019/03--2021/08
-# --------------------------------------------
-"""
-
-
-def modcrop_np(img, sf):
- '''
- Args:
- img: numpy image, WxH or WxHxC
- sf: scale factor
- Return:
- cropped image
- '''
- w, h = img.shape[:2]
- im = np.copy(img)
- return im[:w - w % sf, :h - h % sf, ...]
-
-
-"""
-# --------------------------------------------
-# anisotropic Gaussian kernels
-# --------------------------------------------
-"""
-
-
-def analytic_kernel(k):
- """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
- k_size = k.shape[0]
- # Calculate the big kernels size
- big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
- # Loop over the small kernel to fill the big one
- for r in range(k_size):
- for c in range(k_size):
- big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
- # Crop the edges of the big kernel to ignore very small values and increase run time of SR
- crop = k_size // 2
- cropped_big_k = big_k[crop:-crop, crop:-crop]
- # Normalize to 1
- return cropped_big_k / cropped_big_k.sum()
-
-
-def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
- """ generate an anisotropic Gaussian kernel
- Args:
- ksize : e.g., 15, kernel size
- theta : [0, pi], rotation angle range
- l1 : [0.1,50], scaling of eigenvalues
- l2 : [0.1,l1], scaling of eigenvalues
- If l1 = l2, will get an isotropic Gaussian kernel.
- Returns:
- k : kernel
- """
-
- v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
- V = np.array([[v[0], v[1]], [v[1], -v[0]]])
- D = np.array([[l1, 0], [0, l2]])
- Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
- k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
-
- return k
-
-
-def gm_blur_kernel(mean, cov, size=15):
- center = size / 2.0 + 0.5
- k = np.zeros([size, size])
- for y in range(size):
- for x in range(size):
- cy = y - center + 1
- cx = x - center + 1
- k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
-
- k = k / np.sum(k)
- return k
-
-
-def shift_pixel(x, sf, upper_left=True):
- """shift pixel for super-resolution with different scale factors
- Args:
- x: WxHxC or WxH
- sf: scale factor
- upper_left: shift direction
- """
- h, w = x.shape[:2]
- shift = (sf - 1) * 0.5
- xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
- if upper_left:
- x1 = xv + shift
- y1 = yv + shift
- else:
- x1 = xv - shift
- y1 = yv - shift
-
- x1 = np.clip(x1, 0, w - 1)
- y1 = np.clip(y1, 0, h - 1)
-
- if x.ndim == 2:
- x = interp2d(xv, yv, x)(x1, y1)
- if x.ndim == 3:
- for i in range(x.shape[-1]):
- x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
-
- return x
-
-
-def blur(x, k):
- '''
- x: image, NxcxHxW
- k: kernel, Nx1xhxw
- '''
- n, c = x.shape[:2]
- p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
- x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
- k = k.repeat(1, c, 1, 1)
- k = k.view(-1, 1, k.shape[2], k.shape[3])
- x = x.view(1, -1, x.shape[2], x.shape[3])
- x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
- x = x.view(n, c, x.shape[2], x.shape[3])
-
- return x
-
-
-def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
- """"
- # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
- # Kai Zhang
- # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
- # max_var = 2.5 * sf
- """
- # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
- lambda_1 = min_var + np.random.rand() * (max_var - min_var)
- lambda_2 = min_var + np.random.rand() * (max_var - min_var)
- theta = np.random.rand() * np.pi # random theta
- noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
-
- # Set COV matrix using Lambdas and Theta
- LAMBDA = np.diag([lambda_1, lambda_2])
- Q = np.array([[np.cos(theta), -np.sin(theta)],
- [np.sin(theta), np.cos(theta)]])
- SIGMA = Q @ LAMBDA @ Q.T
- INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
-
- # Set expectation position (shifting kernel for aligned image)
- MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
- MU = MU[None, None, :, None]
-
- # Create meshgrid for Gaussian
- [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
- Z = np.stack([X, Y], 2)[:, :, :, None]
-
- # Calcualte Gaussian for every pixel of the kernel
- ZZ = Z - MU
- ZZ_t = ZZ.transpose(0, 1, 3, 2)
- raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
-
- # shift the kernel so it will be centered
- # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
-
- # Normalize the kernel and return
- # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
- kernel = raw_kernel / np.sum(raw_kernel)
- return kernel
-
-
-def fspecial_gaussian(hsize, sigma):
- hsize = [hsize, hsize]
- siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
- std = sigma
- [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
- arg = -(x * x + y * y) / (2 * std * std)
- h = np.exp(arg)
- h[h < scipy.finfo(float).eps * h.max()] = 0
- sumh = h.sum()
- if sumh != 0:
- h = h / sumh
- return h
-
-
-def fspecial_laplacian(alpha):
- alpha = max([0, min([alpha, 1])])
- h1 = alpha / (alpha + 1)
- h2 = (1 - alpha) / (alpha + 1)
- h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
- h = np.array(h)
- return h
-
-
-def fspecial(filter_type, *args, **kwargs):
- '''
- python code from:
- https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
- '''
- if filter_type == 'gaussian':
- return fspecial_gaussian(*args, **kwargs)
- if filter_type == 'laplacian':
- return fspecial_laplacian(*args, **kwargs)
-
-
-"""
-# --------------------------------------------
-# degradation models
-# --------------------------------------------
-"""
-
-
-def bicubic_degradation(x, sf=3):
- '''
- Args:
- x: HxWxC image, [0, 1]
- sf: down-scale factor
- Return:
- bicubicly downsampled LR image
- '''
- x = util.imresize_np(x, scale=1 / sf)
- return x
-
-
-def srmd_degradation(x, k, sf=3):
- ''' blur + bicubic downsampling
- Args:
- x: HxWxC image, [0, 1]
- k: hxw, double
- sf: down-scale factor
- Return:
- downsampled LR image
- Reference:
- @inproceedings{zhang2018learning,
- title={Learning a single convolutional super-resolution network for multiple degradations},
- author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
- booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
- pages={3262--3271},
- year={2018}
- }
- '''
- x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
- x = bicubic_degradation(x, sf=sf)
- return x
-
-
-def dpsr_degradation(x, k, sf=3):
- ''' bicubic downsampling + blur
- Args:
- x: HxWxC image, [0, 1]
- k: hxw, double
- sf: down-scale factor
- Return:
- downsampled LR image
- Reference:
- @inproceedings{zhang2019deep,
- title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
- author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
- booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
- pages={1671--1681},
- year={2019}
- }
- '''
- x = bicubic_degradation(x, sf=sf)
- x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
- return x
-
-
-def classical_degradation(x, k, sf=3):
- ''' blur + downsampling
- Args:
- x: HxWxC image, [0, 1]/[0, 255]
- k: hxw, double
- sf: down-scale factor
- Return:
- downsampled LR image
- '''
- x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
- # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
- st = 0
- return x[st::sf, st::sf, ...]
-
-
-def add_sharpening(img, weight=0.5, radius=50, threshold=10):
- """USM sharpening. borrowed from real-ESRGAN
- Input image: I; Blurry image: B.
- 1. K = I + weight * (I - B)
- 2. Mask = 1 if abs(I - B) > threshold, else: 0
- 3. Blur mask:
- 4. Out = Mask * K + (1 - Mask) * I
- Args:
- img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
- weight (float): Sharp weight. Default: 1.
- radius (float): Kernel size of Gaussian blur. Default: 50.
- threshold (int):
- """
- if radius % 2 == 0:
- radius += 1
- blur = cv2.GaussianBlur(img, (radius, radius), 0)
- residual = img - blur
- mask = np.abs(residual) * 255 > threshold
- mask = mask.astype('float32')
- soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
-
- K = img + weight * residual
- K = np.clip(K, 0, 1)
- return soft_mask * K + (1 - soft_mask) * img
-
-
-def add_blur(img, sf=4):
- wd2 = 4.0 + sf
- wd = 2.0 + 0.2 * sf
-
- wd2 = wd2/4
- wd = wd/4
-
- if random.random() < 0.5:
- l1 = wd2 * random.random()
- l2 = wd2 * random.random()
- k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
- else:
- k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
- img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
-
- return img
-
-
-def add_resize(img, sf=4):
- rnum = np.random.rand()
- if rnum > 0.8: # up
- sf1 = random.uniform(1, 2)
- elif rnum < 0.7: # down
- sf1 = random.uniform(0.5 / sf, 1)
- else:
- sf1 = 1.0
- img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
- img = np.clip(img, 0.0, 1.0)
-
- return img
-
-
-# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
-# noise_level = random.randint(noise_level1, noise_level2)
-# rnum = np.random.rand()
-# if rnum > 0.6: # add color Gaussian noise
-# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
-# elif rnum < 0.4: # add grayscale Gaussian noise
-# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
-# else: # add noise
-# L = noise_level2 / 255.
-# D = np.diag(np.random.rand(3))
-# U = orth(np.random.rand(3, 3))
-# conv = np.dot(np.dot(np.transpose(U), D), U)
-# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
-# img = np.clip(img, 0.0, 1.0)
-# return img
-
-def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
- noise_level = random.randint(noise_level1, noise_level2)
- rnum = np.random.rand()
- if rnum > 0.6: # add color Gaussian noise
- img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
- elif rnum < 0.4: # add grayscale Gaussian noise
- img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
- else: # add noise
- L = noise_level2 / 255.
- D = np.diag(np.random.rand(3))
- U = orth(np.random.rand(3, 3))
- conv = np.dot(np.dot(np.transpose(U), D), U)
- img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
- img = np.clip(img, 0.0, 1.0)
- return img
-
-
-def add_speckle_noise(img, noise_level1=2, noise_level2=25):
- noise_level = random.randint(noise_level1, noise_level2)
- img = np.clip(img, 0.0, 1.0)
- rnum = random.random()
- if rnum > 0.6:
- img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
- elif rnum < 0.4:
- img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
- else:
- L = noise_level2 / 255.
- D = np.diag(np.random.rand(3))
- U = orth(np.random.rand(3, 3))
- conv = np.dot(np.dot(np.transpose(U), D), U)
- img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
- img = np.clip(img, 0.0, 1.0)
- return img
-
-
-def add_Poisson_noise(img):
- img = np.clip((img * 255.0).round(), 0, 255) / 255.
- vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
- if random.random() < 0.5:
- img = np.random.poisson(img * vals).astype(np.float32) / vals
- else:
- img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
- img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
- noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
- img += noise_gray[:, :, np.newaxis]
- img = np.clip(img, 0.0, 1.0)
- return img
-
-
-def add_JPEG_noise(img):
- quality_factor = random.randint(80, 95)
- img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
- result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
- img = cv2.imdecode(encimg, 1)
- img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
- return img
-
-
-def random_crop(lq, hq, sf=4, lq_patchsize=64):
- h, w = lq.shape[:2]
- rnd_h = random.randint(0, h - lq_patchsize)
- rnd_w = random.randint(0, w - lq_patchsize)
- lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
-
- rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
- hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
- return lq, hq
-
-
-def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
- """
- This is the degradation model of BSRGAN from the paper
- "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
- ----------
- img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
- sf: scale factor
- isp_model: camera ISP model
- Returns
- -------
- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
- hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
- """
- isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
- sf_ori = sf
-
- h1, w1 = img.shape[:2]
- img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
- h, w = img.shape[:2]
-
- if h < lq_patchsize * sf or w < lq_patchsize * sf:
- raise ValueError(f'img size ({h1}X{w1}) is too small!')
-
- hq = img.copy()
-
- if sf == 4 and random.random() < scale2_prob: # downsample1
- if np.random.rand() < 0.5:
- img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
- interpolation=random.choice([1, 2, 3]))
- else:
- img = util.imresize_np(img, 1 / 2, True)
- img = np.clip(img, 0.0, 1.0)
- sf = 2
-
- shuffle_order = random.sample(range(7), 7)
- idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
- if idx1 > idx2: # keep downsample3 last
- shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
-
- for i in shuffle_order:
-
- if i == 0:
- img = add_blur(img, sf=sf)
-
- elif i == 1:
- img = add_blur(img, sf=sf)
-
- elif i == 2:
- a, b = img.shape[1], img.shape[0]
- # downsample2
- if random.random() < 0.75:
- sf1 = random.uniform(1, 2 * sf)
- img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
- interpolation=random.choice([1, 2, 3]))
- else:
- k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
- k_shifted = shift_pixel(k, sf)
- k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
- img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
- img = img[0::sf, 0::sf, ...] # nearest downsampling
- img = np.clip(img, 0.0, 1.0)
-
- elif i == 3:
- # downsample3
- img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
- img = np.clip(img, 0.0, 1.0)
-
- elif i == 4:
- # add Gaussian noise
- img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
-
- elif i == 5:
- # add JPEG noise
- if random.random() < jpeg_prob:
- img = add_JPEG_noise(img)
-
- elif i == 6:
- # add processed camera sensor noise
- if random.random() < isp_prob and isp_model is not None:
- with torch.no_grad():
- img, hq = isp_model.forward(img.copy(), hq)
-
- # add final JPEG compression noise
- img = add_JPEG_noise(img)
-
- # random crop
- img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
-
- return img, hq
-
-
-# todo no isp_model?
-def degradation_bsrgan_variant(image, sf=4, isp_model=None):
- """
- This is the degradation model of BSRGAN from the paper
- "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
- ----------
- sf: scale factor
- isp_model: camera ISP model
- Returns
- -------
- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
- hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
- """
- image = util.uint2single(image)
- isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
- sf_ori = sf
-
- h1, w1 = image.shape[:2]
- image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
- h, w = image.shape[:2]
-
- hq = image.copy()
-
- if sf == 4 and random.random() < scale2_prob: # downsample1
- if np.random.rand() < 0.5:
- image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
- interpolation=random.choice([1, 2, 3]))
- else:
- image = util.imresize_np(image, 1 / 2, True)
- image = np.clip(image, 0.0, 1.0)
- sf = 2
-
- shuffle_order = random.sample(range(7), 7)
- idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
- if idx1 > idx2: # keep downsample3 last
- shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
-
- for i in shuffle_order:
-
- if i == 0:
- image = add_blur(image, sf=sf)
-
- # elif i == 1:
- # image = add_blur(image, sf=sf)
-
- if i == 0:
- pass
-
- elif i == 2:
- a, b = image.shape[1], image.shape[0]
- # downsample2
- if random.random() < 0.8:
- sf1 = random.uniform(1, 2 * sf)
- image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
- interpolation=random.choice([1, 2, 3]))
- else:
- k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
- k_shifted = shift_pixel(k, sf)
- k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
- image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
- image = image[0::sf, 0::sf, ...] # nearest downsampling
-
- image = np.clip(image, 0.0, 1.0)
-
- elif i == 3:
- # downsample3
- image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
- image = np.clip(image, 0.0, 1.0)
-
- elif i == 4:
- # add Gaussian noise
- image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
-
- elif i == 5:
- # add JPEG noise
- if random.random() < jpeg_prob:
- image = add_JPEG_noise(image)
- #
- # elif i == 6:
- # # add processed camera sensor noise
- # if random.random() < isp_prob and isp_model is not None:
- # with torch.no_grad():
- # img, hq = isp_model.forward(img.copy(), hq)
-
- # add final JPEG compression noise
- image = add_JPEG_noise(image)
- image = util.single2uint(image)
- example = {"image": image}
- return example
-
-
-
-
-if __name__ == '__main__':
- print("hey")
- img = util.imread_uint('utils/test.png', 3)
- img = img[:448, :448]
- h = img.shape[0] // 4
- print("resizing to", h)
- sf = 4
- deg_fn = partial(degradation_bsrgan_variant, sf=sf)
- for i in range(20):
- print(i)
- img_hq = img
- img_lq = deg_fn(img)["image"]
- img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
- print(img_lq)
- img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
- print(img_lq.shape)
- print("bicubic", img_lq_bicubic.shape)
- print(img_hq.shape)
- lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
- interpolation=0)
- lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
- (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
- interpolation=0)
- img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
- util.imsave(img_concat, str(i) + '.png')
diff --git a/stable_diffusion/ldm/modules/image_degradation/utils/test.png b/stable_diffusion/ldm/modules/image_degradation/utils/test.png
deleted file mode 100644
index 4249b43de0f22707758d13c240268a401642f6e6..0000000000000000000000000000000000000000
Binary files a/stable_diffusion/ldm/modules/image_degradation/utils/test.png and /dev/null differ
diff --git a/stable_diffusion/ldm/modules/image_degradation/utils_image.py b/stable_diffusion/ldm/modules/image_degradation/utils_image.py
deleted file mode 100644
index 0175f155ad900ae33c3c46ed87f49b352e3faf98..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/modules/image_degradation/utils_image.py
+++ /dev/null
@@ -1,916 +0,0 @@
-import os
-import math
-import random
-import numpy as np
-import torch
-import cv2
-from torchvision.utils import make_grid
-from datetime import datetime
-#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
-
-
-os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
-
-
-'''
-# --------------------------------------------
-# Kai Zhang (github: https://github.com/cszn)
-# 03/Mar/2019
-# --------------------------------------------
-# https://github.com/twhui/SRGAN-pyTorch
-# https://github.com/xinntao/BasicSR
-# --------------------------------------------
-'''
-
-
-IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
-
-
-def is_image_file(filename):
- return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
-
-
-def get_timestamp():
- return datetime.now().strftime('%y%m%d-%H%M%S')
-
-
-def imshow(x, title=None, cbar=False, figsize=None):
- plt.figure(figsize=figsize)
- plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
- if title:
- plt.title(title)
- if cbar:
- plt.colorbar()
- plt.show()
-
-
-def surf(Z, cmap='rainbow', figsize=None):
- plt.figure(figsize=figsize)
- ax3 = plt.axes(projection='3d')
-
- w, h = Z.shape[:2]
- xx = np.arange(0,w,1)
- yy = np.arange(0,h,1)
- X, Y = np.meshgrid(xx, yy)
- ax3.plot_surface(X,Y,Z,cmap=cmap)
- #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
- plt.show()
-
-
-'''
-# --------------------------------------------
-# get image pathes
-# --------------------------------------------
-'''
-
-
-def get_image_paths(dataroot):
- paths = None # return None if dataroot is None
- if dataroot is not None:
- paths = sorted(_get_paths_from_images(dataroot))
- return paths
-
-
-def _get_paths_from_images(path):
- assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
- images = []
- for dirpath, _, fnames in sorted(os.walk(path)):
- for fname in sorted(fnames):
- if is_image_file(fname):
- img_path = os.path.join(dirpath, fname)
- images.append(img_path)
- assert images, '{:s} has no valid image file'.format(path)
- return images
-
-
-'''
-# --------------------------------------------
-# split large images into small images
-# --------------------------------------------
-'''
-
-
-def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
- w, h = img.shape[:2]
- patches = []
- if w > p_max and h > p_max:
- w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
- h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
- w1.append(w-p_size)
- h1.append(h-p_size)
-# print(w1)
-# print(h1)
- for i in w1:
- for j in h1:
- patches.append(img[i:i+p_size, j:j+p_size,:])
- else:
- patches.append(img)
-
- return patches
-
-
-def imssave(imgs, img_path):
- """
- imgs: list, N images of size WxHxC
- """
- img_name, ext = os.path.splitext(os.path.basename(img_path))
-
- for i, img in enumerate(imgs):
- if img.ndim == 3:
- img = img[:, :, [2, 1, 0]]
- new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
- cv2.imwrite(new_path, img)
-
-
-def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
- """
- split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
- and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
- will be splitted.
- Args:
- original_dataroot:
- taget_dataroot:
- p_size: size of small images
- p_overlap: patch size in training is a good choice
- p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
- """
- paths = get_image_paths(original_dataroot)
- for img_path in paths:
- # img_name, ext = os.path.splitext(os.path.basename(img_path))
- img = imread_uint(img_path, n_channels=n_channels)
- patches = patches_from_image(img, p_size, p_overlap, p_max)
- imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
- #if original_dataroot == taget_dataroot:
- #del img_path
-
-'''
-# --------------------------------------------
-# makedir
-# --------------------------------------------
-'''
-
-
-def mkdir(path):
- if not os.path.exists(path):
- os.makedirs(path)
-
-
-def mkdirs(paths):
- if isinstance(paths, str):
- mkdir(paths)
- else:
- for path in paths:
- mkdir(path)
-
-
-def mkdir_and_rename(path):
- if os.path.exists(path):
- new_name = path + '_archived_' + get_timestamp()
- print('Path already exists. Rename it to [{:s}]'.format(new_name))
- os.rename(path, new_name)
- os.makedirs(path)
-
-
-'''
-# --------------------------------------------
-# read image from path
-# opencv is fast, but read BGR numpy image
-# --------------------------------------------
-'''
-
-
-# --------------------------------------------
-# get uint8 image of size HxWxn_channles (RGB)
-# --------------------------------------------
-def imread_uint(path, n_channels=3):
- # input: path
- # output: HxWx3(RGB or GGG), or HxWx1 (G)
- if n_channels == 1:
- img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
- img = np.expand_dims(img, axis=2) # HxWx1
- elif n_channels == 3:
- img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
- if img.ndim == 2:
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
- else:
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
- return img
-
-
-# --------------------------------------------
-# matlab's imwrite
-# --------------------------------------------
-def imsave(img, img_path):
- img = np.squeeze(img)
- if img.ndim == 3:
- img = img[:, :, [2, 1, 0]]
- cv2.imwrite(img_path, img)
-
-def imwrite(img, img_path):
- img = np.squeeze(img)
- if img.ndim == 3:
- img = img[:, :, [2, 1, 0]]
- cv2.imwrite(img_path, img)
-
-
-
-# --------------------------------------------
-# get single image of size HxWxn_channles (BGR)
-# --------------------------------------------
-def read_img(path):
- # read image by cv2
- # return: Numpy float32, HWC, BGR, [0,1]
- img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
- img = img.astype(np.float32) / 255.
- if img.ndim == 2:
- img = np.expand_dims(img, axis=2)
- # some images have 4 channels
- if img.shape[2] > 3:
- img = img[:, :, :3]
- return img
-
-
-'''
-# --------------------------------------------
-# image format conversion
-# --------------------------------------------
-# numpy(single) <---> numpy(unit)
-# numpy(single) <---> tensor
-# numpy(unit) <---> tensor
-# --------------------------------------------
-'''
-
-
-# --------------------------------------------
-# numpy(single) [0, 1] <---> numpy(unit)
-# --------------------------------------------
-
-
-def uint2single(img):
-
- return np.float32(img/255.)
-
-
-def single2uint(img):
-
- return np.uint8((img.clip(0, 1)*255.).round())
-
-
-def uint162single(img):
-
- return np.float32(img/65535.)
-
-
-def single2uint16(img):
-
- return np.uint16((img.clip(0, 1)*65535.).round())
-
-
-# --------------------------------------------
-# numpy(unit) (HxWxC or HxW) <---> tensor
-# --------------------------------------------
-
-
-# convert uint to 4-dimensional torch tensor
-def uint2tensor4(img):
- if img.ndim == 2:
- img = np.expand_dims(img, axis=2)
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
-
-
-# convert uint to 3-dimensional torch tensor
-def uint2tensor3(img):
- if img.ndim == 2:
- img = np.expand_dims(img, axis=2)
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
-
-
-# convert 2/3/4-dimensional torch tensor to uint
-def tensor2uint(img):
- img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
- if img.ndim == 3:
- img = np.transpose(img, (1, 2, 0))
- return np.uint8((img*255.0).round())
-
-
-# --------------------------------------------
-# numpy(single) (HxWxC) <---> tensor
-# --------------------------------------------
-
-
-# convert single (HxWxC) to 3-dimensional torch tensor
-def single2tensor3(img):
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
-
-
-# convert single (HxWxC) to 4-dimensional torch tensor
-def single2tensor4(img):
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
-
-
-# convert torch tensor to single
-def tensor2single(img):
- img = img.data.squeeze().float().cpu().numpy()
- if img.ndim == 3:
- img = np.transpose(img, (1, 2, 0))
-
- return img
-
-# convert torch tensor to single
-def tensor2single3(img):
- img = img.data.squeeze().float().cpu().numpy()
- if img.ndim == 3:
- img = np.transpose(img, (1, 2, 0))
- elif img.ndim == 2:
- img = np.expand_dims(img, axis=2)
- return img
-
-
-def single2tensor5(img):
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
-
-
-def single32tensor5(img):
- return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
-
-
-def single42tensor4(img):
- return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
-
-
-# from skimage.io import imread, imsave
-def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
- '''
- Converts a torch Tensor into an image Numpy array of BGR channel order
- Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
- Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
- '''
- tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
- tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
- n_dim = tensor.dim()
- if n_dim == 4:
- n_img = len(tensor)
- img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
- img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
- elif n_dim == 3:
- img_np = tensor.numpy()
- img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
- elif n_dim == 2:
- img_np = tensor.numpy()
- else:
- raise TypeError(
- 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
- if out_type == np.uint8:
- img_np = (img_np * 255.0).round()
- # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
- return img_np.astype(out_type)
-
-
-'''
-# --------------------------------------------
-# Augmentation, flipe and/or rotate
-# --------------------------------------------
-# The following two are enough.
-# (1) augmet_img: numpy image of WxHxC or WxH
-# (2) augment_img_tensor4: tensor image 1xCxWxH
-# --------------------------------------------
-'''
-
-
-def augment_img(img, mode=0):
- '''Kai Zhang (github: https://github.com/cszn)
- '''
- if mode == 0:
- return img
- elif mode == 1:
- return np.flipud(np.rot90(img))
- elif mode == 2:
- return np.flipud(img)
- elif mode == 3:
- return np.rot90(img, k=3)
- elif mode == 4:
- return np.flipud(np.rot90(img, k=2))
- elif mode == 5:
- return np.rot90(img)
- elif mode == 6:
- return np.rot90(img, k=2)
- elif mode == 7:
- return np.flipud(np.rot90(img, k=3))
-
-
-def augment_img_tensor4(img, mode=0):
- '''Kai Zhang (github: https://github.com/cszn)
- '''
- if mode == 0:
- return img
- elif mode == 1:
- return img.rot90(1, [2, 3]).flip([2])
- elif mode == 2:
- return img.flip([2])
- elif mode == 3:
- return img.rot90(3, [2, 3])
- elif mode == 4:
- return img.rot90(2, [2, 3]).flip([2])
- elif mode == 5:
- return img.rot90(1, [2, 3])
- elif mode == 6:
- return img.rot90(2, [2, 3])
- elif mode == 7:
- return img.rot90(3, [2, 3]).flip([2])
-
-
-def augment_img_tensor(img, mode=0):
- '''Kai Zhang (github: https://github.com/cszn)
- '''
- img_size = img.size()
- img_np = img.data.cpu().numpy()
- if len(img_size) == 3:
- img_np = np.transpose(img_np, (1, 2, 0))
- elif len(img_size) == 4:
- img_np = np.transpose(img_np, (2, 3, 1, 0))
- img_np = augment_img(img_np, mode=mode)
- img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
- if len(img_size) == 3:
- img_tensor = img_tensor.permute(2, 0, 1)
- elif len(img_size) == 4:
- img_tensor = img_tensor.permute(3, 2, 0, 1)
-
- return img_tensor.type_as(img)
-
-
-def augment_img_np3(img, mode=0):
- if mode == 0:
- return img
- elif mode == 1:
- return img.transpose(1, 0, 2)
- elif mode == 2:
- return img[::-1, :, :]
- elif mode == 3:
- img = img[::-1, :, :]
- img = img.transpose(1, 0, 2)
- return img
- elif mode == 4:
- return img[:, ::-1, :]
- elif mode == 5:
- img = img[:, ::-1, :]
- img = img.transpose(1, 0, 2)
- return img
- elif mode == 6:
- img = img[:, ::-1, :]
- img = img[::-1, :, :]
- return img
- elif mode == 7:
- img = img[:, ::-1, :]
- img = img[::-1, :, :]
- img = img.transpose(1, 0, 2)
- return img
-
-
-def augment_imgs(img_list, hflip=True, rot=True):
- # horizontal flip OR rotate
- hflip = hflip and random.random() < 0.5
- vflip = rot and random.random() < 0.5
- rot90 = rot and random.random() < 0.5
-
- def _augment(img):
- if hflip:
- img = img[:, ::-1, :]
- if vflip:
- img = img[::-1, :, :]
- if rot90:
- img = img.transpose(1, 0, 2)
- return img
-
- return [_augment(img) for img in img_list]
-
-
-'''
-# --------------------------------------------
-# modcrop and shave
-# --------------------------------------------
-'''
-
-
-def modcrop(img_in, scale):
- # img_in: Numpy, HWC or HW
- img = np.copy(img_in)
- if img.ndim == 2:
- H, W = img.shape
- H_r, W_r = H % scale, W % scale
- img = img[:H - H_r, :W - W_r]
- elif img.ndim == 3:
- H, W, C = img.shape
- H_r, W_r = H % scale, W % scale
- img = img[:H - H_r, :W - W_r, :]
- else:
- raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
- return img
-
-
-def shave(img_in, border=0):
- # img_in: Numpy, HWC or HW
- img = np.copy(img_in)
- h, w = img.shape[:2]
- img = img[border:h-border, border:w-border]
- return img
-
-
-'''
-# --------------------------------------------
-# image processing process on numpy image
-# channel_convert(in_c, tar_type, img_list):
-# rgb2ycbcr(img, only_y=True):
-# bgr2ycbcr(img, only_y=True):
-# ycbcr2rgb(img):
-# --------------------------------------------
-'''
-
-
-def rgb2ycbcr(img, only_y=True):
- '''same as matlab rgb2ycbcr
- only_y: only return Y channel
- Input:
- uint8, [0, 255]
- float, [0, 1]
- '''
- in_img_type = img.dtype
- img.astype(np.float32)
- if in_img_type != np.uint8:
- img *= 255.
- # convert
- if only_y:
- rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
- else:
- rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
- [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
- if in_img_type == np.uint8:
- rlt = rlt.round()
- else:
- rlt /= 255.
- return rlt.astype(in_img_type)
-
-
-def ycbcr2rgb(img):
- '''same as matlab ycbcr2rgb
- Input:
- uint8, [0, 255]
- float, [0, 1]
- '''
- in_img_type = img.dtype
- img.astype(np.float32)
- if in_img_type != np.uint8:
- img *= 255.
- # convert
- rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
- [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
- if in_img_type == np.uint8:
- rlt = rlt.round()
- else:
- rlt /= 255.
- return rlt.astype(in_img_type)
-
-
-def bgr2ycbcr(img, only_y=True):
- '''bgr version of rgb2ycbcr
- only_y: only return Y channel
- Input:
- uint8, [0, 255]
- float, [0, 1]
- '''
- in_img_type = img.dtype
- img.astype(np.float32)
- if in_img_type != np.uint8:
- img *= 255.
- # convert
- if only_y:
- rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
- else:
- rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
- [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
- if in_img_type == np.uint8:
- rlt = rlt.round()
- else:
- rlt /= 255.
- return rlt.astype(in_img_type)
-
-
-def channel_convert(in_c, tar_type, img_list):
- # conversion among BGR, gray and y
- if in_c == 3 and tar_type == 'gray': # BGR to gray
- gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
- return [np.expand_dims(img, axis=2) for img in gray_list]
- elif in_c == 3 and tar_type == 'y': # BGR to y
- y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
- return [np.expand_dims(img, axis=2) for img in y_list]
- elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
- return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
- else:
- return img_list
-
-
-'''
-# --------------------------------------------
-# metric, PSNR and SSIM
-# --------------------------------------------
-'''
-
-
-# --------------------------------------------
-# PSNR
-# --------------------------------------------
-def calculate_psnr(img1, img2, border=0):
- # img1 and img2 have range [0, 255]
- #img1 = img1.squeeze()
- #img2 = img2.squeeze()
- if not img1.shape == img2.shape:
- raise ValueError('Input images must have the same dimensions.')
- h, w = img1.shape[:2]
- img1 = img1[border:h-border, border:w-border]
- img2 = img2[border:h-border, border:w-border]
-
- img1 = img1.astype(np.float64)
- img2 = img2.astype(np.float64)
- mse = np.mean((img1 - img2)**2)
- if mse == 0:
- return float('inf')
- return 20 * math.log10(255.0 / math.sqrt(mse))
-
-
-# --------------------------------------------
-# SSIM
-# --------------------------------------------
-def calculate_ssim(img1, img2, border=0):
- '''calculate SSIM
- the same outputs as MATLAB's
- img1, img2: [0, 255]
- '''
- #img1 = img1.squeeze()
- #img2 = img2.squeeze()
- if not img1.shape == img2.shape:
- raise ValueError('Input images must have the same dimensions.')
- h, w = img1.shape[:2]
- img1 = img1[border:h-border, border:w-border]
- img2 = img2[border:h-border, border:w-border]
-
- if img1.ndim == 2:
- return ssim(img1, img2)
- elif img1.ndim == 3:
- if img1.shape[2] == 3:
- ssims = []
- for i in range(3):
- ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
- return np.array(ssims).mean()
- elif img1.shape[2] == 1:
- return ssim(np.squeeze(img1), np.squeeze(img2))
- else:
- raise ValueError('Wrong input image dimensions.')
-
-
-def ssim(img1, img2):
- C1 = (0.01 * 255)**2
- C2 = (0.03 * 255)**2
-
- img1 = img1.astype(np.float64)
- img2 = img2.astype(np.float64)
- kernel = cv2.getGaussianKernel(11, 1.5)
- window = np.outer(kernel, kernel.transpose())
-
- mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
- mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
- mu1_sq = mu1**2
- mu2_sq = mu2**2
- mu1_mu2 = mu1 * mu2
- sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
- sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
- sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
-
- ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
- (sigma1_sq + sigma2_sq + C2))
- return ssim_map.mean()
-
-
-'''
-# --------------------------------------------
-# matlab's bicubic imresize (numpy and torch) [0, 1]
-# --------------------------------------------
-'''
-
-
-# matlab 'imresize' function, now only support 'bicubic'
-def cubic(x):
- absx = torch.abs(x)
- absx2 = absx**2
- absx3 = absx**3
- return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
- (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
-
-
-def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
- if (scale < 1) and (antialiasing):
- # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
- kernel_width = kernel_width / scale
-
- # Output-space coordinates
- x = torch.linspace(1, out_length, out_length)
-
- # Input-space coordinates. Calculate the inverse mapping such that 0.5
- # in output space maps to 0.5 in input space, and 0.5+scale in output
- # space maps to 1.5 in input space.
- u = x / scale + 0.5 * (1 - 1 / scale)
-
- # What is the left-most pixel that can be involved in the computation?
- left = torch.floor(u - kernel_width / 2)
-
- # What is the maximum number of pixels that can be involved in the
- # computation? Note: it's OK to use an extra pixel here; if the
- # corresponding weights are all zero, it will be eliminated at the end
- # of this function.
- P = math.ceil(kernel_width) + 2
-
- # The indices of the input pixels involved in computing the k-th output
- # pixel are in row k of the indices matrix.
- indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
- 1, P).expand(out_length, P)
-
- # The weights used to compute the k-th output pixel are in row k of the
- # weights matrix.
- distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
- # apply cubic kernel
- if (scale < 1) and (antialiasing):
- weights = scale * cubic(distance_to_center * scale)
- else:
- weights = cubic(distance_to_center)
- # Normalize the weights matrix so that each row sums to 1.
- weights_sum = torch.sum(weights, 1).view(out_length, 1)
- weights = weights / weights_sum.expand(out_length, P)
-
- # If a column in weights is all zero, get rid of it. only consider the first and last column.
- weights_zero_tmp = torch.sum((weights == 0), 0)
- if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
- indices = indices.narrow(1, 1, P - 2)
- weights = weights.narrow(1, 1, P - 2)
- if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
- indices = indices.narrow(1, 0, P - 2)
- weights = weights.narrow(1, 0, P - 2)
- weights = weights.contiguous()
- indices = indices.contiguous()
- sym_len_s = -indices.min() + 1
- sym_len_e = indices.max() - in_length
- indices = indices + sym_len_s - 1
- return weights, indices, int(sym_len_s), int(sym_len_e)
-
-
-# --------------------------------------------
-# imresize for tensor image [0, 1]
-# --------------------------------------------
-def imresize(img, scale, antialiasing=True):
- # Now the scale should be the same for H and W
- # input: img: pytorch tensor, CHW or HW [0,1]
- # output: CHW or HW [0,1] w/o round
- need_squeeze = True if img.dim() == 2 else False
- if need_squeeze:
- img.unsqueeze_(0)
- in_C, in_H, in_W = img.size()
- out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
- kernel_width = 4
- kernel = 'cubic'
-
- # Return the desired dimension order for performing the resize. The
- # strategy is to perform the resize first along the dimension with the
- # smallest scale factor.
- # Now we do not support this.
-
- # get weights and indices
- weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
- in_H, out_H, scale, kernel, kernel_width, antialiasing)
- weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
- in_W, out_W, scale, kernel, kernel_width, antialiasing)
- # process H dimension
- # symmetric copying
- img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
- img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
-
- sym_patch = img[:, :sym_len_Hs, :]
- inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
- sym_patch_inv = sym_patch.index_select(1, inv_idx)
- img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
-
- sym_patch = img[:, -sym_len_He:, :]
- inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
- sym_patch_inv = sym_patch.index_select(1, inv_idx)
- img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
-
- out_1 = torch.FloatTensor(in_C, out_H, in_W)
- kernel_width = weights_H.size(1)
- for i in range(out_H):
- idx = int(indices_H[i][0])
- for j in range(out_C):
- out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
-
- # process W dimension
- # symmetric copying
- out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
- out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
-
- sym_patch = out_1[:, :, :sym_len_Ws]
- inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
- sym_patch_inv = sym_patch.index_select(2, inv_idx)
- out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
-
- sym_patch = out_1[:, :, -sym_len_We:]
- inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
- sym_patch_inv = sym_patch.index_select(2, inv_idx)
- out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
-
- out_2 = torch.FloatTensor(in_C, out_H, out_W)
- kernel_width = weights_W.size(1)
- for i in range(out_W):
- idx = int(indices_W[i][0])
- for j in range(out_C):
- out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
- if need_squeeze:
- out_2.squeeze_()
- return out_2
-
-
-# --------------------------------------------
-# imresize for numpy image [0, 1]
-# --------------------------------------------
-def imresize_np(img, scale, antialiasing=True):
- # Now the scale should be the same for H and W
- # input: img: Numpy, HWC or HW [0,1]
- # output: HWC or HW [0,1] w/o round
- img = torch.from_numpy(img)
- need_squeeze = True if img.dim() == 2 else False
- if need_squeeze:
- img.unsqueeze_(2)
-
- in_H, in_W, in_C = img.size()
- out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
- kernel_width = 4
- kernel = 'cubic'
-
- # Return the desired dimension order for performing the resize. The
- # strategy is to perform the resize first along the dimension with the
- # smallest scale factor.
- # Now we do not support this.
-
- # get weights and indices
- weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
- in_H, out_H, scale, kernel, kernel_width, antialiasing)
- weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
- in_W, out_W, scale, kernel, kernel_width, antialiasing)
- # process H dimension
- # symmetric copying
- img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
- img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
-
- sym_patch = img[:sym_len_Hs, :, :]
- inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
- sym_patch_inv = sym_patch.index_select(0, inv_idx)
- img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
-
- sym_patch = img[-sym_len_He:, :, :]
- inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
- sym_patch_inv = sym_patch.index_select(0, inv_idx)
- img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
-
- out_1 = torch.FloatTensor(out_H, in_W, in_C)
- kernel_width = weights_H.size(1)
- for i in range(out_H):
- idx = int(indices_H[i][0])
- for j in range(out_C):
- out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
-
- # process W dimension
- # symmetric copying
- out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
- out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
-
- sym_patch = out_1[:, :sym_len_Ws, :]
- inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
- sym_patch_inv = sym_patch.index_select(1, inv_idx)
- out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
-
- sym_patch = out_1[:, -sym_len_We:, :]
- inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
- sym_patch_inv = sym_patch.index_select(1, inv_idx)
- out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
-
- out_2 = torch.FloatTensor(out_H, out_W, in_C)
- kernel_width = weights_W.size(1)
- for i in range(out_W):
- idx = int(indices_W[i][0])
- for j in range(out_C):
- out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
- if need_squeeze:
- out_2.squeeze_()
-
- return out_2.numpy()
-
-
-if __name__ == '__main__':
- print('---')
-# img = imread_uint('test.bmp', 3)
-# img = uint2single(img)
-# img_bicubic = imresize_np(img, 1/4)
\ No newline at end of file
diff --git a/stable_diffusion/ldm/modules/losses/__init__.py b/stable_diffusion/ldm/modules/losses/__init__.py
deleted file mode 100644
index 876d7c5bd6e3245ee77feb4c482b7a8143604ad5..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/modules/losses/__init__.py
+++ /dev/null
@@ -1 +0,0 @@
-from ldm.modules.losses.contperceptual import LPIPSWithDiscriminator
\ No newline at end of file
diff --git a/stable_diffusion/ldm/modules/losses/contperceptual.py b/stable_diffusion/ldm/modules/losses/contperceptual.py
deleted file mode 100644
index 672c1e32a1389def02461c0781339681060c540e..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/modules/losses/contperceptual.py
+++ /dev/null
@@ -1,111 +0,0 @@
-import torch
-import torch.nn as nn
-
-from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no?
-
-
-class LPIPSWithDiscriminator(nn.Module):
- def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
- disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
- perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
- disc_loss="hinge"):
-
- super().__init__()
- assert disc_loss in ["hinge", "vanilla"]
- self.kl_weight = kl_weight
- self.pixel_weight = pixelloss_weight
- self.perceptual_loss = LPIPS().eval()
- self.perceptual_weight = perceptual_weight
- # output log variance
- self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
-
- self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
- n_layers=disc_num_layers,
- use_actnorm=use_actnorm
- ).apply(weights_init)
- self.discriminator_iter_start = disc_start
- self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
- self.disc_factor = disc_factor
- self.discriminator_weight = disc_weight
- self.disc_conditional = disc_conditional
-
- def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
- if last_layer is not None:
- nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
- g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
- else:
- nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
- g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
-
- d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
- d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
- d_weight = d_weight * self.discriminator_weight
- return d_weight
-
- def forward(self, inputs, reconstructions, posteriors, optimizer_idx,
- global_step, last_layer=None, cond=None, split="train",
- weights=None):
- rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
- if self.perceptual_weight > 0:
- p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
- rec_loss = rec_loss + self.perceptual_weight * p_loss
-
- nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
- weighted_nll_loss = nll_loss
- if weights is not None:
- weighted_nll_loss = weights*nll_loss
- weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
- nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
- kl_loss = posteriors.kl()
- kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
-
- # now the GAN part
- if optimizer_idx == 0:
- # generator update
- if cond is None:
- assert not self.disc_conditional
- logits_fake = self.discriminator(reconstructions.contiguous())
- else:
- assert self.disc_conditional
- logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
- g_loss = -torch.mean(logits_fake)
-
- if self.disc_factor > 0.0:
- try:
- d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
- except RuntimeError:
- assert not self.training
- d_weight = torch.tensor(0.0)
- else:
- d_weight = torch.tensor(0.0)
-
- disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
- loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss
-
- log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(),
- "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(),
- "{}/rec_loss".format(split): rec_loss.detach().mean(),
- "{}/d_weight".format(split): d_weight.detach(),
- "{}/disc_factor".format(split): torch.tensor(disc_factor),
- "{}/g_loss".format(split): g_loss.detach().mean(),
- }
- return loss, log
-
- if optimizer_idx == 1:
- # second pass for discriminator update
- if cond is None:
- logits_real = self.discriminator(inputs.contiguous().detach())
- logits_fake = self.discriminator(reconstructions.contiguous().detach())
- else:
- logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
- logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
-
- disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
- d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
-
- log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
- "{}/logits_real".format(split): logits_real.detach().mean(),
- "{}/logits_fake".format(split): logits_fake.detach().mean()
- }
- return d_loss, log
-
diff --git a/stable_diffusion/ldm/modules/losses/vqperceptual.py b/stable_diffusion/ldm/modules/losses/vqperceptual.py
deleted file mode 100644
index f69981769e4bd5462600458c4fcf26620f7e4306..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/modules/losses/vqperceptual.py
+++ /dev/null
@@ -1,167 +0,0 @@
-import torch
-from torch import nn
-import torch.nn.functional as F
-from einops import repeat
-
-from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
-from taming.modules.losses.lpips import LPIPS
-from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
-
-
-def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
- assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
- loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3])
- loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3])
- loss_real = (weights * loss_real).sum() / weights.sum()
- loss_fake = (weights * loss_fake).sum() / weights.sum()
- d_loss = 0.5 * (loss_real + loss_fake)
- return d_loss
-
-def adopt_weight(weight, global_step, threshold=0, value=0.):
- if global_step < threshold:
- weight = value
- return weight
-
-
-def measure_perplexity(predicted_indices, n_embed):
- # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
- # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
- encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
- avg_probs = encodings.mean(0)
- perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
- cluster_use = torch.sum(avg_probs > 0)
- return perplexity, cluster_use
-
-def l1(x, y):
- return torch.abs(x-y)
-
-
-def l2(x, y):
- return torch.pow((x-y), 2)
-
-
-class VQLPIPSWithDiscriminator(nn.Module):
- def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
- disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
- perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
- disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips",
- pixel_loss="l1"):
- super().__init__()
- assert disc_loss in ["hinge", "vanilla"]
- assert perceptual_loss in ["lpips", "clips", "dists"]
- assert pixel_loss in ["l1", "l2"]
- self.codebook_weight = codebook_weight
- self.pixel_weight = pixelloss_weight
- if perceptual_loss == "lpips":
- print(f"{self.__class__.__name__}: Running with LPIPS.")
- self.perceptual_loss = LPIPS().eval()
- else:
- raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
- self.perceptual_weight = perceptual_weight
-
- if pixel_loss == "l1":
- self.pixel_loss = l1
- else:
- self.pixel_loss = l2
-
- self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
- n_layers=disc_num_layers,
- use_actnorm=use_actnorm,
- ndf=disc_ndf
- ).apply(weights_init)
- self.discriminator_iter_start = disc_start
- if disc_loss == "hinge":
- self.disc_loss = hinge_d_loss
- elif disc_loss == "vanilla":
- self.disc_loss = vanilla_d_loss
- else:
- raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
- print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
- self.disc_factor = disc_factor
- self.discriminator_weight = disc_weight
- self.disc_conditional = disc_conditional
- self.n_classes = n_classes
-
- def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
- if last_layer is not None:
- nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
- g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
- else:
- nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
- g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
-
- d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
- d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
- d_weight = d_weight * self.discriminator_weight
- return d_weight
-
- def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
- global_step, last_layer=None, cond=None, split="train", predicted_indices=None):
- if not exists(codebook_loss):
- codebook_loss = torch.tensor([0.]).to(inputs.device)
- #rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
- rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
- if self.perceptual_weight > 0:
- p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
- rec_loss = rec_loss + self.perceptual_weight * p_loss
- else:
- p_loss = torch.tensor([0.0])
-
- nll_loss = rec_loss
- #nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
- nll_loss = torch.mean(nll_loss)
-
- # now the GAN part
- if optimizer_idx == 0:
- # generator update
- if cond is None:
- assert not self.disc_conditional
- logits_fake = self.discriminator(reconstructions.contiguous())
- else:
- assert self.disc_conditional
- logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
- g_loss = -torch.mean(logits_fake)
-
- try:
- d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
- except RuntimeError:
- assert not self.training
- d_weight = torch.tensor(0.0)
-
- disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
- loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
-
- log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
- "{}/quant_loss".format(split): codebook_loss.detach().mean(),
- "{}/nll_loss".format(split): nll_loss.detach().mean(),
- "{}/rec_loss".format(split): rec_loss.detach().mean(),
- "{}/p_loss".format(split): p_loss.detach().mean(),
- "{}/d_weight".format(split): d_weight.detach(),
- "{}/disc_factor".format(split): torch.tensor(disc_factor),
- "{}/g_loss".format(split): g_loss.detach().mean(),
- }
- if predicted_indices is not None:
- assert self.n_classes is not None
- with torch.no_grad():
- perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
- log[f"{split}/perplexity"] = perplexity
- log[f"{split}/cluster_usage"] = cluster_usage
- return loss, log
-
- if optimizer_idx == 1:
- # second pass for discriminator update
- if cond is None:
- logits_real = self.discriminator(inputs.contiguous().detach())
- logits_fake = self.discriminator(reconstructions.contiguous().detach())
- else:
- logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
- logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
-
- disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
- d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
-
- log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
- "{}/logits_real".format(split): logits_real.detach().mean(),
- "{}/logits_fake".format(split): logits_fake.detach().mean()
- }
- return d_loss, log
diff --git a/stable_diffusion/ldm/modules/x_transformer.py b/stable_diffusion/ldm/modules/x_transformer.py
deleted file mode 100644
index 5fc15bf9cfe0111a910e7de33d04ffdec3877576..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/modules/x_transformer.py
+++ /dev/null
@@ -1,641 +0,0 @@
-"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
-import torch
-from torch import nn, einsum
-import torch.nn.functional as F
-from functools import partial
-from inspect import isfunction
-from collections import namedtuple
-from einops import rearrange, repeat, reduce
-
-# constants
-
-DEFAULT_DIM_HEAD = 64
-
-Intermediates = namedtuple('Intermediates', [
- 'pre_softmax_attn',
- 'post_softmax_attn'
-])
-
-LayerIntermediates = namedtuple('Intermediates', [
- 'hiddens',
- 'attn_intermediates'
-])
-
-
-class AbsolutePositionalEmbedding(nn.Module):
- def __init__(self, dim, max_seq_len):
- super().__init__()
- self.emb = nn.Embedding(max_seq_len, dim)
- self.init_()
-
- def init_(self):
- nn.init.normal_(self.emb.weight, std=0.02)
-
- def forward(self, x):
- n = torch.arange(x.shape[1], device=x.device)
- return self.emb(n)[None, :, :]
-
-
-class FixedPositionalEmbedding(nn.Module):
- def __init__(self, dim):
- super().__init__()
- inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
- self.register_buffer('inv_freq', inv_freq)
-
- def forward(self, x, seq_dim=1, offset=0):
- t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
- sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
- emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
- return emb[None, :, :]
-
-
-# helpers
-
-def exists(val):
- return val is not None
-
-
-def default(val, d):
- if exists(val):
- return val
- return d() if isfunction(d) else d
-
-
-def always(val):
- def inner(*args, **kwargs):
- return val
- return inner
-
-
-def not_equals(val):
- def inner(x):
- return x != val
- return inner
-
-
-def equals(val):
- def inner(x):
- return x == val
- return inner
-
-
-def max_neg_value(tensor):
- return -torch.finfo(tensor.dtype).max
-
-
-# keyword argument helpers
-
-def pick_and_pop(keys, d):
- values = list(map(lambda key: d.pop(key), keys))
- return dict(zip(keys, values))
-
-
-def group_dict_by_key(cond, d):
- return_val = [dict(), dict()]
- for key in d.keys():
- match = bool(cond(key))
- ind = int(not match)
- return_val[ind][key] = d[key]
- return (*return_val,)
-
-
-def string_begins_with(prefix, str):
- return str.startswith(prefix)
-
-
-def group_by_key_prefix(prefix, d):
- return group_dict_by_key(partial(string_begins_with, prefix), d)
-
-
-def groupby_prefix_and_trim(prefix, d):
- kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
- kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
- return kwargs_without_prefix, kwargs
-
-
-# classes
-class Scale(nn.Module):
- def __init__(self, value, fn):
- super().__init__()
- self.value = value
- self.fn = fn
-
- def forward(self, x, **kwargs):
- x, *rest = self.fn(x, **kwargs)
- return (x * self.value, *rest)
-
-
-class Rezero(nn.Module):
- def __init__(self, fn):
- super().__init__()
- self.fn = fn
- self.g = nn.Parameter(torch.zeros(1))
-
- def forward(self, x, **kwargs):
- x, *rest = self.fn(x, **kwargs)
- return (x * self.g, *rest)
-
-
-class ScaleNorm(nn.Module):
- def __init__(self, dim, eps=1e-5):
- super().__init__()
- self.scale = dim ** -0.5
- self.eps = eps
- self.g = nn.Parameter(torch.ones(1))
-
- def forward(self, x):
- norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
- return x / norm.clamp(min=self.eps) * self.g
-
-
-class RMSNorm(nn.Module):
- def __init__(self, dim, eps=1e-8):
- super().__init__()
- self.scale = dim ** -0.5
- self.eps = eps
- self.g = nn.Parameter(torch.ones(dim))
-
- def forward(self, x):
- norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
- return x / norm.clamp(min=self.eps) * self.g
-
-
-class Residual(nn.Module):
- def forward(self, x, residual):
- return x + residual
-
-
-class GRUGating(nn.Module):
- def __init__(self, dim):
- super().__init__()
- self.gru = nn.GRUCell(dim, dim)
-
- def forward(self, x, residual):
- gated_output = self.gru(
- rearrange(x, 'b n d -> (b n) d'),
- rearrange(residual, 'b n d -> (b n) d')
- )
-
- return gated_output.reshape_as(x)
-
-
-# feedforward
-
-class GEGLU(nn.Module):
- def __init__(self, dim_in, dim_out):
- super().__init__()
- self.proj = nn.Linear(dim_in, dim_out * 2)
-
- def forward(self, x):
- x, gate = self.proj(x).chunk(2, dim=-1)
- return x * F.gelu(gate)
-
-
-class FeedForward(nn.Module):
- def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
- super().__init__()
- inner_dim = int(dim * mult)
- dim_out = default(dim_out, dim)
- project_in = nn.Sequential(
- nn.Linear(dim, inner_dim),
- nn.GELU()
- ) if not glu else GEGLU(dim, inner_dim)
-
- self.net = nn.Sequential(
- project_in,
- nn.Dropout(dropout),
- nn.Linear(inner_dim, dim_out)
- )
-
- def forward(self, x):
- return self.net(x)
-
-
-# attention.
-class Attention(nn.Module):
- def __init__(
- self,
- dim,
- dim_head=DEFAULT_DIM_HEAD,
- heads=8,
- causal=False,
- mask=None,
- talking_heads=False,
- sparse_topk=None,
- use_entmax15=False,
- num_mem_kv=0,
- dropout=0.,
- on_attn=False
- ):
- super().__init__()
- if use_entmax15:
- raise NotImplementedError("Check out entmax activation instead of softmax activation!")
- self.scale = dim_head ** -0.5
- self.heads = heads
- self.causal = causal
- self.mask = mask
-
- inner_dim = dim_head * heads
-
- self.to_q = nn.Linear(dim, inner_dim, bias=False)
- self.to_k = nn.Linear(dim, inner_dim, bias=False)
- self.to_v = nn.Linear(dim, inner_dim, bias=False)
- self.dropout = nn.Dropout(dropout)
-
- # talking heads
- self.talking_heads = talking_heads
- if talking_heads:
- self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
- self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
-
- # explicit topk sparse attention
- self.sparse_topk = sparse_topk
-
- # entmax
- #self.attn_fn = entmax15 if use_entmax15 else F.softmax
- self.attn_fn = F.softmax
-
- # add memory key / values
- self.num_mem_kv = num_mem_kv
- if num_mem_kv > 0:
- self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
- self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
-
- # attention on attention
- self.attn_on_attn = on_attn
- self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
-
- def forward(
- self,
- x,
- context=None,
- mask=None,
- context_mask=None,
- rel_pos=None,
- sinusoidal_emb=None,
- prev_attn=None,
- mem=None
- ):
- b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
- kv_input = default(context, x)
-
- q_input = x
- k_input = kv_input
- v_input = kv_input
-
- if exists(mem):
- k_input = torch.cat((mem, k_input), dim=-2)
- v_input = torch.cat((mem, v_input), dim=-2)
-
- if exists(sinusoidal_emb):
- # in shortformer, the query would start at a position offset depending on the past cached memory
- offset = k_input.shape[-2] - q_input.shape[-2]
- q_input = q_input + sinusoidal_emb(q_input, offset=offset)
- k_input = k_input + sinusoidal_emb(k_input)
-
- q = self.to_q(q_input)
- k = self.to_k(k_input)
- v = self.to_v(v_input)
-
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
-
- input_mask = None
- if any(map(exists, (mask, context_mask))):
- q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
- k_mask = q_mask if not exists(context) else context_mask
- k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
- q_mask = rearrange(q_mask, 'b i -> b () i ()')
- k_mask = rearrange(k_mask, 'b j -> b () () j')
- input_mask = q_mask * k_mask
-
- if self.num_mem_kv > 0:
- mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
- k = torch.cat((mem_k, k), dim=-2)
- v = torch.cat((mem_v, v), dim=-2)
- if exists(input_mask):
- input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
-
- dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
- mask_value = max_neg_value(dots)
-
- if exists(prev_attn):
- dots = dots + prev_attn
-
- pre_softmax_attn = dots
-
- if talking_heads:
- dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
-
- if exists(rel_pos):
- dots = rel_pos(dots)
-
- if exists(input_mask):
- dots.masked_fill_(~input_mask, mask_value)
- del input_mask
-
- if self.causal:
- i, j = dots.shape[-2:]
- r = torch.arange(i, device=device)
- mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
- mask = F.pad(mask, (j - i, 0), value=False)
- dots.masked_fill_(mask, mask_value)
- del mask
-
- if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
- top, _ = dots.topk(self.sparse_topk, dim=-1)
- vk = top[..., -1].unsqueeze(-1).expand_as(dots)
- mask = dots < vk
- dots.masked_fill_(mask, mask_value)
- del mask
-
- attn = self.attn_fn(dots, dim=-1)
- post_softmax_attn = attn
-
- attn = self.dropout(attn)
-
- if talking_heads:
- attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
-
- out = einsum('b h i j, b h j d -> b h i d', attn, v)
- out = rearrange(out, 'b h n d -> b n (h d)')
-
- intermediates = Intermediates(
- pre_softmax_attn=pre_softmax_attn,
- post_softmax_attn=post_softmax_attn
- )
-
- return self.to_out(out), intermediates
-
-
-class AttentionLayers(nn.Module):
- def __init__(
- self,
- dim,
- depth,
- heads=8,
- causal=False,
- cross_attend=False,
- only_cross=False,
- use_scalenorm=False,
- use_rmsnorm=False,
- use_rezero=False,
- rel_pos_num_buckets=32,
- rel_pos_max_distance=128,
- position_infused_attn=False,
- custom_layers=None,
- sandwich_coef=None,
- par_ratio=None,
- residual_attn=False,
- cross_residual_attn=False,
- macaron=False,
- pre_norm=True,
- gate_residual=False,
- **kwargs
- ):
- super().__init__()
- ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
- attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
-
- dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
-
- self.dim = dim
- self.depth = depth
- self.layers = nn.ModuleList([])
-
- self.has_pos_emb = position_infused_attn
- self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
- self.rotary_pos_emb = always(None)
-
- assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
- self.rel_pos = None
-
- self.pre_norm = pre_norm
-
- self.residual_attn = residual_attn
- self.cross_residual_attn = cross_residual_attn
-
- norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
- norm_class = RMSNorm if use_rmsnorm else norm_class
- norm_fn = partial(norm_class, dim)
-
- norm_fn = nn.Identity if use_rezero else norm_fn
- branch_fn = Rezero if use_rezero else None
-
- if cross_attend and not only_cross:
- default_block = ('a', 'c', 'f')
- elif cross_attend and only_cross:
- default_block = ('c', 'f')
- else:
- default_block = ('a', 'f')
-
- if macaron:
- default_block = ('f',) + default_block
-
- if exists(custom_layers):
- layer_types = custom_layers
- elif exists(par_ratio):
- par_depth = depth * len(default_block)
- assert 1 < par_ratio <= par_depth, 'par ratio out of range'
- default_block = tuple(filter(not_equals('f'), default_block))
- par_attn = par_depth // par_ratio
- depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
- par_width = (depth_cut + depth_cut // par_attn) // par_attn
- assert len(default_block) <= par_width, 'default block is too large for par_ratio'
- par_block = default_block + ('f',) * (par_width - len(default_block))
- par_head = par_block * par_attn
- layer_types = par_head + ('f',) * (par_depth - len(par_head))
- elif exists(sandwich_coef):
- assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
- layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
- else:
- layer_types = default_block * depth
-
- self.layer_types = layer_types
- self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
-
- for layer_type in self.layer_types:
- if layer_type == 'a':
- layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
- elif layer_type == 'c':
- layer = Attention(dim, heads=heads, **attn_kwargs)
- elif layer_type == 'f':
- layer = FeedForward(dim, **ff_kwargs)
- layer = layer if not macaron else Scale(0.5, layer)
- else:
- raise Exception(f'invalid layer type {layer_type}')
-
- if isinstance(layer, Attention) and exists(branch_fn):
- layer = branch_fn(layer)
-
- if gate_residual:
- residual_fn = GRUGating(dim)
- else:
- residual_fn = Residual()
-
- self.layers.append(nn.ModuleList([
- norm_fn(),
- layer,
- residual_fn
- ]))
-
- def forward(
- self,
- x,
- context=None,
- mask=None,
- context_mask=None,
- mems=None,
- return_hiddens=False
- ):
- hiddens = []
- intermediates = []
- prev_attn = None
- prev_cross_attn = None
-
- mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
-
- for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
- is_last = ind == (len(self.layers) - 1)
-
- if layer_type == 'a':
- hiddens.append(x)
- layer_mem = mems.pop(0)
-
- residual = x
-
- if self.pre_norm:
- x = norm(x)
-
- if layer_type == 'a':
- out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
- prev_attn=prev_attn, mem=layer_mem)
- elif layer_type == 'c':
- out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
- elif layer_type == 'f':
- out = block(x)
-
- x = residual_fn(out, residual)
-
- if layer_type in ('a', 'c'):
- intermediates.append(inter)
-
- if layer_type == 'a' and self.residual_attn:
- prev_attn = inter.pre_softmax_attn
- elif layer_type == 'c' and self.cross_residual_attn:
- prev_cross_attn = inter.pre_softmax_attn
-
- if not self.pre_norm and not is_last:
- x = norm(x)
-
- if return_hiddens:
- intermediates = LayerIntermediates(
- hiddens=hiddens,
- attn_intermediates=intermediates
- )
-
- return x, intermediates
-
- return x
-
-
-class Encoder(AttentionLayers):
- def __init__(self, **kwargs):
- assert 'causal' not in kwargs, 'cannot set causality on encoder'
- super().__init__(causal=False, **kwargs)
-
-
-
-class TransformerWrapper(nn.Module):
- def __init__(
- self,
- *,
- num_tokens,
- max_seq_len,
- attn_layers,
- emb_dim=None,
- max_mem_len=0.,
- emb_dropout=0.,
- num_memory_tokens=None,
- tie_embedding=False,
- use_pos_emb=True
- ):
- super().__init__()
- assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
-
- dim = attn_layers.dim
- emb_dim = default(emb_dim, dim)
-
- self.max_seq_len = max_seq_len
- self.max_mem_len = max_mem_len
- self.num_tokens = num_tokens
-
- self.token_emb = nn.Embedding(num_tokens, emb_dim)
- self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
- use_pos_emb and not attn_layers.has_pos_emb) else always(0)
- self.emb_dropout = nn.Dropout(emb_dropout)
-
- self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
- self.attn_layers = attn_layers
- self.norm = nn.LayerNorm(dim)
-
- self.init_()
-
- self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
-
- # memory tokens (like [cls]) from Memory Transformers paper
- num_memory_tokens = default(num_memory_tokens, 0)
- self.num_memory_tokens = num_memory_tokens
- if num_memory_tokens > 0:
- self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
-
- # let funnel encoder know number of memory tokens, if specified
- if hasattr(attn_layers, 'num_memory_tokens'):
- attn_layers.num_memory_tokens = num_memory_tokens
-
- def init_(self):
- nn.init.normal_(self.token_emb.weight, std=0.02)
-
- def forward(
- self,
- x,
- return_embeddings=False,
- mask=None,
- return_mems=False,
- return_attn=False,
- mems=None,
- **kwargs
- ):
- b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
- x = self.token_emb(x)
- x += self.pos_emb(x)
- x = self.emb_dropout(x)
-
- x = self.project_emb(x)
-
- if num_mem > 0:
- mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
- x = torch.cat((mem, x), dim=1)
-
- # auto-handle masking after appending memory tokens
- if exists(mask):
- mask = F.pad(mask, (num_mem, 0), value=True)
-
- x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
- x = self.norm(x)
-
- mem, x = x[:, :num_mem], x[:, num_mem:]
-
- out = self.to_logits(x) if not return_embeddings else x
-
- if return_mems:
- hiddens = intermediates.hiddens
- new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
- new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
- return out, new_mems
-
- if return_attn:
- attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
- return out, attn_maps
-
- return out
-
diff --git a/stable_diffusion/ldm/util.py b/stable_diffusion/ldm/util.py
deleted file mode 100644
index 8ba38853e7a07228cc2c187742b5c45d7359b3f9..0000000000000000000000000000000000000000
--- a/stable_diffusion/ldm/util.py
+++ /dev/null
@@ -1,203 +0,0 @@
-import importlib
-
-import torch
-import numpy as np
-from collections import abc
-from einops import rearrange
-from functools import partial
-
-import multiprocessing as mp
-from threading import Thread
-from queue import Queue
-
-from inspect import isfunction
-from PIL import Image, ImageDraw, ImageFont
-
-
-def log_txt_as_img(wh, xc, size=10):
- # wh a tuple of (width, height)
- # xc a list of captions to plot
- b = len(xc)
- txts = list()
- for bi in range(b):
- txt = Image.new("RGB", wh, color="white")
- draw = ImageDraw.Draw(txt)
- font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
- nc = int(40 * (wh[0] / 256))
- lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
-
- try:
- draw.text((0, 0), lines, fill="black", font=font)
- except UnicodeEncodeError:
- print("Cant encode string for logging. Skipping.")
-
- txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
- txts.append(txt)
- txts = np.stack(txts)
- txts = torch.tensor(txts)
- return txts
-
-
-def ismap(x):
- if not isinstance(x, torch.Tensor):
- return False
- return (len(x.shape) == 4) and (x.shape[1] > 3)
-
-
-def isimage(x):
- if not isinstance(x, torch.Tensor):
- return False
- return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
-
-
-def exists(x):
- return x is not None
-
-
-def default(val, d):
- if exists(val):
- return val
- return d() if isfunction(d) else d
-
-
-def mean_flat(tensor):
- """
- https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
- Take the mean over all non-batch dimensions.
- """
- return tensor.mean(dim=list(range(1, len(tensor.shape))))
-
-
-def count_params(model, verbose=False):
- total_params = sum(p.numel() for p in model.parameters())
- if verbose:
- print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
- return total_params
-
-
-def instantiate_from_config(config):
- if not "target" in config:
- if config == '__is_first_stage__':
- return None
- elif config == "__is_unconditional__":
- return None
- raise KeyError("Expected key `target` to instantiate.")
- return get_obj_from_str(config["target"])(**config.get("params", dict()))
-
-
-def get_obj_from_str(string, reload=False):
- module, cls = string.rsplit(".", 1)
- if reload:
- module_imp = importlib.import_module(module)
- importlib.reload(module_imp)
- return getattr(importlib.import_module(module, package=None), cls)
-
-
-def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False):
- # create dummy dataset instance
-
- # run prefetching
- if idx_to_fn:
- res = func(data, worker_id=idx)
- else:
- res = func(data)
- Q.put([idx, res])
- Q.put("Done")
-
-
-def parallel_data_prefetch(
- func: callable, data, n_proc, target_data_type="ndarray", cpu_intensive=True, use_worker_id=False
-):
- # if target_data_type not in ["ndarray", "list"]:
- # raise ValueError(
- # "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray."
- # )
- if isinstance(data, np.ndarray) and target_data_type == "list":
- raise ValueError("list expected but function got ndarray.")
- elif isinstance(data, abc.Iterable):
- if isinstance(data, dict):
- print(
- f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
- )
- data = list(data.values())
- if target_data_type == "ndarray":
- data = np.asarray(data)
- else:
- data = list(data)
- else:
- raise TypeError(
- f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}."
- )
-
- if cpu_intensive:
- Q = mp.Queue(1000)
- proc = mp.Process
- else:
- Q = Queue(1000)
- proc = Thread
- # spawn processes
- if target_data_type == "ndarray":
- arguments = [
- [func, Q, part, i, use_worker_id]
- for i, part in enumerate(np.array_split(data, n_proc))
- ]
- else:
- step = (
- int(len(data) / n_proc + 1)
- if len(data) % n_proc != 0
- else int(len(data) / n_proc)
- )
- arguments = [
- [func, Q, part, i, use_worker_id]
- for i, part in enumerate(
- [data[i: i + step] for i in range(0, len(data), step)]
- )
- ]
- processes = []
- for i in range(n_proc):
- p = proc(target=_do_parallel_data_prefetch, args=arguments[i])
- processes += [p]
-
- # start processes
- print(f"Start prefetching...")
- import time
-
- start = time.time()
- gather_res = [[] for _ in range(n_proc)]
- try:
- for p in processes:
- p.start()
-
- k = 0
- while k < n_proc:
- # get result
- res = Q.get()
- if res == "Done":
- k += 1
- else:
- gather_res[res[0]] = res[1]
-
- except Exception as e:
- print("Exception: ", e)
- for p in processes:
- p.terminate()
-
- raise e
- finally:
- for p in processes:
- p.join()
- print(f"Prefetching complete. [{time.time() - start} sec.]")
-
- if target_data_type == 'ndarray':
- if not isinstance(gather_res[0], np.ndarray):
- return np.concatenate([np.asarray(r) for r in gather_res], axis=0)
-
- # order outputs
- return np.concatenate(gather_res, axis=0)
- elif target_data_type == 'list':
- out = []
- for r in gather_res:
- out.extend(r)
- return out
- else:
- return gather_res
diff --git a/stable_diffusion/main.py b/stable_diffusion/main.py
deleted file mode 100644
index 193c50a86a307bd69f52a0c3b89fb5368ed9a222..0000000000000000000000000000000000000000
--- a/stable_diffusion/main.py
+++ /dev/null
@@ -1,744 +0,0 @@
-import argparse, os, sys, datetime, glob, importlib, csv
-import numpy as np
-import time
-import torch
-import torchvision
-import pytorch_lightning as pl
-
-from packaging import version
-from omegaconf import OmegaConf
-from torch.utils.data import random_split, DataLoader, Dataset, Subset
-from functools import partial
-from PIL import Image
-
-from pytorch_lightning import seed_everything
-from pytorch_lightning.trainer import Trainer
-from pytorch_lightning.callbacks import ModelCheckpoint, Callback, LearningRateMonitor
-from pytorch_lightning.utilities.distributed import rank_zero_only
-from pytorch_lightning.utilities import rank_zero_info
-
-from ldm.data.base import Txt2ImgIterableBaseDataset
-from ldm.util import instantiate_from_config
-
-
-def get_parser(**parser_kwargs):
- def str2bool(v):
- if isinstance(v, bool):
- return v
- if v.lower() in ("yes", "true", "t", "y", "1"):
- return True
- elif v.lower() in ("no", "false", "f", "n", "0"):
- return False
- else:
- raise argparse.ArgumentTypeError("Boolean value expected.")
-
- parser = argparse.ArgumentParser(**parser_kwargs)
- parser.add_argument(
- "-n",
- "--name",
- type=str,
- const=True,
- default="",
- nargs="?",
- help="postfix for logdir",
- )
- parser.add_argument(
- "-r",
- "--resume",
- type=str,
- const=True,
- default="",
- nargs="?",
- help="resume from logdir or checkpoint in logdir",
- )
- parser.add_argument(
- "-b",
- "--base",
- nargs="*",
- metavar="base_config.yaml",
- help="paths to base configs. Loaded from left-to-right. "
- "Parameters can be overwritten or added with command-line options of the form `--key value`.",
- default=list(),
- )
- parser.add_argument(
- "-t",
- "--train",
- type=str2bool,
- const=True,
- default=False,
- nargs="?",
- help="train",
- )
- parser.add_argument(
- "--no-test",
- type=str2bool,
- const=True,
- default=False,
- nargs="?",
- help="disable test",
- )
- parser.add_argument(
- "-p",
- "--project",
- help="name of new or path to existing project"
- )
- parser.add_argument(
- "-d",
- "--debug",
- type=str2bool,
- nargs="?",
- const=True,
- default=False,
- help="enable post-mortem debugging",
- )
- parser.add_argument(
- "-s",
- "--seed",
- type=int,
- default=23,
- help="seed for seed_everything",
- )
- parser.add_argument(
- "-f",
- "--postfix",
- type=str,
- default="",
- help="post-postfix for default name",
- )
- parser.add_argument(
- "-l",
- "--logdir",
- type=str,
- default="logs",
- help="directory for logging dat shit",
- )
- parser.add_argument(
- "--scale_lr",
- type=str2bool,
- nargs="?",
- const=True,
- default=True,
- help="scale base-lr by ngpu * batch_size * n_accumulate",
- )
- return parser
-
-
-def nondefault_trainer_args(opt):
- parser = argparse.ArgumentParser()
- parser = Trainer.add_argparse_args(parser)
- args = parser.parse_args([])
- return sorted(k for k in vars(args) if getattr(opt, k) != getattr(args, k))
-
-
-class WrappedDataset(Dataset):
- """Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset"""
-
- def __init__(self, dataset):
- self.data = dataset
-
- def __len__(self):
- return len(self.data)
-
- def __getitem__(self, idx):
- return self.data[idx]
-
-
-def worker_init_fn(_):
- worker_info = torch.utils.data.get_worker_info()
-
- dataset = worker_info.dataset
- worker_id = worker_info.id
-
- if isinstance(dataset, Txt2ImgIterableBaseDataset):
- split_size = dataset.num_records // worker_info.num_workers
- # reset num_records to the true number to retain reliable length information
- dataset.sample_ids = dataset.valid_ids[worker_id * split_size:(worker_id + 1) * split_size]
- current_id = np.random.choice(len(np.random.get_state()[1]), 1)
- return np.random.seed(np.random.get_state()[1][current_id] + worker_id)
- else:
- return np.random.seed(np.random.get_state()[1][0] + worker_id)
-
-
-class DataModuleFromConfig(pl.LightningDataModule):
- def __init__(self, batch_size, train=None, validation=None, test=None, predict=None,
- wrap=False, num_workers=None, shuffle_test_loader=False, use_worker_init_fn=False,
- shuffle_val_dataloader=False):
- super().__init__()
- self.batch_size = batch_size
- self.dataset_configs = dict()
- self.num_workers = num_workers if num_workers is not None else batch_size * 2
- self.use_worker_init_fn = use_worker_init_fn
- if train is not None:
- self.dataset_configs["train"] = train
- self.train_dataloader = self._train_dataloader
- if validation is not None:
- self.dataset_configs["validation"] = validation
- self.val_dataloader = partial(self._val_dataloader, shuffle=shuffle_val_dataloader)
- if test is not None:
- self.dataset_configs["test"] = test
- self.test_dataloader = partial(self._test_dataloader, shuffle=shuffle_test_loader)
- if predict is not None:
- self.dataset_configs["predict"] = predict
- self.predict_dataloader = self._predict_dataloader
- self.wrap = wrap
-
- def prepare_data(self):
- for data_cfg in self.dataset_configs.values():
- instantiate_from_config(data_cfg)
-
- def setup(self, stage=None):
- self.datasets = dict(
- (k, instantiate_from_config(self.dataset_configs[k]))
- for k in self.dataset_configs)
- if self.wrap:
- for k in self.datasets:
- self.datasets[k] = WrappedDataset(self.datasets[k])
-
- def _train_dataloader(self):
- is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
- if is_iterable_dataset or self.use_worker_init_fn:
- init_fn = worker_init_fn
- else:
- init_fn = None
- return DataLoader(self.datasets["train"], batch_size=self.batch_size,
- num_workers=self.num_workers, shuffle=False if is_iterable_dataset else True,
- worker_init_fn=init_fn)
-
- def _val_dataloader(self, shuffle=False):
- if isinstance(self.datasets['validation'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
- init_fn = worker_init_fn
- else:
- init_fn = None
- return DataLoader(self.datasets["validation"],
- batch_size=self.batch_size,
- num_workers=self.num_workers,
- worker_init_fn=init_fn,
- shuffle=shuffle)
-
- def _test_dataloader(self, shuffle=False):
- is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
- if is_iterable_dataset or self.use_worker_init_fn:
- init_fn = worker_init_fn
- else:
- init_fn = None
-
- # do not shuffle dataloader for iterable dataset
- shuffle = shuffle and (not is_iterable_dataset)
-
- return DataLoader(self.datasets["test"], batch_size=self.batch_size,
- num_workers=self.num_workers, worker_init_fn=init_fn, shuffle=shuffle)
-
- def _predict_dataloader(self, shuffle=False):
- if isinstance(self.datasets['predict'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
- init_fn = worker_init_fn
- else:
- init_fn = None
- return DataLoader(self.datasets["predict"], batch_size=self.batch_size,
- num_workers=self.num_workers, worker_init_fn=init_fn)
-
-
-class SetupCallback(Callback):
- def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config):
- super().__init__()
- self.resume = resume
- self.now = now
- self.logdir = logdir
- self.ckptdir = ckptdir
- self.cfgdir = cfgdir
- self.config = config
- self.lightning_config = lightning_config
-
- def on_keyboard_interrupt(self, trainer, pl_module):
- if trainer.global_rank == 0:
- print("Summoning checkpoint.")
- ckpt_path = os.path.join(self.ckptdir, "last.ckpt")
- trainer.save_checkpoint(ckpt_path)
-
- def on_pretrain_routine_start(self, trainer, pl_module):
- if trainer.global_rank == 0:
- # Create logdirs and save configs
- os.makedirs(self.logdir, exist_ok=True)
- os.makedirs(self.ckptdir, exist_ok=True)
- os.makedirs(self.cfgdir, exist_ok=True)
-
- if "callbacks" in self.lightning_config:
- if 'metrics_over_trainsteps_checkpoint' in self.lightning_config['callbacks']:
- os.makedirs(os.path.join(self.ckptdir, 'trainstep_checkpoints'), exist_ok=True)
- print("Project config")
- print(OmegaConf.to_yaml(self.config))
- OmegaConf.save(self.config,
- os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)))
-
- print("Lightning config")
- print(OmegaConf.to_yaml(self.lightning_config))
- OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}),
- os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)))
-
- else:
- # ModelCheckpoint callback created log directory --- remove it
- if not self.resume and os.path.exists(self.logdir):
- dst, name = os.path.split(self.logdir)
- dst = os.path.join(dst, "child_runs", name)
- os.makedirs(os.path.split(dst)[0], exist_ok=True)
- try:
- os.rename(self.logdir, dst)
- except FileNotFoundError:
- pass
-
-
-class ImageLogger(Callback):
- def __init__(self, batch_frequency, max_images, clamp=True, increase_log_steps=True,
- rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
- log_images_kwargs=None):
- super().__init__()
- self.rescale = rescale
- self.batch_freq = batch_frequency
- self.max_images = max_images
- self.logger_log_images = {
- pl.loggers.TestTubeLogger: self._testtube,
- }
- self.log_steps = [2 ** n for n in range(int(np.log2(self.batch_freq)) + 1)]
- if not increase_log_steps:
- self.log_steps = [self.batch_freq]
- self.clamp = clamp
- self.disabled = disabled
- self.log_on_batch_idx = log_on_batch_idx
- self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
- self.log_first_step = log_first_step
-
- @rank_zero_only
- def _testtube(self, pl_module, images, batch_idx, split):
- for k in images:
- grid = torchvision.utils.make_grid(images[k])
- grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
-
- tag = f"{split}/{k}"
- pl_module.logger.experiment.add_image(
- tag, grid,
- global_step=pl_module.global_step)
-
- @rank_zero_only
- def log_local(self, save_dir, split, images,
- global_step, current_epoch, batch_idx):
- root = os.path.join(save_dir, "images", split)
- for k in images:
- grid = torchvision.utils.make_grid(images[k], nrow=4)
- if self.rescale:
- grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
- grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
- grid = grid.numpy()
- grid = (grid * 255).astype(np.uint8)
- filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
- k,
- global_step,
- current_epoch,
- batch_idx)
- path = os.path.join(root, filename)
- os.makedirs(os.path.split(path)[0], exist_ok=True)
- Image.fromarray(grid).save(path)
-
- def log_img(self, pl_module, batch, batch_idx, split="train"):
- check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
- if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0
- hasattr(pl_module, "log_images") and
- callable(pl_module.log_images) and
- self.max_images > 0):
- logger = type(pl_module.logger)
-
- is_train = pl_module.training
- if is_train:
- pl_module.eval()
-
- with torch.no_grad():
- images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)
-
- for k in images:
- N = min(images[k].shape[0], self.max_images)
- images[k] = images[k][:N]
- if isinstance(images[k], torch.Tensor):
- images[k] = images[k].detach().cpu()
- if self.clamp:
- images[k] = torch.clamp(images[k], -1., 1.)
-
- self.log_local(pl_module.logger.save_dir, split, images,
- pl_module.global_step, pl_module.current_epoch, batch_idx)
-
- logger_log_images = self.logger_log_images.get(logger, lambda *args, **kwargs: None)
- logger_log_images(pl_module, images, pl_module.global_step, split)
-
- if is_train:
- pl_module.train()
-
- def check_frequency(self, check_idx):
- if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and (
- check_idx > 0 or self.log_first_step):
- try:
- self.log_steps.pop(0)
- except IndexError as e:
- print(e)
- pass
- return True
- return False
-
- def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
- if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
- self.log_img(pl_module, batch, batch_idx, split="train")
-
- def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
- if not self.disabled and pl_module.global_step > 0:
- self.log_img(pl_module, batch, batch_idx, split="val")
- if hasattr(pl_module, 'calibrate_grad_norm'):
- if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0:
- self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
-
-
-class CUDACallback(Callback):
- # see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py
- def on_train_epoch_start(self, trainer, pl_module):
- # Reset the memory use counter
- torch.cuda.reset_peak_memory_stats(trainer.root_gpu)
- torch.cuda.synchronize(trainer.root_gpu)
- self.start_time = time.time()
-
- def on_train_epoch_end(self, trainer, pl_module, outputs):
- torch.cuda.synchronize(trainer.root_gpu)
- max_memory = torch.cuda.max_memory_allocated(trainer.root_gpu) / 2 ** 20
- epoch_time = time.time() - self.start_time
-
- try:
- max_memory = trainer.training_type_plugin.reduce(max_memory)
- epoch_time = trainer.training_type_plugin.reduce(epoch_time)
-
- rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds")
- rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB")
- except AttributeError:
- pass
-
-
-if __name__ == "__main__":
- # custom parser to specify config files, train, test and debug mode,
- # postfix, resume.
- # `--key value` arguments are interpreted as arguments to the trainer.
- # `nested.key=value` arguments are interpreted as config parameters.
- # configs are merged from left-to-right followed by command line parameters.
-
- # model:
- # base_learning_rate: float
- # target: path to lightning module
- # params:
- # key: value
- # data:
- # target: main.DataModuleFromConfig
- # params:
- # batch_size: int
- # wrap: bool
- # train:
- # target: path to train dataset
- # params:
- # key: value
- # validation:
- # target: path to validation dataset
- # params:
- # key: value
- # test:
- # target: path to test dataset
- # params:
- # key: value
- # lightning: (optional, has sane defaults and can be specified on cmdline)
- # trainer:
- # additional arguments to trainer
- # logger:
- # logger to instantiate
- # modelcheckpoint:
- # modelcheckpoint to instantiate
- # callbacks:
- # callback1:
- # target: importpath
- # params:
- # key: value
-
- now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
-
- # add cwd for convenience and to make classes in this file available when
- # running as `python main.py`
- # (in particular `main.DataModuleFromConfig`)
- sys.path.append(os.getcwd())
-
- parser = get_parser()
- parser = Trainer.add_argparse_args(parser)
-
- opt, unknown = parser.parse_known_args()
- if opt.name and opt.resume:
- raise ValueError(
- "-n/--name and -r/--resume cannot be specified both."
- "If you want to resume training in a new log folder, "
- "use -n/--name in combination with --resume_from_checkpoint"
- )
- if opt.resume:
- if not os.path.exists(opt.resume):
- raise ValueError("Cannot find {}".format(opt.resume))
- if os.path.isfile(opt.resume):
- paths = opt.resume.split("/")
- # idx = len(paths)-paths[::-1].index("logs")+1
- # logdir = "/".join(paths[:idx])
- logdir = "/".join(paths[:-2])
- ckpt = opt.resume
- else:
- assert os.path.isdir(opt.resume), opt.resume
- logdir = opt.resume.rstrip("/")
- ckpt = os.path.join(logdir, "checkpoints", "last.ckpt")
-
- opt.resume_from_checkpoint = ckpt
- base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))
- opt.base = base_configs + opt.base
- _tmp = logdir.split("/")
- nowname = _tmp[-1]
- else:
- if opt.name:
- name = "_" + opt.name
- elif opt.base:
- cfg_fname = os.path.split(opt.base[0])[-1]
- cfg_name = os.path.splitext(cfg_fname)[0]
- name = "_" + cfg_name
- else:
- name = ""
- nowname = now + name + opt.postfix
- logdir = os.path.join(opt.logdir, nowname)
-
- ckptdir = os.path.join(logdir, "checkpoints")
- cfgdir = os.path.join(logdir, "configs")
- seed_everything(opt.seed)
-
- try:
- # init and save configs
- configs = [OmegaConf.load(cfg) for cfg in opt.base]
- cli = OmegaConf.from_dotlist(unknown)
- config = OmegaConf.merge(*configs, cli)
- lightning_config = config.pop("lightning", OmegaConf.create())
- # merge trainer cli with config
- trainer_config = lightning_config.get("trainer", OmegaConf.create())
- # default to ddp
- trainer_config["accelerator"] = "ddp"
- for k in nondefault_trainer_args(opt):
- trainer_config[k] = getattr(opt, k)
- if not "gpus" in trainer_config:
- del trainer_config["accelerator"]
- cpu = True
- else:
- gpuinfo = trainer_config["gpus"]
- print(f"Running on GPUs {gpuinfo}")
- cpu = False
- trainer_opt = argparse.Namespace(**trainer_config)
- lightning_config.trainer = trainer_config
-
- # model
- model = instantiate_from_config(config.model)
-
- # trainer and callbacks
- trainer_kwargs = dict()
-
- # default logger configs
- default_logger_cfgs = {
- "wandb": {
- "target": "pytorch_lightning.loggers.WandbLogger",
- "params": {
- "name": nowname,
- "save_dir": logdir,
- "offline": opt.debug,
- "id": nowname,
- }
- },
- "testtube": {
- "target": "pytorch_lightning.loggers.TestTubeLogger",
- "params": {
- "name": "testtube",
- "save_dir": logdir,
- }
- },
- }
- default_logger_cfg = default_logger_cfgs["testtube"]
- if "logger" in lightning_config:
- logger_cfg = lightning_config.logger
- else:
- logger_cfg = OmegaConf.create()
- logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
- trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
-
- # modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to
- # specify which metric is used to determine best models
- default_modelckpt_cfg = {
- "target": "pytorch_lightning.callbacks.ModelCheckpoint",
- "params": {
- "dirpath": ckptdir,
- "filename": "{epoch:06}",
- "verbose": True,
- "save_last": True,
- }
- }
- if hasattr(model, "monitor"):
- print(f"Monitoring {model.monitor} as checkpoint metric.")
- default_modelckpt_cfg["params"]["monitor"] = model.monitor
- default_modelckpt_cfg["params"]["save_top_k"] = 3
-
- if "modelcheckpoint" in lightning_config:
- modelckpt_cfg = lightning_config.modelcheckpoint
- else:
- modelckpt_cfg = OmegaConf.create()
- modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
- print(f"Merged modelckpt-cfg: \n{modelckpt_cfg}")
- if version.parse(pl.__version__) < version.parse('1.4.0'):
- trainer_kwargs["checkpoint_callback"] = instantiate_from_config(modelckpt_cfg)
-
- # add callback which sets up log directory
- default_callbacks_cfg = {
- "setup_callback": {
- "target": "main.SetupCallback",
- "params": {
- "resume": opt.resume,
- "now": now,
- "logdir": logdir,
- "ckptdir": ckptdir,
- "cfgdir": cfgdir,
- "config": config,
- "lightning_config": lightning_config,
- }
- },
- "image_logger": {
- "target": "main.ImageLogger",
- "params": {
- "batch_frequency": 750,
- "max_images": 4,
- "clamp": True
- }
- },
- "learning_rate_logger": {
- "target": "main.LearningRateMonitor",
- "params": {
- "logging_interval": "step",
- # "log_momentum": True
- }
- },
- "cuda_callback": {
- "target": "main.CUDACallback"
- },
- }
- if version.parse(pl.__version__) >= version.parse('1.4.0'):
- default_callbacks_cfg.update({'checkpoint_callback': modelckpt_cfg})
-
- if "callbacks" in lightning_config:
- callbacks_cfg = lightning_config.callbacks
- else:
- callbacks_cfg = OmegaConf.create()
-
- if 'metrics_over_trainsteps_checkpoint' in callbacks_cfg:
- print(
- 'Caution: Saving checkpoints every n train steps without deleting. This might require some free space.')
- default_metrics_over_trainsteps_ckpt_dict = {
- 'metrics_over_trainsteps_checkpoint':
- {"target": 'pytorch_lightning.callbacks.ModelCheckpoint',
- 'params': {
- "dirpath": os.path.join(ckptdir, 'trainstep_checkpoints'),
- "filename": "{epoch:06}-{step:09}",
- "verbose": True,
- 'save_top_k': -1,
- 'every_n_train_steps': 10000,
- 'save_weights_only': True
- }
- }
- }
- default_callbacks_cfg.update(default_metrics_over_trainsteps_ckpt_dict)
-
- callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
- if 'ignore_keys_callback' in callbacks_cfg and hasattr(trainer_opt, 'resume_from_checkpoint'):
- callbacks_cfg.ignore_keys_callback.params['ckpt_path'] = trainer_opt.resume_from_checkpoint
- elif 'ignore_keys_callback' in callbacks_cfg:
- del callbacks_cfg['ignore_keys_callback']
-
- trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
-
- trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
- trainer.logdir = logdir ###
-
- # data
- data = instantiate_from_config(config.data)
- # NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
- # calling these ourselves should not be necessary but it is.
- # lightning still takes care of proper multiprocessing though
- data.prepare_data()
- data.setup()
- print("#### Data #####")
- for k in data.datasets:
- print(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}")
-
- # configure learning rate
- bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
- if not cpu:
- ngpu = len(lightning_config.trainer.gpus.strip(",").split(','))
- else:
- ngpu = 1
- if 'accumulate_grad_batches' in lightning_config.trainer:
- accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
- else:
- accumulate_grad_batches = 1
- print(f"accumulate_grad_batches = {accumulate_grad_batches}")
- lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
- if opt.scale_lr:
- model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
- print(
- "Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format(
- model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr))
- else:
- model.learning_rate = base_lr
- print("++++ NOT USING LR SCALING ++++")
- print(f"Setting learning rate to {model.learning_rate:.2e}")
-
-
- # allow checkpointing via USR1
- def melk(*args, **kwargs):
- # run all checkpoint hooks
- if trainer.global_rank == 0:
- print("Summoning checkpoint.")
- ckpt_path = os.path.join(ckptdir, "last.ckpt")
- trainer.save_checkpoint(ckpt_path)
-
-
- def divein(*args, **kwargs):
- if trainer.global_rank == 0:
- import pudb;
- pudb.set_trace()
-
-
- import signal
-
- signal.signal(signal.SIGUSR1, melk)
- signal.signal(signal.SIGUSR2, divein)
-
- # run
- if opt.train:
- try:
- trainer.fit(model, data)
- except Exception:
- melk()
- raise
- if not opt.no_test and not trainer.interrupted:
- trainer.test(model, data)
- except Exception:
- if opt.debug and trainer.global_rank == 0:
- try:
- import pudb as debugger
- except ImportError:
- import pdb as debugger
- debugger.post_mortem()
- raise
- finally:
- # move newly created debug project to debug_runs
- if opt.debug and not opt.resume and trainer.global_rank == 0:
- dst, name = os.path.split(logdir)
- dst = os.path.join(dst, "debug_runs", name)
- os.makedirs(os.path.split(dst)[0], exist_ok=True)
- os.rename(logdir, dst)
- try:
- if trainer.global_rank == 0:
- print(trainer.profiler.summary())
- except:
- pass
diff --git a/stable_diffusion/models/first_stage_models/kl-f16/config.yaml b/stable_diffusion/models/first_stage_models/kl-f16/config.yaml
deleted file mode 100644
index 661921cf75a0b803c5eca41039dd058e24930452..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/first_stage_models/kl-f16/config.yaml
+++ /dev/null
@@ -1,44 +0,0 @@
-model:
- base_learning_rate: 4.5e-06
- target: ldm.models.autoencoder.AutoencoderKL
- params:
- monitor: val/rec_loss
- embed_dim: 16
- lossconfig:
- target: ldm.modules.losses.LPIPSWithDiscriminator
- params:
- disc_start: 50001
- kl_weight: 1.0e-06
- disc_weight: 0.5
- ddconfig:
- double_z: true
- z_channels: 16
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 1
- - 2
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions:
- - 16
- dropout: 0.0
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 6
- wrap: true
- train:
- target: ldm.data.openimages.FullOpenImagesTrain
- params:
- size: 384
- crop_size: 256
- validation:
- target: ldm.data.openimages.FullOpenImagesValidation
- params:
- size: 384
- crop_size: 256
diff --git a/stable_diffusion/models/first_stage_models/kl-f32/config.yaml b/stable_diffusion/models/first_stage_models/kl-f32/config.yaml
deleted file mode 100644
index 7b642b136aaaf909ccd8766372eeffc4dffec342..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/first_stage_models/kl-f32/config.yaml
+++ /dev/null
@@ -1,46 +0,0 @@
-model:
- base_learning_rate: 4.5e-06
- target: ldm.models.autoencoder.AutoencoderKL
- params:
- monitor: val/rec_loss
- embed_dim: 64
- lossconfig:
- target: ldm.modules.losses.LPIPSWithDiscriminator
- params:
- disc_start: 50001
- kl_weight: 1.0e-06
- disc_weight: 0.5
- ddconfig:
- double_z: true
- z_channels: 64
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 1
- - 2
- - 2
- - 4
- - 4
- num_res_blocks: 2
- attn_resolutions:
- - 16
- - 8
- dropout: 0.0
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 6
- wrap: true
- train:
- target: ldm.data.openimages.FullOpenImagesTrain
- params:
- size: 384
- crop_size: 256
- validation:
- target: ldm.data.openimages.FullOpenImagesValidation
- params:
- size: 384
- crop_size: 256
diff --git a/stable_diffusion/models/first_stage_models/kl-f4/config.yaml b/stable_diffusion/models/first_stage_models/kl-f4/config.yaml
deleted file mode 100644
index 85cfb3e94e2ffa867ab49af82fcd8a4dc238e2ad..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/first_stage_models/kl-f4/config.yaml
+++ /dev/null
@@ -1,41 +0,0 @@
-model:
- base_learning_rate: 4.5e-06
- target: ldm.models.autoencoder.AutoencoderKL
- params:
- monitor: val/rec_loss
- embed_dim: 3
- lossconfig:
- target: ldm.modules.losses.LPIPSWithDiscriminator
- params:
- disc_start: 50001
- kl_weight: 1.0e-06
- disc_weight: 0.5
- ddconfig:
- double_z: true
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 10
- wrap: true
- train:
- target: ldm.data.openimages.FullOpenImagesTrain
- params:
- size: 384
- crop_size: 256
- validation:
- target: ldm.data.openimages.FullOpenImagesValidation
- params:
- size: 384
- crop_size: 256
diff --git a/stable_diffusion/models/first_stage_models/kl-f8/config.yaml b/stable_diffusion/models/first_stage_models/kl-f8/config.yaml
deleted file mode 100644
index 921aa425335aced7a1a53307d39da0eba267efd6..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/first_stage_models/kl-f8/config.yaml
+++ /dev/null
@@ -1,42 +0,0 @@
-model:
- base_learning_rate: 4.5e-06
- target: ldm.models.autoencoder.AutoencoderKL
- params:
- monitor: val/rec_loss
- embed_dim: 4
- lossconfig:
- target: ldm.modules.losses.LPIPSWithDiscriminator
- params:
- disc_start: 50001
- kl_weight: 1.0e-06
- disc_weight: 0.5
- ddconfig:
- double_z: true
- z_channels: 4
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 4
- wrap: true
- train:
- target: ldm.data.openimages.FullOpenImagesTrain
- params:
- size: 384
- crop_size: 256
- validation:
- target: ldm.data.openimages.FullOpenImagesValidation
- params:
- size: 384
- crop_size: 256
diff --git a/stable_diffusion/models/first_stage_models/vq-f16/config.yaml b/stable_diffusion/models/first_stage_models/vq-f16/config.yaml
deleted file mode 100644
index 91c74549064bfd158424cba9c79cd2618395fc9f..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/first_stage_models/vq-f16/config.yaml
+++ /dev/null
@@ -1,49 +0,0 @@
-model:
- base_learning_rate: 4.5e-06
- target: ldm.models.autoencoder.VQModel
- params:
- embed_dim: 8
- n_embed: 16384
- ddconfig:
- double_z: false
- z_channels: 8
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 1
- - 2
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions:
- - 16
- dropout: 0.0
- lossconfig:
- target: taming.modules.losses.vqperceptual.VQLPIPSWithDiscriminator
- params:
- disc_conditional: false
- disc_in_channels: 3
- disc_start: 250001
- disc_weight: 0.75
- disc_num_layers: 2
- codebook_weight: 1.0
-
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 14
- num_workers: 20
- wrap: true
- train:
- target: ldm.data.openimages.FullOpenImagesTrain
- params:
- size: 384
- crop_size: 256
- validation:
- target: ldm.data.openimages.FullOpenImagesValidation
- params:
- size: 384
- crop_size: 256
diff --git a/stable_diffusion/models/first_stage_models/vq-f4-noattn/config.yaml b/stable_diffusion/models/first_stage_models/vq-f4-noattn/config.yaml
deleted file mode 100644
index f8e499fa2aa891ea18f2cdbdd423c22bc1db6901..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/first_stage_models/vq-f4-noattn/config.yaml
+++ /dev/null
@@ -1,46 +0,0 @@
-model:
- base_learning_rate: 4.5e-06
- target: ldm.models.autoencoder.VQModel
- params:
- embed_dim: 3
- n_embed: 8192
- monitor: val/rec_loss
-
- ddconfig:
- attn_type: none
- double_z: false
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: taming.modules.losses.vqperceptual.VQLPIPSWithDiscriminator
- params:
- disc_conditional: false
- disc_in_channels: 3
- disc_start: 11
- disc_weight: 0.75
- codebook_weight: 1.0
-
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 8
- num_workers: 12
- wrap: true
- train:
- target: ldm.data.openimages.FullOpenImagesTrain
- params:
- crop_size: 256
- validation:
- target: ldm.data.openimages.FullOpenImagesValidation
- params:
- crop_size: 256
diff --git a/stable_diffusion/models/first_stage_models/vq-f4/config.yaml b/stable_diffusion/models/first_stage_models/vq-f4/config.yaml
deleted file mode 100644
index 7d8cef3252742d70855d1a0df011a82223c17c4f..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/first_stage_models/vq-f4/config.yaml
+++ /dev/null
@@ -1,45 +0,0 @@
-model:
- base_learning_rate: 4.5e-06
- target: ldm.models.autoencoder.VQModel
- params:
- embed_dim: 3
- n_embed: 8192
- monitor: val/rec_loss
-
- ddconfig:
- double_z: false
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: taming.modules.losses.vqperceptual.VQLPIPSWithDiscriminator
- params:
- disc_conditional: false
- disc_in_channels: 3
- disc_start: 0
- disc_weight: 0.75
- codebook_weight: 1.0
-
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 8
- num_workers: 16
- wrap: true
- train:
- target: ldm.data.openimages.FullOpenImagesTrain
- params:
- crop_size: 256
- validation:
- target: ldm.data.openimages.FullOpenImagesValidation
- params:
- crop_size: 256
diff --git a/stable_diffusion/models/first_stage_models/vq-f8-n256/config.yaml b/stable_diffusion/models/first_stage_models/vq-f8-n256/config.yaml
deleted file mode 100644
index 8519e13d618fe04792e59fc6eb826c1804fcdc28..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/first_stage_models/vq-f8-n256/config.yaml
+++ /dev/null
@@ -1,48 +0,0 @@
-model:
- base_learning_rate: 4.5e-06
- target: ldm.models.autoencoder.VQModel
- params:
- embed_dim: 4
- n_embed: 256
- monitor: val/rec_loss
- ddconfig:
- double_z: false
- z_channels: 4
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions:
- - 32
- dropout: 0.0
- lossconfig:
- target: taming.modules.losses.vqperceptual.VQLPIPSWithDiscriminator
- params:
- disc_conditional: false
- disc_in_channels: 3
- disc_start: 250001
- disc_weight: 0.75
- codebook_weight: 1.0
-
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 10
- num_workers: 20
- wrap: true
- train:
- target: ldm.data.openimages.FullOpenImagesTrain
- params:
- size: 384
- crop_size: 256
- validation:
- target: ldm.data.openimages.FullOpenImagesValidation
- params:
- size: 384
- crop_size: 256
diff --git a/stable_diffusion/models/first_stage_models/vq-f8/config.yaml b/stable_diffusion/models/first_stage_models/vq-f8/config.yaml
deleted file mode 100644
index efd6801ca965baf7119b171de8338bd16e120332..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/first_stage_models/vq-f8/config.yaml
+++ /dev/null
@@ -1,48 +0,0 @@
-model:
- base_learning_rate: 4.5e-06
- target: ldm.models.autoencoder.VQModel
- params:
- embed_dim: 4
- n_embed: 16384
- monitor: val/rec_loss
- ddconfig:
- double_z: false
- z_channels: 4
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions:
- - 32
- dropout: 0.0
- lossconfig:
- target: taming.modules.losses.vqperceptual.VQLPIPSWithDiscriminator
- params:
- disc_conditional: false
- disc_in_channels: 3
- disc_num_layers: 2
- disc_start: 1
- disc_weight: 0.6
- codebook_weight: 1.0
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 10
- num_workers: 20
- wrap: true
- train:
- target: ldm.data.openimages.FullOpenImagesTrain
- params:
- size: 384
- crop_size: 256
- validation:
- target: ldm.data.openimages.FullOpenImagesValidation
- params:
- size: 384
- crop_size: 256
diff --git a/stable_diffusion/models/ldm/bsr_sr/config.yaml b/stable_diffusion/models/ldm/bsr_sr/config.yaml
deleted file mode 100644
index 861692a8d10b1764519576fd12200524faa32753..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/ldm/bsr_sr/config.yaml
+++ /dev/null
@@ -1,80 +0,0 @@
-model:
- base_learning_rate: 1.0e-06
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0155
- log_every_t: 100
- timesteps: 1000
- loss_type: l2
- first_stage_key: image
- cond_stage_key: LR_image
- image_size: 64
- channels: 3
- concat_mode: true
- cond_stage_trainable: false
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 64
- in_channels: 6
- out_channels: 3
- model_channels: 160
- attention_resolutions:
- - 16
- - 8
- num_res_blocks: 2
- channel_mult:
- - 1
- - 2
- - 2
- - 4
- num_head_channels: 32
- first_stage_config:
- target: ldm.models.autoencoder.VQModelInterface
- params:
- embed_dim: 3
- n_embed: 8192
- monitor: val/rec_loss
- ddconfig:
- double_z: false
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
- cond_stage_config:
- target: torch.nn.Identity
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 64
- wrap: false
- num_workers: 12
- train:
- target: ldm.data.openimages.SuperresOpenImagesAdvancedTrain
- params:
- size: 256
- degradation: bsrgan_light
- downscale_f: 4
- min_crop_f: 0.5
- max_crop_f: 1.0
- random_crop: true
- validation:
- target: ldm.data.openimages.SuperresOpenImagesAdvancedValidation
- params:
- size: 256
- degradation: bsrgan_light
- downscale_f: 4
- min_crop_f: 0.5
- max_crop_f: 1.0
- random_crop: true
diff --git a/stable_diffusion/models/ldm/celeba256/config.yaml b/stable_diffusion/models/ldm/celeba256/config.yaml
deleted file mode 100644
index a12f4e9d399afe23e6bcc824bddc8bad7ee5456d..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/ldm/celeba256/config.yaml
+++ /dev/null
@@ -1,70 +0,0 @@
-model:
- base_learning_rate: 2.0e-06
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0195
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- first_stage_key: image
- cond_stage_key: class_label
- image_size: 64
- channels: 3
- cond_stage_trainable: false
- concat_mode: false
- monitor: val/loss
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 64
- in_channels: 3
- out_channels: 3
- model_channels: 224
- attention_resolutions:
- - 8
- - 4
- - 2
- num_res_blocks: 2
- channel_mult:
- - 1
- - 2
- - 3
- - 4
- num_head_channels: 32
- first_stage_config:
- target: ldm.models.autoencoder.VQModelInterface
- params:
- embed_dim: 3
- n_embed: 8192
- ddconfig:
- double_z: false
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
- cond_stage_config: __is_unconditional__
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 48
- num_workers: 5
- wrap: false
- train:
- target: ldm.data.faceshq.CelebAHQTrain
- params:
- size: 256
- validation:
- target: ldm.data.faceshq.CelebAHQValidation
- params:
- size: 256
diff --git a/stable_diffusion/models/ldm/cin256/config.yaml b/stable_diffusion/models/ldm/cin256/config.yaml
deleted file mode 100644
index 9bc1b4566af8b53a2a20eb2b6dc68445f5fb4eb8..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/ldm/cin256/config.yaml
+++ /dev/null
@@ -1,80 +0,0 @@
-model:
- base_learning_rate: 1.0e-06
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0195
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- first_stage_key: image
- cond_stage_key: class_label
- image_size: 32
- channels: 4
- cond_stage_trainable: true
- conditioning_key: crossattn
- monitor: val/loss_simple_ema
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 32
- in_channels: 4
- out_channels: 4
- model_channels: 256
- attention_resolutions:
- - 4
- - 2
- - 1
- num_res_blocks: 2
- channel_mult:
- - 1
- - 2
- - 4
- num_head_channels: 32
- use_spatial_transformer: true
- transformer_depth: 1
- context_dim: 512
- first_stage_config:
- target: ldm.models.autoencoder.VQModelInterface
- params:
- embed_dim: 4
- n_embed: 16384
- ddconfig:
- double_z: false
- z_channels: 4
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions:
- - 32
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
- cond_stage_config:
- target: ldm.modules.encoders.modules.ClassEmbedder
- params:
- embed_dim: 512
- key: class_label
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 64
- num_workers: 12
- wrap: false
- train:
- target: ldm.data.imagenet.ImageNetTrain
- params:
- config:
- size: 256
- validation:
- target: ldm.data.imagenet.ImageNetValidation
- params:
- config:
- size: 256
diff --git a/stable_diffusion/models/ldm/ffhq256/config.yaml b/stable_diffusion/models/ldm/ffhq256/config.yaml
deleted file mode 100644
index 0ddfd1b93e8e52c9de2e981f9f4bbaf83e75b38e..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/ldm/ffhq256/config.yaml
+++ /dev/null
@@ -1,70 +0,0 @@
-model:
- base_learning_rate: 2.0e-06
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0195
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- first_stage_key: image
- cond_stage_key: class_label
- image_size: 64
- channels: 3
- cond_stage_trainable: false
- concat_mode: false
- monitor: val/loss
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 64
- in_channels: 3
- out_channels: 3
- model_channels: 224
- attention_resolutions:
- - 8
- - 4
- - 2
- num_res_blocks: 2
- channel_mult:
- - 1
- - 2
- - 3
- - 4
- num_head_channels: 32
- first_stage_config:
- target: ldm.models.autoencoder.VQModelInterface
- params:
- embed_dim: 3
- n_embed: 8192
- ddconfig:
- double_z: false
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
- cond_stage_config: __is_unconditional__
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 42
- num_workers: 5
- wrap: false
- train:
- target: ldm.data.faceshq.FFHQTrain
- params:
- size: 256
- validation:
- target: ldm.data.faceshq.FFHQValidation
- params:
- size: 256
diff --git a/stable_diffusion/models/ldm/inpainting_big/config.yaml b/stable_diffusion/models/ldm/inpainting_big/config.yaml
deleted file mode 100644
index da5fd5ea508ea0998b75519bc297411946e4a5bb..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/ldm/inpainting_big/config.yaml
+++ /dev/null
@@ -1,67 +0,0 @@
-model:
- base_learning_rate: 1.0e-06
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0205
- log_every_t: 100
- timesteps: 1000
- loss_type: l1
- first_stage_key: image
- cond_stage_key: masked_image
- image_size: 64
- channels: 3
- concat_mode: true
- monitor: val/loss
- scheduler_config:
- target: ldm.lr_scheduler.LambdaWarmUpCosineScheduler
- params:
- verbosity_interval: 0
- warm_up_steps: 1000
- max_decay_steps: 50000
- lr_start: 0.001
- lr_max: 0.1
- lr_min: 0.0001
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 64
- in_channels: 7
- out_channels: 3
- model_channels: 256
- attention_resolutions:
- - 8
- - 4
- - 2
- num_res_blocks: 2
- channel_mult:
- - 1
- - 2
- - 3
- - 4
- num_heads: 8
- resblock_updown: true
- first_stage_config:
- target: ldm.models.autoencoder.VQModelInterface
- params:
- embed_dim: 3
- n_embed: 8192
- monitor: val/rec_loss
- ddconfig:
- attn_type: none
- double_z: false
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: ldm.modules.losses.contperceptual.DummyLoss
- cond_stage_config: __is_first_stage__
diff --git a/stable_diffusion/models/ldm/layout2img-openimages256/config.yaml b/stable_diffusion/models/ldm/layout2img-openimages256/config.yaml
deleted file mode 100644
index 9e1dc15fe2732c70b918ceba4255aef895031efd..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/ldm/layout2img-openimages256/config.yaml
+++ /dev/null
@@ -1,81 +0,0 @@
-model:
- base_learning_rate: 2.0e-06
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0205
- log_every_t: 100
- timesteps: 1000
- loss_type: l1
- first_stage_key: image
- cond_stage_key: coordinates_bbox
- image_size: 64
- channels: 3
- conditioning_key: crossattn
- cond_stage_trainable: true
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 64
- in_channels: 3
- out_channels: 3
- model_channels: 128
- attention_resolutions:
- - 8
- - 4
- - 2
- num_res_blocks: 2
- channel_mult:
- - 1
- - 2
- - 3
- - 4
- num_head_channels: 32
- use_spatial_transformer: true
- transformer_depth: 3
- context_dim: 512
- first_stage_config:
- target: ldm.models.autoencoder.VQModelInterface
- params:
- embed_dim: 3
- n_embed: 8192
- monitor: val/rec_loss
- ddconfig:
- double_z: false
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
- cond_stage_config:
- target: ldm.modules.encoders.modules.BERTEmbedder
- params:
- n_embed: 512
- n_layer: 16
- vocab_size: 8192
- max_seq_len: 92
- use_tokenizer: false
- monitor: val/loss_simple_ema
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 24
- wrap: false
- num_workers: 10
- train:
- target: ldm.data.openimages.OpenImagesBBoxTrain
- params:
- size: 256
- validation:
- target: ldm.data.openimages.OpenImagesBBoxValidation
- params:
- size: 256
diff --git a/stable_diffusion/models/ldm/lsun_beds256/config.yaml b/stable_diffusion/models/ldm/lsun_beds256/config.yaml
deleted file mode 100644
index 1a50c766a5e571545e4f15f897de73f9df49d85c..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/ldm/lsun_beds256/config.yaml
+++ /dev/null
@@ -1,70 +0,0 @@
-model:
- base_learning_rate: 2.0e-06
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0195
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- first_stage_key: image
- cond_stage_key: class_label
- image_size: 64
- channels: 3
- cond_stage_trainable: false
- concat_mode: false
- monitor: val/loss
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 64
- in_channels: 3
- out_channels: 3
- model_channels: 224
- attention_resolutions:
- - 8
- - 4
- - 2
- num_res_blocks: 2
- channel_mult:
- - 1
- - 2
- - 3
- - 4
- num_head_channels: 32
- first_stage_config:
- target: ldm.models.autoencoder.VQModelInterface
- params:
- embed_dim: 3
- n_embed: 8192
- ddconfig:
- double_z: false
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
- cond_stage_config: __is_unconditional__
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 48
- num_workers: 5
- wrap: false
- train:
- target: ldm.data.lsun.LSUNBedroomsTrain
- params:
- size: 256
- validation:
- target: ldm.data.lsun.LSUNBedroomsValidation
- params:
- size: 256
diff --git a/stable_diffusion/models/ldm/lsun_churches256/config.yaml b/stable_diffusion/models/ldm/lsun_churches256/config.yaml
deleted file mode 100644
index 424d0914c9a1b9d4df3a2862ee7764404fe8adc1..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/ldm/lsun_churches256/config.yaml
+++ /dev/null
@@ -1,92 +0,0 @@
-model:
- base_learning_rate: 5.0e-05
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0155
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- loss_type: l1
- first_stage_key: image
- cond_stage_key: image
- image_size: 32
- channels: 4
- cond_stage_trainable: false
- concat_mode: false
- scale_by_std: true
- monitor: val/loss_simple_ema
- scheduler_config:
- target: ldm.lr_scheduler.LambdaLinearScheduler
- params:
- warm_up_steps:
- - 10000
- cycle_lengths:
- - 10000000000000
- f_start:
- - 1.0e-06
- f_max:
- - 1.0
- f_min:
- - 1.0
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 32
- in_channels: 4
- out_channels: 4
- model_channels: 192
- attention_resolutions:
- - 1
- - 2
- - 4
- - 8
- num_res_blocks: 2
- channel_mult:
- - 1
- - 2
- - 2
- - 4
- - 4
- num_heads: 8
- use_scale_shift_norm: true
- resblock_updown: true
- first_stage_config:
- target: ldm.models.autoencoder.AutoencoderKL
- params:
- embed_dim: 4
- monitor: val/rec_loss
- ddconfig:
- double_z: true
- z_channels: 4
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
-
- cond_stage_config: '__is_unconditional__'
-
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 96
- num_workers: 5
- wrap: false
- train:
- target: ldm.data.lsun.LSUNChurchesTrain
- params:
- size: 256
- validation:
- target: ldm.data.lsun.LSUNChurchesValidation
- params:
- size: 256
diff --git a/stable_diffusion/models/ldm/semantic_synthesis256/config.yaml b/stable_diffusion/models/ldm/semantic_synthesis256/config.yaml
deleted file mode 100644
index 1a721cfffa5f0cd627be56c07cf5306ae4933cd1..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/ldm/semantic_synthesis256/config.yaml
+++ /dev/null
@@ -1,59 +0,0 @@
-model:
- base_learning_rate: 1.0e-06
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0205
- log_every_t: 100
- timesteps: 1000
- loss_type: l1
- first_stage_key: image
- cond_stage_key: segmentation
- image_size: 64
- channels: 3
- concat_mode: true
- cond_stage_trainable: true
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 64
- in_channels: 6
- out_channels: 3
- model_channels: 128
- attention_resolutions:
- - 32
- - 16
- - 8
- num_res_blocks: 2
- channel_mult:
- - 1
- - 4
- - 8
- num_heads: 8
- first_stage_config:
- target: ldm.models.autoencoder.VQModelInterface
- params:
- embed_dim: 3
- n_embed: 8192
- ddconfig:
- double_z: false
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
- cond_stage_config:
- target: ldm.modules.encoders.modules.SpatialRescaler
- params:
- n_stages: 2
- in_channels: 182
- out_channels: 3
diff --git a/stable_diffusion/models/ldm/semantic_synthesis512/config.yaml b/stable_diffusion/models/ldm/semantic_synthesis512/config.yaml
deleted file mode 100644
index 8faded2eec5899064fc464a1b543d3a1b9c0613f..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/ldm/semantic_synthesis512/config.yaml
+++ /dev/null
@@ -1,78 +0,0 @@
-model:
- base_learning_rate: 1.0e-06
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0205
- log_every_t: 100
- timesteps: 1000
- loss_type: l1
- first_stage_key: image
- cond_stage_key: segmentation
- image_size: 128
- channels: 3
- concat_mode: true
- cond_stage_trainable: true
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 128
- in_channels: 6
- out_channels: 3
- model_channels: 128
- attention_resolutions:
- - 32
- - 16
- - 8
- num_res_blocks: 2
- channel_mult:
- - 1
- - 4
- - 8
- num_heads: 8
- first_stage_config:
- target: ldm.models.autoencoder.VQModelInterface
- params:
- embed_dim: 3
- n_embed: 8192
- monitor: val/rec_loss
- ddconfig:
- double_z: false
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
- cond_stage_config:
- target: ldm.modules.encoders.modules.SpatialRescaler
- params:
- n_stages: 2
- in_channels: 182
- out_channels: 3
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 8
- wrap: false
- num_workers: 10
- train:
- target: ldm.data.landscapes.RFWTrain
- params:
- size: 768
- crop_size: 512
- segmentation_to_float32: true
- validation:
- target: ldm.data.landscapes.RFWValidation
- params:
- size: 768
- crop_size: 512
- segmentation_to_float32: true
diff --git a/stable_diffusion/models/ldm/text2img256/config.yaml b/stable_diffusion/models/ldm/text2img256/config.yaml
deleted file mode 100644
index 3f54a0151569fafcd0df37a480e5ea920fe7ffb5..0000000000000000000000000000000000000000
--- a/stable_diffusion/models/ldm/text2img256/config.yaml
+++ /dev/null
@@ -1,77 +0,0 @@
-model:
- base_learning_rate: 2.0e-06
- target: ldm.models.diffusion.ddpm.LatentDiffusion
- params:
- linear_start: 0.0015
- linear_end: 0.0195
- num_timesteps_cond: 1
- log_every_t: 200
- timesteps: 1000
- first_stage_key: image
- cond_stage_key: caption
- image_size: 64
- channels: 3
- cond_stage_trainable: true
- conditioning_key: crossattn
- monitor: val/loss_simple_ema
- unet_config:
- target: ldm.modules.diffusionmodules.openaimodel.UNetModel
- params:
- image_size: 64
- in_channels: 3
- out_channels: 3
- model_channels: 192
- attention_resolutions:
- - 8
- - 4
- - 2
- num_res_blocks: 2
- channel_mult:
- - 1
- - 2
- - 3
- - 5
- num_head_channels: 32
- use_spatial_transformer: true
- transformer_depth: 1
- context_dim: 640
- first_stage_config:
- target: ldm.models.autoencoder.VQModelInterface
- params:
- embed_dim: 3
- n_embed: 8192
- ddconfig:
- double_z: false
- z_channels: 3
- resolution: 256
- in_channels: 3
- out_ch: 3
- ch: 128
- ch_mult:
- - 1
- - 2
- - 4
- num_res_blocks: 2
- attn_resolutions: []
- dropout: 0.0
- lossconfig:
- target: torch.nn.Identity
- cond_stage_config:
- target: ldm.modules.encoders.modules.BERTEmbedder
- params:
- n_embed: 640
- n_layer: 32
-data:
- target: main.DataModuleFromConfig
- params:
- batch_size: 28
- num_workers: 10
- wrap: false
- train:
- target: ldm.data.previews.pytorch_dataset.PreviewsTrain
- params:
- size: 256
- validation:
- target: ldm.data.previews.pytorch_dataset.PreviewsValidation
- params:
- size: 256
diff --git a/stable_diffusion/notebook_helpers.py b/stable_diffusion/notebook_helpers.py
deleted file mode 100644
index 5d0ebd7e1f8095053f34b1d7652b55d165097f0e..0000000000000000000000000000000000000000
--- a/stable_diffusion/notebook_helpers.py
+++ /dev/null
@@ -1,270 +0,0 @@
-from torchvision.datasets.utils import download_url
-from ldm.util import instantiate_from_config
-import torch
-import os
-# todo ?
-from google.colab import files
-from IPython.display import Image as ipyimg
-import ipywidgets as widgets
-from PIL import Image
-from numpy import asarray
-from einops import rearrange, repeat
-import torch, torchvision
-from ldm.models.diffusion.ddim import DDIMSampler
-from ldm.util import ismap
-import time
-from omegaconf import OmegaConf
-
-
-def download_models(mode):
-
- if mode == "superresolution":
- # this is the small bsr light model
- url_conf = 'https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1'
- url_ckpt = 'https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1'
-
- path_conf = 'logs/diffusion/superresolution_bsr/configs/project.yaml'
- path_ckpt = 'logs/diffusion/superresolution_bsr/checkpoints/last.ckpt'
-
- download_url(url_conf, path_conf)
- download_url(url_ckpt, path_ckpt)
-
- path_conf = path_conf + '/?dl=1' # fix it
- path_ckpt = path_ckpt + '/?dl=1' # fix it
- return path_conf, path_ckpt
-
- else:
- raise NotImplementedError
-
-
-def load_model_from_config(config, ckpt):
- print(f"Loading model from {ckpt}")
- pl_sd = torch.load(ckpt, map_location="cpu")
- global_step = pl_sd["global_step"]
- sd = pl_sd["state_dict"]
- model = instantiate_from_config(config.model)
- m, u = model.load_state_dict(sd, strict=False)
- model.cuda()
- model.eval()
- return {"model": model}, global_step
-
-
-def get_model(mode):
- path_conf, path_ckpt = download_models(mode)
- config = OmegaConf.load(path_conf)
- model, step = load_model_from_config(config, path_ckpt)
- return model
-
-
-def get_custom_cond(mode):
- dest = "data/example_conditioning"
-
- if mode == "superresolution":
- uploaded_img = files.upload()
- filename = next(iter(uploaded_img))
- name, filetype = filename.split(".") # todo assumes just one dot in name !
- os.rename(f"{filename}", f"{dest}/{mode}/custom_{name}.{filetype}")
-
- elif mode == "text_conditional":
- w = widgets.Text(value='A cake with cream!', disabled=True)
- display(w)
-
- with open(f"{dest}/{mode}/custom_{w.value[:20]}.txt", 'w') as f:
- f.write(w.value)
-
- elif mode == "class_conditional":
- w = widgets.IntSlider(min=0, max=1000)
- display(w)
- with open(f"{dest}/{mode}/custom.txt", 'w') as f:
- f.write(w.value)
-
- else:
- raise NotImplementedError(f"cond not implemented for mode{mode}")
-
-
-def get_cond_options(mode):
- path = "data/example_conditioning"
- path = os.path.join(path, mode)
- onlyfiles = [f for f in sorted(os.listdir(path))]
- return path, onlyfiles
-
-
-def select_cond_path(mode):
- path = "data/example_conditioning" # todo
- path = os.path.join(path, mode)
- onlyfiles = [f for f in sorted(os.listdir(path))]
-
- selected = widgets.RadioButtons(
- options=onlyfiles,
- description='Select conditioning:',
- disabled=False
- )
- display(selected)
- selected_path = os.path.join(path, selected.value)
- return selected_path
-
-
-def get_cond(mode, selected_path):
- example = dict()
- if mode == "superresolution":
- up_f = 4
- visualize_cond_img(selected_path)
-
- c = Image.open(selected_path)
- c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0)
- c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]], antialias=True)
- c_up = rearrange(c_up, '1 c h w -> 1 h w c')
- c = rearrange(c, '1 c h w -> 1 h w c')
- c = 2. * c - 1.
-
- c = c.to(torch.device("cuda"))
- example["LR_image"] = c
- example["image"] = c_up
-
- return example
-
-
-def visualize_cond_img(path):
- display(ipyimg(filename=path))
-
-
-def run(model, selected_path, task, custom_steps, resize_enabled=False, classifier_ckpt=None, global_step=None):
-
- example = get_cond(task, selected_path)
-
- save_intermediate_vid = False
- n_runs = 1
- masked = False
- guider = None
- ckwargs = None
- mode = 'ddim'
- ddim_use_x0_pred = False
- temperature = 1.
- eta = 1.
- make_progrow = True
- custom_shape = None
-
- height, width = example["image"].shape[1:3]
- split_input = height >= 128 and width >= 128
-
- if split_input:
- ks = 128
- stride = 64
- vqf = 4 #
- model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride),
- "vqf": vqf,
- "patch_distributed_vq": True,
- "tie_braker": False,
- "clip_max_weight": 0.5,
- "clip_min_weight": 0.01,
- "clip_max_tie_weight": 0.5,
- "clip_min_tie_weight": 0.01}
- else:
- if hasattr(model, "split_input_params"):
- delattr(model, "split_input_params")
-
- invert_mask = False
-
- x_T = None
- for n in range(n_runs):
- if custom_shape is not None:
- x_T = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device)
- x_T = repeat(x_T, '1 c h w -> b c h w', b=custom_shape[0])
-
- logs = make_convolutional_sample(example, model,
- mode=mode, custom_steps=custom_steps,
- eta=eta, swap_mode=False , masked=masked,
- invert_mask=invert_mask, quantize_x0=False,
- custom_schedule=None, decode_interval=10,
- resize_enabled=resize_enabled, custom_shape=custom_shape,
- temperature=temperature, noise_dropout=0.,
- corrector=guider, corrector_kwargs=ckwargs, x_T=x_T, save_intermediate_vid=save_intermediate_vid,
- make_progrow=make_progrow,ddim_use_x0_pred=ddim_use_x0_pred
- )
- return logs
-
-
-@torch.no_grad()
-def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None,
- mask=None, x0=None, quantize_x0=False, img_callback=None,
- temperature=1., noise_dropout=0., score_corrector=None,
- corrector_kwargs=None, x_T=None, log_every_t=None
- ):
-
- ddim = DDIMSampler(model)
- bs = shape[0] # dont know where this comes from but wayne
- shape = shape[1:] # cut batch dim
- print(f"Sampling with eta = {eta}; steps: {steps}")
- samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback,
- normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta,
- mask=mask, x0=x0, temperature=temperature, verbose=False,
- score_corrector=score_corrector,
- corrector_kwargs=corrector_kwargs, x_T=x_T)
-
- return samples, intermediates
-
-
-@torch.no_grad()
-def make_convolutional_sample(batch, model, mode="vanilla", custom_steps=None, eta=1.0, swap_mode=False, masked=False,
- invert_mask=True, quantize_x0=False, custom_schedule=None, decode_interval=1000,
- resize_enabled=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None,
- corrector_kwargs=None, x_T=None, save_intermediate_vid=False, make_progrow=True,ddim_use_x0_pred=False):
- log = dict()
-
- z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key,
- return_first_stage_outputs=True,
- force_c_encode=not (hasattr(model, 'split_input_params')
- and model.cond_stage_key == 'coordinates_bbox'),
- return_original_cond=True)
-
- log_every_t = 1 if save_intermediate_vid else None
-
- if custom_shape is not None:
- z = torch.randn(custom_shape)
- print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}")
-
- z0 = None
-
- log["input"] = x
- log["reconstruction"] = xrec
-
- if ismap(xc):
- log["original_conditioning"] = model.to_rgb(xc)
- if hasattr(model, 'cond_stage_key'):
- log[model.cond_stage_key] = model.to_rgb(xc)
-
- else:
- log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x)
- if model.cond_stage_model:
- log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x)
- if model.cond_stage_key =='class_label':
- log[model.cond_stage_key] = xc[model.cond_stage_key]
-
- with model.ema_scope("Plotting"):
- t0 = time.time()
- img_cb = None
-
- sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape,
- eta=eta,
- quantize_x0=quantize_x0, img_callback=img_cb, mask=None, x0=z0,
- temperature=temperature, noise_dropout=noise_dropout,
- score_corrector=corrector, corrector_kwargs=corrector_kwargs,
- x_T=x_T, log_every_t=log_every_t)
- t1 = time.time()
-
- if ddim_use_x0_pred:
- sample = intermediates['pred_x0'][-1]
-
- x_sample = model.decode_first_stage(sample)
-
- try:
- x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True)
- log["sample_noquant"] = x_sample_noquant
- log["sample_diff"] = torch.abs(x_sample_noquant - x_sample)
- except:
- pass
-
- log["sample"] = x_sample
- log["time"] = t1 - t0
-
- return log
\ No newline at end of file
diff --git a/stable_diffusion/scripts/download_first_stages.sh b/stable_diffusion/scripts/download_first_stages.sh
deleted file mode 100644
index a8d79e99ccdff0a8d8762f23f3c0642401f32f6c..0000000000000000000000000000000000000000
--- a/stable_diffusion/scripts/download_first_stages.sh
+++ /dev/null
@@ -1,41 +0,0 @@
-#!/bin/bash
-wget -O models/first_stage_models/kl-f4/model.zip https://ommer-lab.com/files/latent-diffusion/kl-f4.zip
-wget -O models/first_stage_models/kl-f8/model.zip https://ommer-lab.com/files/latent-diffusion/kl-f8.zip
-wget -O models/first_stage_models/kl-f16/model.zip https://ommer-lab.com/files/latent-diffusion/kl-f16.zip
-wget -O models/first_stage_models/kl-f32/model.zip https://ommer-lab.com/files/latent-diffusion/kl-f32.zip
-wget -O models/first_stage_models/vq-f4/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f4.zip
-wget -O models/first_stage_models/vq-f4-noattn/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f4-noattn.zip
-wget -O models/first_stage_models/vq-f8/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f8.zip
-wget -O models/first_stage_models/vq-f8-n256/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f8-n256.zip
-wget -O models/first_stage_models/vq-f16/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f16.zip
-
-
-
-cd models/first_stage_models/kl-f4
-unzip -o model.zip
-
-cd ../kl-f8
-unzip -o model.zip
-
-cd ../kl-f16
-unzip -o model.zip
-
-cd ../kl-f32
-unzip -o model.zip
-
-cd ../vq-f4
-unzip -o model.zip
-
-cd ../vq-f4-noattn
-unzip -o model.zip
-
-cd ../vq-f8
-unzip -o model.zip
-
-cd ../vq-f8-n256
-unzip -o model.zip
-
-cd ../vq-f16
-unzip -o model.zip
-
-cd ../..
\ No newline at end of file
diff --git a/stable_diffusion/scripts/download_models.sh b/stable_diffusion/scripts/download_models.sh
deleted file mode 100644
index 84297d7b8b9a78d241edcd5adaf7d9aa273790de..0000000000000000000000000000000000000000
--- a/stable_diffusion/scripts/download_models.sh
+++ /dev/null
@@ -1,49 +0,0 @@
-#!/bin/bash
-wget -O models/ldm/celeba256/celeba-256.zip https://ommer-lab.com/files/latent-diffusion/celeba.zip
-wget -O models/ldm/ffhq256/ffhq-256.zip https://ommer-lab.com/files/latent-diffusion/ffhq.zip
-wget -O models/ldm/lsun_churches256/lsun_churches-256.zip https://ommer-lab.com/files/latent-diffusion/lsun_churches.zip
-wget -O models/ldm/lsun_beds256/lsun_beds-256.zip https://ommer-lab.com/files/latent-diffusion/lsun_bedrooms.zip
-wget -O models/ldm/text2img256/model.zip https://ommer-lab.com/files/latent-diffusion/text2img.zip
-wget -O models/ldm/cin256/model.zip https://ommer-lab.com/files/latent-diffusion/cin.zip
-wget -O models/ldm/semantic_synthesis512/model.zip https://ommer-lab.com/files/latent-diffusion/semantic_synthesis.zip
-wget -O models/ldm/semantic_synthesis256/model.zip https://ommer-lab.com/files/latent-diffusion/semantic_synthesis256.zip
-wget -O models/ldm/bsr_sr/model.zip https://ommer-lab.com/files/latent-diffusion/sr_bsr.zip
-wget -O models/ldm/layout2img-openimages256/model.zip https://ommer-lab.com/files/latent-diffusion/layout2img_model.zip
-wget -O models/ldm/inpainting_big/model.zip https://ommer-lab.com/files/latent-diffusion/inpainting_big.zip
-
-
-
-cd models/ldm/celeba256
-unzip -o celeba-256.zip
-
-cd ../ffhq256
-unzip -o ffhq-256.zip
-
-cd ../lsun_churches256
-unzip -o lsun_churches-256.zip
-
-cd ../lsun_beds256
-unzip -o lsun_beds-256.zip
-
-cd ../text2img256
-unzip -o model.zip
-
-cd ../cin256
-unzip -o model.zip
-
-cd ../semantic_synthesis512
-unzip -o model.zip
-
-cd ../semantic_synthesis256
-unzip -o model.zip
-
-cd ../bsr_sr
-unzip -o model.zip
-
-cd ../layout2img-openimages256
-unzip -o model.zip
-
-cd ../inpainting_big
-unzip -o model.zip
-
-cd ../..
diff --git a/stable_diffusion/scripts/img2img.py b/stable_diffusion/scripts/img2img.py
deleted file mode 100644
index 421e2151d9e9de75a142f5d5f532333645a36287..0000000000000000000000000000000000000000
--- a/stable_diffusion/scripts/img2img.py
+++ /dev/null
@@ -1,293 +0,0 @@
-"""make variations of input image"""
-
-import argparse, os, sys, glob
-import PIL
-import torch
-import numpy as np
-from omegaconf import OmegaConf
-from PIL import Image
-from tqdm import tqdm, trange
-from itertools import islice
-from einops import rearrange, repeat
-from torchvision.utils import make_grid
-from torch import autocast
-from contextlib import nullcontext
-import time
-from pytorch_lightning import seed_everything
-
-from ldm.util import instantiate_from_config
-from ldm.models.diffusion.ddim import DDIMSampler
-from ldm.models.diffusion.plms import PLMSSampler
-
-
-def chunk(it, size):
- it = iter(it)
- return iter(lambda: tuple(islice(it, size)), ())
-
-
-def load_model_from_config(config, ckpt, verbose=False):
- print(f"Loading model from {ckpt}")
- pl_sd = torch.load(ckpt, map_location="cpu")
- if "global_step" in pl_sd:
- print(f"Global Step: {pl_sd['global_step']}")
- sd = pl_sd["state_dict"]
- model = instantiate_from_config(config.model)
- m, u = model.load_state_dict(sd, strict=False)
- if len(m) > 0 and verbose:
- print("missing keys:")
- print(m)
- if len(u) > 0 and verbose:
- print("unexpected keys:")
- print(u)
-
- model.cuda()
- model.eval()
- return model
-
-
-def load_img(path):
- image = Image.open(path).convert("RGB")
- w, h = image.size
- print(f"loaded input image of size ({w}, {h}) from {path}")
- w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
- image = image.resize((w, h), resample=PIL.Image.LANCZOS)
- image = np.array(image).astype(np.float32) / 255.0
- image = image[None].transpose(0, 3, 1, 2)
- image = torch.from_numpy(image)
- return 2.*image - 1.
-
-
-def main():
- parser = argparse.ArgumentParser()
-
- parser.add_argument(
- "--prompt",
- type=str,
- nargs="?",
- default="a painting of a virus monster playing guitar",
- help="the prompt to render"
- )
-
- parser.add_argument(
- "--init-img",
- type=str,
- nargs="?",
- help="path to the input image"
- )
-
- parser.add_argument(
- "--outdir",
- type=str,
- nargs="?",
- help="dir to write results to",
- default="outputs/img2img-samples"
- )
-
- parser.add_argument(
- "--skip_grid",
- action='store_true',
- help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
- )
-
- parser.add_argument(
- "--skip_save",
- action='store_true',
- help="do not save indiviual samples. For speed measurements.",
- )
-
- parser.add_argument(
- "--ddim_steps",
- type=int,
- default=50,
- help="number of ddim sampling steps",
- )
-
- parser.add_argument(
- "--plms",
- action='store_true',
- help="use plms sampling",
- )
- parser.add_argument(
- "--fixed_code",
- action='store_true',
- help="if enabled, uses the same starting code across all samples ",
- )
-
- parser.add_argument(
- "--ddim_eta",
- type=float,
- default=0.0,
- help="ddim eta (eta=0.0 corresponds to deterministic sampling",
- )
- parser.add_argument(
- "--n_iter",
- type=int,
- default=1,
- help="sample this often",
- )
- parser.add_argument(
- "--C",
- type=int,
- default=4,
- help="latent channels",
- )
- parser.add_argument(
- "--f",
- type=int,
- default=8,
- help="downsampling factor, most often 8 or 16",
- )
- parser.add_argument(
- "--n_samples",
- type=int,
- default=2,
- help="how many samples to produce for each given prompt. A.k.a batch size",
- )
- parser.add_argument(
- "--n_rows",
- type=int,
- default=0,
- help="rows in the grid (default: n_samples)",
- )
- parser.add_argument(
- "--scale",
- type=float,
- default=5.0,
- help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
- )
-
- parser.add_argument(
- "--strength",
- type=float,
- default=0.75,
- help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image",
- )
- parser.add_argument(
- "--from-file",
- type=str,
- help="if specified, load prompts from this file",
- )
- parser.add_argument(
- "--config",
- type=str,
- default="configs/stable-diffusion/v1-inference.yaml",
- help="path to config which constructs model",
- )
- parser.add_argument(
- "--ckpt",
- type=str,
- default="models/ldm/stable-diffusion-v1/model.ckpt",
- help="path to checkpoint of model",
- )
- parser.add_argument(
- "--seed",
- type=int,
- default=42,
- help="the seed (for reproducible sampling)",
- )
- parser.add_argument(
- "--precision",
- type=str,
- help="evaluate at this precision",
- choices=["full", "autocast"],
- default="autocast"
- )
-
- opt = parser.parse_args()
- seed_everything(opt.seed)
-
- config = OmegaConf.load(f"{opt.config}")
- model = load_model_from_config(config, f"{opt.ckpt}")
-
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
- model = model.to(device)
-
- if opt.plms:
- raise NotImplementedError("PLMS sampler not (yet) supported")
- sampler = PLMSSampler(model)
- else:
- sampler = DDIMSampler(model)
-
- os.makedirs(opt.outdir, exist_ok=True)
- outpath = opt.outdir
-
- batch_size = opt.n_samples
- n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
- if not opt.from_file:
- prompt = opt.prompt
- assert prompt is not None
- data = [batch_size * [prompt]]
-
- else:
- print(f"reading prompts from {opt.from_file}")
- with open(opt.from_file, "r") as f:
- data = f.read().splitlines()
- data = list(chunk(data, batch_size))
-
- sample_path = os.path.join(outpath, "samples")
- os.makedirs(sample_path, exist_ok=True)
- base_count = len(os.listdir(sample_path))
- grid_count = len(os.listdir(outpath)) - 1
-
- assert os.path.isfile(opt.init_img)
- init_image = load_img(opt.init_img).to(device)
- init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
- init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
-
- sampler.make_schedule(ddim_num_steps=opt.ddim_steps, ddim_eta=opt.ddim_eta, verbose=False)
-
- assert 0. <= opt.strength <= 1., 'can only work with strength in [0.0, 1.0]'
- t_enc = int(opt.strength * opt.ddim_steps)
- print(f"target t_enc is {t_enc} steps")
-
- precision_scope = autocast if opt.precision == "autocast" else nullcontext
- with torch.no_grad():
- with precision_scope("cuda"):
- with model.ema_scope():
- tic = time.time()
- all_samples = list()
- for n in trange(opt.n_iter, desc="Sampling"):
- for prompts in tqdm(data, desc="data"):
- uc = None
- if opt.scale != 1.0:
- uc = model.get_learned_conditioning(batch_size * [""])
- if isinstance(prompts, tuple):
- prompts = list(prompts)
- c = model.get_learned_conditioning(prompts)
-
- # encode (scaled latent)
- z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]*batch_size).to(device))
- # decode it
- samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=opt.scale,
- unconditional_conditioning=uc,)
-
- x_samples = model.decode_first_stage(samples)
- x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
-
- if not opt.skip_save:
- for x_sample in x_samples:
- x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
- Image.fromarray(x_sample.astype(np.uint8)).save(
- os.path.join(sample_path, f"{base_count:05}.png"))
- base_count += 1
- all_samples.append(x_samples)
-
- if not opt.skip_grid:
- # additionally, save as grid
- grid = torch.stack(all_samples, 0)
- grid = rearrange(grid, 'n b c h w -> (n b) c h w')
- grid = make_grid(grid, nrow=n_rows)
-
- # to image
- grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
- Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
- grid_count += 1
-
- toc = time.time()
-
- print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
- f" \nEnjoy.")
-
-
-if __name__ == "__main__":
- main()
diff --git a/stable_diffusion/scripts/inpaint.py b/stable_diffusion/scripts/inpaint.py
deleted file mode 100644
index d6e6387a9a3b0afa73fae8af25f43a8ba856240e..0000000000000000000000000000000000000000
--- a/stable_diffusion/scripts/inpaint.py
+++ /dev/null
@@ -1,98 +0,0 @@
-import argparse, os, sys, glob
-from omegaconf import OmegaConf
-from PIL import Image
-from tqdm import tqdm
-import numpy as np
-import torch
-from main import instantiate_from_config
-from ldm.models.diffusion.ddim import DDIMSampler
-
-
-def make_batch(image, mask, device):
- image = np.array(Image.open(image).convert("RGB"))
- image = image.astype(np.float32)/255.0
- image = image[None].transpose(0,3,1,2)
- image = torch.from_numpy(image)
-
- mask = np.array(Image.open(mask).convert("L"))
- mask = mask.astype(np.float32)/255.0
- mask = mask[None,None]
- mask[mask < 0.5] = 0
- mask[mask >= 0.5] = 1
- mask = torch.from_numpy(mask)
-
- masked_image = (1-mask)*image
-
- batch = {"image": image, "mask": mask, "masked_image": masked_image}
- for k in batch:
- batch[k] = batch[k].to(device=device)
- batch[k] = batch[k]*2.0-1.0
- return batch
-
-
-if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--indir",
- type=str,
- nargs="?",
- help="dir containing image-mask pairs (`example.png` and `example_mask.png`)",
- )
- parser.add_argument(
- "--outdir",
- type=str,
- nargs="?",
- help="dir to write results to",
- )
- parser.add_argument(
- "--steps",
- type=int,
- default=50,
- help="number of ddim sampling steps",
- )
- opt = parser.parse_args()
-
- masks = sorted(glob.glob(os.path.join(opt.indir, "*_mask.png")))
- images = [x.replace("_mask.png", ".png") for x in masks]
- print(f"Found {len(masks)} inputs.")
-
- config = OmegaConf.load("models/ldm/inpainting_big/config.yaml")
- model = instantiate_from_config(config.model)
- model.load_state_dict(torch.load("models/ldm/inpainting_big/last.ckpt")["state_dict"],
- strict=False)
-
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
- model = model.to(device)
- sampler = DDIMSampler(model)
-
- os.makedirs(opt.outdir, exist_ok=True)
- with torch.no_grad():
- with model.ema_scope():
- for image, mask in tqdm(zip(images, masks)):
- outpath = os.path.join(opt.outdir, os.path.split(image)[1])
- batch = make_batch(image, mask, device=device)
-
- # encode masked image and concat downsampled mask
- c = model.cond_stage_model.encode(batch["masked_image"])
- cc = torch.nn.functional.interpolate(batch["mask"],
- size=c.shape[-2:])
- c = torch.cat((c, cc), dim=1)
-
- shape = (c.shape[1]-1,)+c.shape[2:]
- samples_ddim, _ = sampler.sample(S=opt.steps,
- conditioning=c,
- batch_size=c.shape[0],
- shape=shape,
- verbose=False)
- x_samples_ddim = model.decode_first_stage(samples_ddim)
-
- image = torch.clamp((batch["image"]+1.0)/2.0,
- min=0.0, max=1.0)
- mask = torch.clamp((batch["mask"]+1.0)/2.0,
- min=0.0, max=1.0)
- predicted_image = torch.clamp((x_samples_ddim+1.0)/2.0,
- min=0.0, max=1.0)
-
- inpainted = (1-mask)*image+mask*predicted_image
- inpainted = inpainted.cpu().numpy().transpose(0,2,3,1)[0]*255
- Image.fromarray(inpainted.astype(np.uint8)).save(outpath)
diff --git a/stable_diffusion/scripts/knn2img.py b/stable_diffusion/scripts/knn2img.py
deleted file mode 100644
index e6eaaecab53eac9c97051c9a5cb457a240679725..0000000000000000000000000000000000000000
--- a/stable_diffusion/scripts/knn2img.py
+++ /dev/null
@@ -1,398 +0,0 @@
-import argparse, os, sys, glob
-import clip
-import torch
-import torch.nn as nn
-import numpy as np
-from omegaconf import OmegaConf
-from PIL import Image
-from tqdm import tqdm, trange
-from itertools import islice
-from einops import rearrange, repeat
-from torchvision.utils import make_grid
-import scann
-import time
-from multiprocessing import cpu_count
-
-from ldm.util import instantiate_from_config, parallel_data_prefetch
-from ldm.models.diffusion.ddim import DDIMSampler
-from ldm.models.diffusion.plms import PLMSSampler
-from ldm.modules.encoders.modules import FrozenClipImageEmbedder, FrozenCLIPTextEmbedder
-
-DATABASES = [
- "openimages",
- "artbench-art_nouveau",
- "artbench-baroque",
- "artbench-expressionism",
- "artbench-impressionism",
- "artbench-post_impressionism",
- "artbench-realism",
- "artbench-romanticism",
- "artbench-renaissance",
- "artbench-surrealism",
- "artbench-ukiyo_e",
-]
-
-
-def chunk(it, size):
- it = iter(it)
- return iter(lambda: tuple(islice(it, size)), ())
-
-
-def load_model_from_config(config, ckpt, verbose=False):
- print(f"Loading model from {ckpt}")
- pl_sd = torch.load(ckpt, map_location="cpu")
- if "global_step" in pl_sd:
- print(f"Global Step: {pl_sd['global_step']}")
- sd = pl_sd["state_dict"]
- model = instantiate_from_config(config.model)
- m, u = model.load_state_dict(sd, strict=False)
- if len(m) > 0 and verbose:
- print("missing keys:")
- print(m)
- if len(u) > 0 and verbose:
- print("unexpected keys:")
- print(u)
-
- model.cuda()
- model.eval()
- return model
-
-
-class Searcher(object):
- def __init__(self, database, retriever_version='ViT-L/14'):
- assert database in DATABASES
- # self.database = self.load_database(database)
- self.database_name = database
- self.searcher_savedir = f'data/rdm/searchers/{self.database_name}'
- self.database_path = f'data/rdm/retrieval_databases/{self.database_name}'
- self.retriever = self.load_retriever(version=retriever_version)
- self.database = {'embedding': [],
- 'img_id': [],
- 'patch_coords': []}
- self.load_database()
- self.load_searcher()
-
- def train_searcher(self, k,
- metric='dot_product',
- searcher_savedir=None):
-
- print('Start training searcher')
- searcher = scann.scann_ops_pybind.builder(self.database['embedding'] /
- np.linalg.norm(self.database['embedding'], axis=1)[:, np.newaxis],
- k, metric)
- self.searcher = searcher.score_brute_force().build()
- print('Finish training searcher')
-
- if searcher_savedir is not None:
- print(f'Save trained searcher under "{searcher_savedir}"')
- os.makedirs(searcher_savedir, exist_ok=True)
- self.searcher.serialize(searcher_savedir)
-
- def load_single_file(self, saved_embeddings):
- compressed = np.load(saved_embeddings)
- self.database = {key: compressed[key] for key in compressed.files}
- print('Finished loading of clip embeddings.')
-
- def load_multi_files(self, data_archive):
- out_data = {key: [] for key in self.database}
- for d in tqdm(data_archive, desc=f'Loading datapool from {len(data_archive)} individual files.'):
- for key in d.files:
- out_data[key].append(d[key])
-
- return out_data
-
- def load_database(self):
-
- print(f'Load saved patch embedding from "{self.database_path}"')
- file_content = glob.glob(os.path.join(self.database_path, '*.npz'))
-
- if len(file_content) == 1:
- self.load_single_file(file_content[0])
- elif len(file_content) > 1:
- data = [np.load(f) for f in file_content]
- prefetched_data = parallel_data_prefetch(self.load_multi_files, data,
- n_proc=min(len(data), cpu_count()), target_data_type='dict')
-
- self.database = {key: np.concatenate([od[key] for od in prefetched_data], axis=1)[0] for key in
- self.database}
- else:
- raise ValueError(f'No npz-files in specified path "{self.database_path}" is this directory existing?')
-
- print(f'Finished loading of retrieval database of length {self.database["embedding"].shape[0]}.')
-
- def load_retriever(self, version='ViT-L/14', ):
- model = FrozenClipImageEmbedder(model=version)
- if torch.cuda.is_available():
- model.cuda()
- model.eval()
- return model
-
- def load_searcher(self):
- print(f'load searcher for database {self.database_name} from {self.searcher_savedir}')
- self.searcher = scann.scann_ops_pybind.load_searcher(self.searcher_savedir)
- print('Finished loading searcher.')
-
- def search(self, x, k):
- if self.searcher is None and self.database['embedding'].shape[0] < 2e4:
- self.train_searcher(k) # quickly fit searcher on the fly for small databases
- assert self.searcher is not None, 'Cannot search with uninitialized searcher'
- if isinstance(x, torch.Tensor):
- x = x.detach().cpu().numpy()
- if len(x.shape) == 3:
- x = x[:, 0]
- query_embeddings = x / np.linalg.norm(x, axis=1)[:, np.newaxis]
-
- start = time.time()
- nns, distances = self.searcher.search_batched(query_embeddings, final_num_neighbors=k)
- end = time.time()
-
- out_embeddings = self.database['embedding'][nns]
- out_img_ids = self.database['img_id'][nns]
- out_pc = self.database['patch_coords'][nns]
-
- out = {'nn_embeddings': out_embeddings / np.linalg.norm(out_embeddings, axis=-1)[..., np.newaxis],
- 'img_ids': out_img_ids,
- 'patch_coords': out_pc,
- 'queries': x,
- 'exec_time': end - start,
- 'nns': nns,
- 'q_embeddings': query_embeddings}
-
- return out
-
- def __call__(self, x, n):
- return self.search(x, n)
-
-
-if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- # TODO: add n_neighbors and modes (text-only, text-image-retrieval, image-image retrieval etc)
- # TODO: add 'image variation' mode when knn=0 but a single image is given instead of a text prompt?
- parser.add_argument(
- "--prompt",
- type=str,
- nargs="?",
- default="a painting of a virus monster playing guitar",
- help="the prompt to render"
- )
-
- parser.add_argument(
- "--outdir",
- type=str,
- nargs="?",
- help="dir to write results to",
- default="outputs/txt2img-samples"
- )
-
- parser.add_argument(
- "--skip_grid",
- action='store_true',
- help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
- )
-
- parser.add_argument(
- "--ddim_steps",
- type=int,
- default=50,
- help="number of ddim sampling steps",
- )
-
- parser.add_argument(
- "--n_repeat",
- type=int,
- default=1,
- help="number of repeats in CLIP latent space",
- )
-
- parser.add_argument(
- "--plms",
- action='store_true',
- help="use plms sampling",
- )
-
- parser.add_argument(
- "--ddim_eta",
- type=float,
- default=0.0,
- help="ddim eta (eta=0.0 corresponds to deterministic sampling",
- )
- parser.add_argument(
- "--n_iter",
- type=int,
- default=1,
- help="sample this often",
- )
-
- parser.add_argument(
- "--H",
- type=int,
- default=768,
- help="image height, in pixel space",
- )
-
- parser.add_argument(
- "--W",
- type=int,
- default=768,
- help="image width, in pixel space",
- )
-
- parser.add_argument(
- "--n_samples",
- type=int,
- default=3,
- help="how many samples to produce for each given prompt. A.k.a batch size",
- )
-
- parser.add_argument(
- "--n_rows",
- type=int,
- default=0,
- help="rows in the grid (default: n_samples)",
- )
-
- parser.add_argument(
- "--scale",
- type=float,
- default=5.0,
- help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
- )
-
- parser.add_argument(
- "--from-file",
- type=str,
- help="if specified, load prompts from this file",
- )
-
- parser.add_argument(
- "--config",
- type=str,
- default="configs/retrieval-augmented-diffusion/768x768.yaml",
- help="path to config which constructs model",
- )
-
- parser.add_argument(
- "--ckpt",
- type=str,
- default="models/rdm/rdm768x768/model.ckpt",
- help="path to checkpoint of model",
- )
-
- parser.add_argument(
- "--clip_type",
- type=str,
- default="ViT-L/14",
- help="which CLIP model to use for retrieval and NN encoding",
- )
- parser.add_argument(
- "--database",
- type=str,
- default='artbench-surrealism',
- choices=DATABASES,
- help="The database used for the search, only applied when --use_neighbors=True",
- )
- parser.add_argument(
- "--use_neighbors",
- default=False,
- action='store_true',
- help="Include neighbors in addition to text prompt for conditioning",
- )
- parser.add_argument(
- "--knn",
- default=10,
- type=int,
- help="The number of included neighbors, only applied when --use_neighbors=True",
- )
-
- opt = parser.parse_args()
-
- config = OmegaConf.load(f"{opt.config}")
- model = load_model_from_config(config, f"{opt.ckpt}")
-
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
- model = model.to(device)
-
- clip_text_encoder = FrozenCLIPTextEmbedder(opt.clip_type).to(device)
-
- if opt.plms:
- sampler = PLMSSampler(model)
- else:
- sampler = DDIMSampler(model)
-
- os.makedirs(opt.outdir, exist_ok=True)
- outpath = opt.outdir
-
- batch_size = opt.n_samples
- n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
- if not opt.from_file:
- prompt = opt.prompt
- assert prompt is not None
- data = [batch_size * [prompt]]
-
- else:
- print(f"reading prompts from {opt.from_file}")
- with open(opt.from_file, "r") as f:
- data = f.read().splitlines()
- data = list(chunk(data, batch_size))
-
- sample_path = os.path.join(outpath, "samples")
- os.makedirs(sample_path, exist_ok=True)
- base_count = len(os.listdir(sample_path))
- grid_count = len(os.listdir(outpath)) - 1
-
- print(f"sampling scale for cfg is {opt.scale:.2f}")
-
- searcher = None
- if opt.use_neighbors:
- searcher = Searcher(opt.database)
-
- with torch.no_grad():
- with model.ema_scope():
- for n in trange(opt.n_iter, desc="Sampling"):
- all_samples = list()
- for prompts in tqdm(data, desc="data"):
- print("sampling prompts:", prompts)
- if isinstance(prompts, tuple):
- prompts = list(prompts)
- c = clip_text_encoder.encode(prompts)
- uc = None
- if searcher is not None:
- nn_dict = searcher(c, opt.knn)
- c = torch.cat([c, torch.from_numpy(nn_dict['nn_embeddings']).cuda()], dim=1)
- if opt.scale != 1.0:
- uc = torch.zeros_like(c)
- if isinstance(prompts, tuple):
- prompts = list(prompts)
- shape = [16, opt.H // 16, opt.W // 16] # note: currently hardcoded for f16 model
- samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
- conditioning=c,
- batch_size=c.shape[0],
- shape=shape,
- verbose=False,
- unconditional_guidance_scale=opt.scale,
- unconditional_conditioning=uc,
- eta=opt.ddim_eta,
- )
-
- x_samples_ddim = model.decode_first_stage(samples_ddim)
- x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
-
- for x_sample in x_samples_ddim:
- x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
- Image.fromarray(x_sample.astype(np.uint8)).save(
- os.path.join(sample_path, f"{base_count:05}.png"))
- base_count += 1
- all_samples.append(x_samples_ddim)
-
- if not opt.skip_grid:
- # additionally, save as grid
- grid = torch.stack(all_samples, 0)
- grid = rearrange(grid, 'n b c h w -> (n b) c h w')
- grid = make_grid(grid, nrow=n_rows)
-
- # to image
- grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
- Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
- grid_count += 1
-
- print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.")
diff --git a/stable_diffusion/scripts/latent_imagenet_diffusion.ipynb.REMOVED.git-id b/stable_diffusion/scripts/latent_imagenet_diffusion.ipynb.REMOVED.git-id
deleted file mode 100644
index b8757597bd3b0d8cdaf0ea709705e1ec9817f2ed..0000000000000000000000000000000000000000
--- a/stable_diffusion/scripts/latent_imagenet_diffusion.ipynb.REMOVED.git-id
+++ /dev/null
@@ -1 +0,0 @@
-607f94fc7d3ef6d8d1627017215476d9dfc7ddc4
\ No newline at end of file
diff --git a/stable_diffusion/scripts/sample_diffusion.py b/stable_diffusion/scripts/sample_diffusion.py
deleted file mode 100644
index 876fe3c3642fcc8c7209e4f763c0134166615f78..0000000000000000000000000000000000000000
--- a/stable_diffusion/scripts/sample_diffusion.py
+++ /dev/null
@@ -1,313 +0,0 @@
-import argparse, os, sys, glob, datetime, yaml
-import torch
-import time
-import numpy as np
-from tqdm import trange
-
-from omegaconf import OmegaConf
-from PIL import Image
-
-from ldm.models.diffusion.ddim import DDIMSampler
-from ldm.util import instantiate_from_config
-
-rescale = lambda x: (x + 1.) / 2.
-
-def custom_to_pil(x):
- x = x.detach().cpu()
- x = torch.clamp(x, -1., 1.)
- x = (x + 1.) / 2.
- x = x.permute(1, 2, 0).numpy()
- x = (255 * x).astype(np.uint8)
- x = Image.fromarray(x)
- if not x.mode == "RGB":
- x = x.convert("RGB")
- return x
-
-
-def custom_to_np(x):
- # saves the batch in adm style as in https://github.com/openai/guided-diffusion/blob/main/scripts/image_sample.py
- sample = x.detach().cpu()
- sample = ((sample + 1) * 127.5).clamp(0, 255).to(torch.uint8)
- sample = sample.permute(0, 2, 3, 1)
- sample = sample.contiguous()
- return sample
-
-
-def logs2pil(logs, keys=["sample"]):
- imgs = dict()
- for k in logs:
- try:
- if len(logs[k].shape) == 4:
- img = custom_to_pil(logs[k][0, ...])
- elif len(logs[k].shape) == 3:
- img = custom_to_pil(logs[k])
- else:
- print(f"Unknown format for key {k}. ")
- img = None
- except:
- img = None
- imgs[k] = img
- return imgs
-
-
-@torch.no_grad()
-def convsample(model, shape, return_intermediates=True,
- verbose=True,
- make_prog_row=False):
-
-
- if not make_prog_row:
- return model.p_sample_loop(None, shape,
- return_intermediates=return_intermediates, verbose=verbose)
- else:
- return model.progressive_denoising(
- None, shape, verbose=True
- )
-
-
-@torch.no_grad()
-def convsample_ddim(model, steps, shape, eta=1.0
- ):
- ddim = DDIMSampler(model)
- bs = shape[0]
- shape = shape[1:]
- samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, eta=eta, verbose=False,)
- return samples, intermediates
-
-
-@torch.no_grad()
-def make_convolutional_sample(model, batch_size, vanilla=False, custom_steps=None, eta=1.0,):
-
-
- log = dict()
-
- shape = [batch_size,
- model.model.diffusion_model.in_channels,
- model.model.diffusion_model.image_size,
- model.model.diffusion_model.image_size]
-
- with model.ema_scope("Plotting"):
- t0 = time.time()
- if vanilla:
- sample, progrow = convsample(model, shape,
- make_prog_row=True)
- else:
- sample, intermediates = convsample_ddim(model, steps=custom_steps, shape=shape,
- eta=eta)
-
- t1 = time.time()
-
- x_sample = model.decode_first_stage(sample)
-
- log["sample"] = x_sample
- log["time"] = t1 - t0
- log['throughput'] = sample.shape[0] / (t1 - t0)
- print(f'Throughput for this batch: {log["throughput"]}')
- return log
-
-def run(model, logdir, batch_size=50, vanilla=False, custom_steps=None, eta=None, n_samples=50000, nplog=None):
- if vanilla:
- print(f'Using Vanilla DDPM sampling with {model.num_timesteps} sampling steps.')
- else:
- print(f'Using DDIM sampling with {custom_steps} sampling steps and eta={eta}')
-
-
- tstart = time.time()
- n_saved = len(glob.glob(os.path.join(logdir,'*.png')))-1
- # path = logdir
- if model.cond_stage_model is None:
- all_images = []
-
- print(f"Running unconditional sampling for {n_samples} samples")
- for _ in trange(n_samples // batch_size, desc="Sampling Batches (unconditional)"):
- logs = make_convolutional_sample(model, batch_size=batch_size,
- vanilla=vanilla, custom_steps=custom_steps,
- eta=eta)
- n_saved = save_logs(logs, logdir, n_saved=n_saved, key="sample")
- all_images.extend([custom_to_np(logs["sample"])])
- if n_saved >= n_samples:
- print(f'Finish after generating {n_saved} samples')
- break
- all_img = np.concatenate(all_images, axis=0)
- all_img = all_img[:n_samples]
- shape_str = "x".join([str(x) for x in all_img.shape])
- nppath = os.path.join(nplog, f"{shape_str}-samples.npz")
- np.savez(nppath, all_img)
-
- else:
- raise NotImplementedError('Currently only sampling for unconditional models supported.')
-
- print(f"sampling of {n_saved} images finished in {(time.time() - tstart) / 60.:.2f} minutes.")
-
-
-def save_logs(logs, path, n_saved=0, key="sample", np_path=None):
- for k in logs:
- if k == key:
- batch = logs[key]
- if np_path is None:
- for x in batch:
- img = custom_to_pil(x)
- imgpath = os.path.join(path, f"{key}_{n_saved:06}.png")
- img.save(imgpath)
- n_saved += 1
- else:
- npbatch = custom_to_np(batch)
- shape_str = "x".join([str(x) for x in npbatch.shape])
- nppath = os.path.join(np_path, f"{n_saved}-{shape_str}-samples.npz")
- np.savez(nppath, npbatch)
- n_saved += npbatch.shape[0]
- return n_saved
-
-
-def get_parser():
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "-r",
- "--resume",
- type=str,
- nargs="?",
- help="load from logdir or checkpoint in logdir",
- )
- parser.add_argument(
- "-n",
- "--n_samples",
- type=int,
- nargs="?",
- help="number of samples to draw",
- default=50000
- )
- parser.add_argument(
- "-e",
- "--eta",
- type=float,
- nargs="?",
- help="eta for ddim sampling (0.0 yields deterministic sampling)",
- default=1.0
- )
- parser.add_argument(
- "-v",
- "--vanilla_sample",
- default=False,
- action='store_true',
- help="vanilla sampling (default option is DDIM sampling)?",
- )
- parser.add_argument(
- "-l",
- "--logdir",
- type=str,
- nargs="?",
- help="extra logdir",
- default="none"
- )
- parser.add_argument(
- "-c",
- "--custom_steps",
- type=int,
- nargs="?",
- help="number of steps for ddim and fastdpm sampling",
- default=50
- )
- parser.add_argument(
- "--batch_size",
- type=int,
- nargs="?",
- help="the bs",
- default=10
- )
- return parser
-
-
-def load_model_from_config(config, sd):
- model = instantiate_from_config(config)
- model.load_state_dict(sd,strict=False)
- model.cuda()
- model.eval()
- return model
-
-
-def load_model(config, ckpt, gpu, eval_mode):
- if ckpt:
- print(f"Loading model from {ckpt}")
- pl_sd = torch.load(ckpt, map_location="cpu")
- global_step = pl_sd["global_step"]
- else:
- pl_sd = {"state_dict": None}
- global_step = None
- model = load_model_from_config(config.model,
- pl_sd["state_dict"])
-
- return model, global_step
-
-
-if __name__ == "__main__":
- now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
- sys.path.append(os.getcwd())
- command = " ".join(sys.argv)
-
- parser = get_parser()
- opt, unknown = parser.parse_known_args()
- ckpt = None
-
- if not os.path.exists(opt.resume):
- raise ValueError("Cannot find {}".format(opt.resume))
- if os.path.isfile(opt.resume):
- # paths = opt.resume.split("/")
- try:
- logdir = '/'.join(opt.resume.split('/')[:-1])
- # idx = len(paths)-paths[::-1].index("logs")+1
- print(f'Logdir is {logdir}')
- except ValueError:
- paths = opt.resume.split("/")
- idx = -2 # take a guess: path/to/logdir/checkpoints/model.ckpt
- logdir = "/".join(paths[:idx])
- ckpt = opt.resume
- else:
- assert os.path.isdir(opt.resume), f"{opt.resume} is not a directory"
- logdir = opt.resume.rstrip("/")
- ckpt = os.path.join(logdir, "model.ckpt")
-
- base_configs = sorted(glob.glob(os.path.join(logdir, "config.yaml")))
- opt.base = base_configs
-
- configs = [OmegaConf.load(cfg) for cfg in opt.base]
- cli = OmegaConf.from_dotlist(unknown)
- config = OmegaConf.merge(*configs, cli)
-
- gpu = True
- eval_mode = True
-
- if opt.logdir != "none":
- locallog = logdir.split(os.sep)[-1]
- if locallog == "": locallog = logdir.split(os.sep)[-2]
- print(f"Switching logdir from '{logdir}' to '{os.path.join(opt.logdir, locallog)}'")
- logdir = os.path.join(opt.logdir, locallog)
-
- print(config)
-
- model, global_step = load_model(config, ckpt, gpu, eval_mode)
- print(f"global step: {global_step}")
- print(75 * "=")
- print("logging to:")
- logdir = os.path.join(logdir, "samples", f"{global_step:08}", now)
- imglogdir = os.path.join(logdir, "img")
- numpylogdir = os.path.join(logdir, "numpy")
-
- os.makedirs(imglogdir)
- os.makedirs(numpylogdir)
- print(logdir)
- print(75 * "=")
-
- # write config out
- sampling_file = os.path.join(logdir, "sampling_config.yaml")
- sampling_conf = vars(opt)
-
- with open(sampling_file, 'w') as f:
- yaml.dump(sampling_conf, f, default_flow_style=False)
- print(sampling_conf)
-
-
- run(model, imglogdir, eta=opt.eta,
- vanilla=opt.vanilla_sample, n_samples=opt.n_samples, custom_steps=opt.custom_steps,
- batch_size=opt.batch_size, nplog=numpylogdir)
-
- print("done.")
diff --git a/stable_diffusion/scripts/tests/test_watermark.py b/stable_diffusion/scripts/tests/test_watermark.py
deleted file mode 100644
index f93f8a6e70763c0e284157bc8225827520b2f5ef..0000000000000000000000000000000000000000
--- a/stable_diffusion/scripts/tests/test_watermark.py
+++ /dev/null
@@ -1,18 +0,0 @@
-import cv2
-import fire
-from imwatermark import WatermarkDecoder
-
-
-def testit(img_path):
- bgr = cv2.imread(img_path)
- decoder = WatermarkDecoder('bytes', 136)
- watermark = decoder.decode(bgr, 'dwtDct')
- try:
- dec = watermark.decode('utf-8')
- except:
- dec = "null"
- print(dec)
-
-
-if __name__ == "__main__":
- fire.Fire(testit)
\ No newline at end of file
diff --git a/stable_diffusion/scripts/train_searcher.py b/stable_diffusion/scripts/train_searcher.py
deleted file mode 100644
index 1e7904889c0145f9fb740fd4ae8e45c08728b255..0000000000000000000000000000000000000000
--- a/stable_diffusion/scripts/train_searcher.py
+++ /dev/null
@@ -1,147 +0,0 @@
-import os, sys
-import numpy as np
-import scann
-import argparse
-import glob
-from multiprocessing import cpu_count
-from tqdm import tqdm
-
-from ldm.util import parallel_data_prefetch
-
-
-def search_bruteforce(searcher):
- return searcher.score_brute_force().build()
-
-
-def search_partioned_ah(searcher, dims_per_block, aiq_threshold, reorder_k,
- partioning_trainsize, num_leaves, num_leaves_to_search):
- return searcher.tree(num_leaves=num_leaves,
- num_leaves_to_search=num_leaves_to_search,
- training_sample_size=partioning_trainsize). \
- score_ah(dims_per_block, anisotropic_quantization_threshold=aiq_threshold).reorder(reorder_k).build()
-
-
-def search_ah(searcher, dims_per_block, aiq_threshold, reorder_k):
- return searcher.score_ah(dims_per_block, anisotropic_quantization_threshold=aiq_threshold).reorder(
- reorder_k).build()
-
-def load_datapool(dpath):
-
-
- def load_single_file(saved_embeddings):
- compressed = np.load(saved_embeddings)
- database = {key: compressed[key] for key in compressed.files}
- return database
-
- def load_multi_files(data_archive):
- database = {key: [] for key in data_archive[0].files}
- for d in tqdm(data_archive, desc=f'Loading datapool from {len(data_archive)} individual files.'):
- for key in d.files:
- database[key].append(d[key])
-
- return database
-
- print(f'Load saved patch embedding from "{dpath}"')
- file_content = glob.glob(os.path.join(dpath, '*.npz'))
-
- if len(file_content) == 1:
- data_pool = load_single_file(file_content[0])
- elif len(file_content) > 1:
- data = [np.load(f) for f in file_content]
- prefetched_data = parallel_data_prefetch(load_multi_files, data,
- n_proc=min(len(data), cpu_count()), target_data_type='dict')
-
- data_pool = {key: np.concatenate([od[key] for od in prefetched_data], axis=1)[0] for key in prefetched_data[0].keys()}
- else:
- raise ValueError(f'No npz-files in specified path "{dpath}" is this directory existing?')
-
- print(f'Finished loading of retrieval database of length {data_pool["embedding"].shape[0]}.')
- return data_pool
-
-
-def train_searcher(opt,
- metric='dot_product',
- partioning_trainsize=None,
- reorder_k=None,
- # todo tune
- aiq_thld=0.2,
- dims_per_block=2,
- num_leaves=None,
- num_leaves_to_search=None,):
-
- data_pool = load_datapool(opt.database)
- k = opt.knn
-
- if not reorder_k:
- reorder_k = 2 * k
-
- # normalize
- # embeddings =
- searcher = scann.scann_ops_pybind.builder(data_pool['embedding'] / np.linalg.norm(data_pool['embedding'], axis=1)[:, np.newaxis], k, metric)
- pool_size = data_pool['embedding'].shape[0]
-
- print(*(['#'] * 100))
- print('Initializing scaNN searcher with the following values:')
- print(f'k: {k}')
- print(f'metric: {metric}')
- print(f'reorder_k: {reorder_k}')
- print(f'anisotropic_quantization_threshold: {aiq_thld}')
- print(f'dims_per_block: {dims_per_block}')
- print(*(['#'] * 100))
- print('Start training searcher....')
- print(f'N samples in pool is {pool_size}')
-
- # this reflects the recommended design choices proposed at
- # https://github.com/google-research/google-research/blob/aca5f2e44e301af172590bb8e65711f0c9ee0cfd/scann/docs/algorithms.md
- if pool_size < 2e4:
- print('Using brute force search.')
- searcher = search_bruteforce(searcher)
- elif 2e4 <= pool_size and pool_size < 1e5:
- print('Using asymmetric hashing search and reordering.')
- searcher = search_ah(searcher, dims_per_block, aiq_thld, reorder_k)
- else:
- print('Using using partioning, asymmetric hashing search and reordering.')
-
- if not partioning_trainsize:
- partioning_trainsize = data_pool['embedding'].shape[0] // 10
- if not num_leaves:
- num_leaves = int(np.sqrt(pool_size))
-
- if not num_leaves_to_search:
- num_leaves_to_search = max(num_leaves // 20, 1)
-
- print('Partitioning params:')
- print(f'num_leaves: {num_leaves}')
- print(f'num_leaves_to_search: {num_leaves_to_search}')
- # self.searcher = self.search_ah(searcher, dims_per_block, aiq_thld, reorder_k)
- searcher = search_partioned_ah(searcher, dims_per_block, aiq_thld, reorder_k,
- partioning_trainsize, num_leaves, num_leaves_to_search)
-
- print('Finish training searcher')
- searcher_savedir = opt.target_path
- os.makedirs(searcher_savedir, exist_ok=True)
- searcher.serialize(searcher_savedir)
- print(f'Saved trained searcher under "{searcher_savedir}"')
-
-if __name__ == '__main__':
- sys.path.append(os.getcwd())
- parser = argparse.ArgumentParser()
- parser.add_argument('--database',
- '-d',
- default='data/rdm/retrieval_databases/openimages',
- type=str,
- help='path to folder containing the clip feature of the database')
- parser.add_argument('--target_path',
- '-t',
- default='data/rdm/searchers/openimages',
- type=str,
- help='path to the target folder where the searcher shall be stored.')
- parser.add_argument('--knn',
- '-k',
- default=20,
- type=int,
- help='number of nearest neighbors, for which the searcher shall be optimized')
-
- opt, _ = parser.parse_known_args()
-
- train_searcher(opt,)
\ No newline at end of file
diff --git a/stable_diffusion/scripts/txt2img.py b/stable_diffusion/scripts/txt2img.py
deleted file mode 100644
index bc3864043f676c829b623f444f689f6fe7e4824b..0000000000000000000000000000000000000000
--- a/stable_diffusion/scripts/txt2img.py
+++ /dev/null
@@ -1,352 +0,0 @@
-import argparse, os, sys, glob
-import cv2
-import torch
-import numpy as np
-from omegaconf import OmegaConf
-from PIL import Image
-from tqdm import tqdm, trange
-from imwatermark import WatermarkEncoder
-from itertools import islice
-from einops import rearrange
-from torchvision.utils import make_grid
-import time
-from pytorch_lightning import seed_everything
-from torch import autocast
-from contextlib import contextmanager, nullcontext
-
-from ldm.util import instantiate_from_config
-from ldm.models.diffusion.ddim import DDIMSampler
-from ldm.models.diffusion.plms import PLMSSampler
-from ldm.models.diffusion.dpm_solver import DPMSolverSampler
-
-from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
-from transformers import AutoFeatureExtractor
-
-
-# load safety model
-safety_model_id = "CompVis/stable-diffusion-safety-checker"
-safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
-safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
-
-
-def chunk(it, size):
- it = iter(it)
- return iter(lambda: tuple(islice(it, size)), ())
-
-
-def numpy_to_pil(images):
- """
- Convert a numpy image or a batch of images to a PIL image.
- """
- if images.ndim == 3:
- images = images[None, ...]
- images = (images * 255).round().astype("uint8")
- pil_images = [Image.fromarray(image) for image in images]
-
- return pil_images
-
-
-def load_model_from_config(config, ckpt, verbose=False):
- print(f"Loading model from {ckpt}")
- pl_sd = torch.load(ckpt, map_location="cpu")
- if "global_step" in pl_sd:
- print(f"Global Step: {pl_sd['global_step']}")
- sd = pl_sd["state_dict"]
- model = instantiate_from_config(config.model)
- m, u = model.load_state_dict(sd, strict=False)
- if len(m) > 0 and verbose:
- print("missing keys:")
- print(m)
- if len(u) > 0 and verbose:
- print("unexpected keys:")
- print(u)
-
- model.cuda()
- model.eval()
- return model
-
-
-def put_watermark(img, wm_encoder=None):
- if wm_encoder is not None:
- img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
- img = wm_encoder.encode(img, 'dwtDct')
- img = Image.fromarray(img[:, :, ::-1])
- return img
-
-
-def load_replacement(x):
- try:
- hwc = x.shape
- y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0]))
- y = (np.array(y)/255.0).astype(x.dtype)
- assert y.shape == x.shape
- return y
- except Exception:
- return x
-
-
-def check_safety(x_image):
- safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
- x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
- assert x_checked_image.shape[0] == len(has_nsfw_concept)
- for i in range(len(has_nsfw_concept)):
- if has_nsfw_concept[i]:
- x_checked_image[i] = load_replacement(x_checked_image[i])
- return x_checked_image, has_nsfw_concept
-
-
-def main():
- parser = argparse.ArgumentParser()
-
- parser.add_argument(
- "--prompt",
- type=str,
- nargs="?",
- default="a painting of a virus monster playing guitar",
- help="the prompt to render"
- )
- parser.add_argument(
- "--outdir",
- type=str,
- nargs="?",
- help="dir to write results to",
- default="outputs/txt2img-samples"
- )
- parser.add_argument(
- "--skip_grid",
- action='store_true',
- help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
- )
- parser.add_argument(
- "--skip_save",
- action='store_true',
- help="do not save individual samples. For speed measurements.",
- )
- parser.add_argument(
- "--ddim_steps",
- type=int,
- default=50,
- help="number of ddim sampling steps",
- )
- parser.add_argument(
- "--plms",
- action='store_true',
- help="use plms sampling",
- )
- parser.add_argument(
- "--dpm_solver",
- action='store_true',
- help="use dpm_solver sampling",
- )
- parser.add_argument(
- "--laion400m",
- action='store_true',
- help="uses the LAION400M model",
- )
- parser.add_argument(
- "--fixed_code",
- action='store_true',
- help="if enabled, uses the same starting code across samples ",
- )
- parser.add_argument(
- "--ddim_eta",
- type=float,
- default=0.0,
- help="ddim eta (eta=0.0 corresponds to deterministic sampling",
- )
- parser.add_argument(
- "--n_iter",
- type=int,
- default=2,
- help="sample this often",
- )
- parser.add_argument(
- "--H",
- type=int,
- default=512,
- help="image height, in pixel space",
- )
- parser.add_argument(
- "--W",
- type=int,
- default=512,
- help="image width, in pixel space",
- )
- parser.add_argument(
- "--C",
- type=int,
- default=4,
- help="latent channels",
- )
- parser.add_argument(
- "--f",
- type=int,
- default=8,
- help="downsampling factor",
- )
- parser.add_argument(
- "--n_samples",
- type=int,
- default=3,
- help="how many samples to produce for each given prompt. A.k.a. batch size",
- )
- parser.add_argument(
- "--n_rows",
- type=int,
- default=0,
- help="rows in the grid (default: n_samples)",
- )
- parser.add_argument(
- "--scale",
- type=float,
- default=7.5,
- help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
- )
- parser.add_argument(
- "--from-file",
- type=str,
- help="if specified, load prompts from this file",
- )
- parser.add_argument(
- "--config",
- type=str,
- default="configs/stable-diffusion/v1-inference.yaml",
- help="path to config which constructs model",
- )
- parser.add_argument(
- "--ckpt",
- type=str,
- default="models/ldm/stable-diffusion-v1/model.ckpt",
- help="path to checkpoint of model",
- )
- parser.add_argument(
- "--seed",
- type=int,
- default=42,
- help="the seed (for reproducible sampling)",
- )
- parser.add_argument(
- "--precision",
- type=str,
- help="evaluate at this precision",
- choices=["full", "autocast"],
- default="autocast"
- )
- opt = parser.parse_args()
-
- if opt.laion400m:
- print("Falling back to LAION 400M model...")
- opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml"
- opt.ckpt = "models/ldm/text2img-large/model.ckpt"
- opt.outdir = "outputs/txt2img-samples-laion400m"
-
- seed_everything(opt.seed)
-
- config = OmegaConf.load(f"{opt.config}")
- model = load_model_from_config(config, f"{opt.ckpt}")
-
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
- model = model.to(device)
-
- if opt.dpm_solver:
- sampler = DPMSolverSampler(model)
- elif opt.plms:
- sampler = PLMSSampler(model)
- else:
- sampler = DDIMSampler(model)
-
- os.makedirs(opt.outdir, exist_ok=True)
- outpath = opt.outdir
-
- print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
- wm = "StableDiffusionV1"
- wm_encoder = WatermarkEncoder()
- wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
-
- batch_size = opt.n_samples
- n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
- if not opt.from_file:
- prompt = opt.prompt
- assert prompt is not None
- data = [batch_size * [prompt]]
-
- else:
- print(f"reading prompts from {opt.from_file}")
- with open(opt.from_file, "r") as f:
- data = f.read().splitlines()
- data = list(chunk(data, batch_size))
-
- sample_path = os.path.join(outpath, "samples")
- os.makedirs(sample_path, exist_ok=True)
- base_count = len(os.listdir(sample_path))
- grid_count = len(os.listdir(outpath)) - 1
-
- start_code = None
- if opt.fixed_code:
- start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
-
- precision_scope = autocast if opt.precision=="autocast" else nullcontext
- with torch.no_grad():
- with precision_scope("cuda"):
- with model.ema_scope():
- tic = time.time()
- all_samples = list()
- for n in trange(opt.n_iter, desc="Sampling"):
- for prompts in tqdm(data, desc="data"):
- uc = None
- if opt.scale != 1.0:
- uc = model.get_learned_conditioning(batch_size * [""])
- if isinstance(prompts, tuple):
- prompts = list(prompts)
- c = model.get_learned_conditioning(prompts)
- shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
- samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
- conditioning=c,
- batch_size=opt.n_samples,
- shape=shape,
- verbose=False,
- unconditional_guidance_scale=opt.scale,
- unconditional_conditioning=uc,
- eta=opt.ddim_eta,
- x_T=start_code)
-
- x_samples_ddim = model.decode_first_stage(samples_ddim)
- x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
- x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
-
- x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim)
-
- x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
-
- if not opt.skip_save:
- for x_sample in x_checked_image_torch:
- x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
- img = Image.fromarray(x_sample.astype(np.uint8))
- img = put_watermark(img, wm_encoder)
- img.save(os.path.join(sample_path, f"{base_count:05}.png"))
- base_count += 1
-
- if not opt.skip_grid:
- all_samples.append(x_checked_image_torch)
-
- if not opt.skip_grid:
- # additionally, save as grid
- grid = torch.stack(all_samples, 0)
- grid = rearrange(grid, 'n b c h w -> (n b) c h w')
- grid = make_grid(grid, nrow=n_rows)
-
- # to image
- grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
- img = Image.fromarray(grid.astype(np.uint8))
- img = put_watermark(img, wm_encoder)
- img.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
- grid_count += 1
-
- toc = time.time()
-
- print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
- f" \nEnjoy.")
-
-
-if __name__ == "__main__":
- main()
diff --git a/stable_diffusion/setup.py b/stable_diffusion/setup.py
deleted file mode 100644
index a24d541676407eee1bea271179ffd1d80c6a8e79..0000000000000000000000000000000000000000
--- a/stable_diffusion/setup.py
+++ /dev/null
@@ -1,13 +0,0 @@
-from setuptools import setup, find_packages
-
-setup(
- name='latent-diffusion',
- version='0.0.1',
- description='',
- packages=find_packages(),
- install_requires=[
- 'torch',
- 'numpy',
- 'tqdm',
- ],
-)
\ No newline at end of file