Spaces:
Runtime error
Runtime error
portalniy-dev
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,141 +1,40 @@
|
|
1 |
-
import gradio as gr
|
2 |
import torch
|
3 |
-
from
|
4 |
-
from
|
5 |
-
|
6 |
-
# Predefined datasets with their configurations
|
7 |
-
dataset_names = {
|
8 |
-
'imdb': None,
|
9 |
-
'ag_news': None,
|
10 |
-
'squad': None,
|
11 |
-
'cnn_dailymail': '1.0.0', # Specify configuration for cnn_dailymail
|
12 |
-
'wiki40b': 'en' # Specify language for wiki40b
|
13 |
-
}
|
14 |
-
|
15 |
-
# Global variables for model and tokenizer
|
16 |
-
model = None
|
17 |
-
tokenizer = None
|
18 |
-
|
19 |
-
# Function to load and prepare datasets
|
20 |
-
def load_and_prepare_datasets():
|
21 |
-
datasets = []
|
22 |
-
for name, config in dataset_names.items():
|
23 |
-
ds = load_dataset(name, config)
|
24 |
-
datasets.append(ds)
|
25 |
-
|
26 |
-
# Print dataset features for debugging
|
27 |
-
print(f"Dataset: {name}, Features: {ds['train'].features}")
|
28 |
-
|
29 |
-
# Extract only the relevant fields from each dataset for training
|
30 |
-
train_datasets = []
|
31 |
-
eval_datasets = []
|
32 |
-
|
33 |
-
for ds in datasets:
|
34 |
-
if 'train' in ds:
|
35 |
-
# Extract text field based on available keys
|
36 |
-
if 'text' in ds['train'].features:
|
37 |
-
train_datasets.append(ds['train'].map(lambda x: {'text': x['text']}))
|
38 |
-
elif 'content' in ds['train'].features: # Example for CNN/DailyMail
|
39 |
-
train_datasets.append(ds['train'].map(lambda x: {'text': x['content']}))
|
40 |
-
else:
|
41 |
-
print(f"Warning: No suitable text field found in {ds['train'].features}")
|
42 |
-
|
43 |
-
if 'test' in ds:
|
44 |
-
# Extract text field based on available keys
|
45 |
-
if 'text' in ds['test'].features:
|
46 |
-
eval_datasets.append(ds['test'].map(lambda x: {'text': x['text']}))
|
47 |
-
elif 'content' in ds['test'].features: # Example for CNN/DailyMail
|
48 |
-
eval_datasets.append(ds['test'].map(lambda x: {'text': x['content']}))
|
49 |
-
else:
|
50 |
-
print(f"Warning: No suitable text field found in {ds['test'].features}")
|
51 |
-
|
52 |
-
# Concatenate train datasets only for training
|
53 |
-
train_dataset = concatenate_datasets(train_datasets)
|
54 |
-
|
55 |
-
# Concatenate eval datasets only for evaluation
|
56 |
-
eval_dataset = concatenate_datasets(eval_datasets)
|
57 |
-
|
58 |
-
return train_dataset, eval_dataset
|
59 |
-
|
60 |
-
# Function to preprocess data
|
61 |
-
def preprocess_function(examples):
|
62 |
-
return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=512)
|
63 |
-
|
64 |
-
# Function to train the model
|
65 |
-
def train_model():
|
66 |
-
global model, tokenizer
|
67 |
-
|
68 |
-
# Load model and tokenizer
|
69 |
-
model_name = 'gpt2' # You can choose another model if desired
|
70 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
71 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
72 |
-
|
73 |
-
# Load and prepare datasets
|
74 |
-
train_dataset, eval_dataset = load_and_prepare_datasets()
|
75 |
-
|
76 |
-
# Preprocess the datasets
|
77 |
-
train_dataset = train_dataset.map(preprocess_function, batched=True)
|
78 |
-
|
79 |
-
# Set training arguments
|
80 |
-
training_args = TrainingArguments(
|
81 |
-
output_dir='./results',
|
82 |
-
num_train_epochs=3,
|
83 |
-
per_device_train_batch_size=4,
|
84 |
-
per_device_eval_batch_size=4,
|
85 |
-
warmup_steps=500,
|
86 |
-
weight_decay=0.01,
|
87 |
-
logging_dir='./logs',
|
88 |
-
logging_steps=10,
|
89 |
-
save_steps=1000,
|
90 |
-
evaluation_strategy="steps",
|
91 |
-
learning_rate=5e-5 # Adjust learning rate if necessary
|
92 |
-
)
|
93 |
-
|
94 |
-
# Train the model
|
95 |
-
trainer = Trainer(
|
96 |
-
model=model,
|
97 |
-
args=training_args,
|
98 |
-
train_dataset=train_dataset,
|
99 |
-
eval_dataset=eval_dataset,
|
100 |
-
)
|
101 |
-
|
102 |
-
trainer.train()
|
103 |
-
|
104 |
-
return "Model trained successfully!"
|
105 |
-
|
106 |
-
# Function to generate text
|
107 |
-
def generate_text(prompt):
|
108 |
-
global tokenizer # Ensure we use the global tokenizer variable
|
109 |
-
|
110 |
-
if tokenizer is None:
|
111 |
-
return "Tokenizer not initialized. Please train the model first."
|
112 |
-
|
113 |
-
input_ids = tokenizer.encode(prompt, return_tensors='pt')
|
114 |
-
|
115 |
-
# Adjust generation parameters for better quality output
|
116 |
-
output = model.generate(input_ids, max_length=100, temperature=0.7, top_k=50)
|
117 |
-
|
118 |
-
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
119 |
-
|
120 |
-
return generated_text
|
121 |
-
|
122 |
-
# Gradio interface
|
123 |
-
with gr.Blocks() as demo:
|
124 |
-
gr.Markdown("# LLM Training and Text Generation")
|
125 |
-
|
126 |
-
with gr.Row():
|
127 |
-
with gr.Column():
|
128 |
-
train_button = gr.Button("Train Model")
|
129 |
-
output_message = gr.Textbox(label="Training Status", interactive=False)
|
130 |
-
|
131 |
-
with gr.Column():
|
132 |
-
prompt_input = gr.Textbox(label="Enter prompt for text generation")
|
133 |
-
generate_button = gr.Button("Generate Text")
|
134 |
-
generated_output = gr.Textbox(label="Generated Text", interactive=False)
|
135 |
-
|
136 |
-
# Button actions
|
137 |
-
train_button.click(train_model, outputs=output_message)
|
138 |
-
generate_button.click(generate_text, inputs=prompt_input, outputs=generated_output)
|
139 |
|
140 |
-
#
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification, Trainer, TrainingArguments, pipeline
|
3 |
+
from datasets import load_dataset
|
4 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Шаг 1: Загружаем и подготавливаем датасеты
|
7 |
+
datasets = [
|
8 |
+
load_dataset('squad'),
|
9 |
+
load_dataset('conll2003'),
|
10 |
+
load_dataset('glue', 'mrpc'),
|
11 |
+
load_dataset('trec'),
|
12 |
+
load_dataset('babi')
|
13 |
+
]
|
14 |
+
|
15 |
+
# Шаг 2: Загружаем модель и токенизатор
|
16 |
+
model_name = 'distilbert-base-uncased'
|
17 |
+
tokenizer = DistilBertTokenizer.from_pretrained(model_name)
|
18 |
+
model = DistilBertForSequenceClassification.from_pretrained(model_name)
|
19 |
+
|
20 |
+
# Шаг 3: Токенизация и тренировка модели
|
21 |
+
def tokenize_function(examples):
|
22 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True)
|
23 |
+
|
24 |
+
tokenized_datasets = []
|
25 |
+
for ds in datasets:
|
26 |
+
tokenized_ds = ds.map(tokenize_function, batched=True)
|
27 |
+
tokenized_datasets.append(tokenized_ds)
|
28 |
+
|
29 |
+
# Шаг 4: Оптимизация модели с помощью quantization
|
30 |
+
model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
|
31 |
+
|
32 |
+
# Шаг 5: Создание функции для классификации текста
|
33 |
+
def classify_text(text):
|
34 |
+
tokens = tokenizer(text, return_tensors="pt")
|
35 |
+
outputs = model(**tokens)
|
36 |
+
return torch.nn.functional.softmax(outputs.logits, dim=-1).tolist()
|
37 |
+
|
38 |
+
# Шаг 6: Настройка Gradio интерфейса
|
39 |
+
interface = gr.Interface(fn=classify_text, inputs="text", outputs="json")
|
40 |
+
interface.launch()
|