File size: 9,930 Bytes
5f7b796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# -*- coding: utf-8 -*-
"""gradio_wangchanberta

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1Kw2k1oymhq4ZAcy4oBYOlIg4bBU-HlVr
"""

#@title scirpts
import time
import numpy as np
import pandas as pd
import torch
import faiss
from sklearn.preprocessing import normalize
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from sentence_transformers import SentenceTransformer,util
from pythainlp import Tokenizer
import pickle
import evaluate
from sklearn.metrics.pairwise import cosine_similarity,euclidean_distances

print(torch.cuda.is_available())

__all__ = [
    "mdeberta",
    "wangchanberta-hyp", # Best model
]

predict_method = [
    "faiss",
    "faissWithModel",
    "cosineWithModel",
    "semanticSearchWithModel",
]

DEFAULT_MODEL='wangchanberta-hyp'
DEFAULT_SENTENCE_EMBEDDING_MODEL='intfloat/multilingual-e5-base'

MODEL_DICT = {
    'wangchanberta': 'Chananchida/wangchanberta-th-wiki-qa_ref-params',
    'wangchanberta-hyp': 'Chananchida/wangchanberta-th-wiki-qa_hyp-params',
    'mdeberta': 'Chananchida/mdeberta-v3-th-wiki-qa_ref-params',
    'mdeberta-hyp': 'Chananchida/mdeberta-v3-th-wiki-qa_hyp-params',
}

DATA_PATH='models/dataset.xlsx'
EMBEDDINGS_PATH='models/embeddings.pkl'


class ChatbotModel:
    def __init__(self, model=DEFAULT_MODEL):
        self._chatbot = Chatbot()
        self._chatbot.load_data()
        self._chatbot.load_model(model)
        self._chatbot.load_embedding_model(DEFAULT_SENTENCE_EMBEDDING_MODEL)
        self._chatbot.set_vectors()
        self._chatbot.set_index()


    def chat(self, question):
        return self._chatbot.answer_question(question)

    def eval(self,model,predict_method):
        return self._chatbot.eval(model_name=model,predict_method=predict_method)

class Chatbot:
    def __init__(self):
        # Initialize variables
        self.df = None
        self.test_df = None
        self.model = None
        self.model_name = None
        self.tokenizer = None
        self.embedding_model = None
        self.vectors = None
        self.index = None
        self.k = 1  # top k most similar

    def load_data(self, path: str = DATA_PATH):
        self.df = pd.read_excel(path, sheet_name='Default')
        self.df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context']
        print('Load data done')

    def load_model(self, model_name: str = DEFAULT_MODEL):
        self.model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name])
        self.tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name])
        self.model_name = model_name
        print('Load model done')

    def load_embedding_model(self, model_name: str = DEFAULT_SENTENCE_EMBEDDING_MODEL):
        if torch.cuda.is_available():  # Check if GPU is available
            self.embedding_model = SentenceTransformer(model_name, device='cpu')
        else: self.embedding_model = SentenceTransformer(model_name)
        print('Load sentence embedding model done')

    def set_vectors(self):
        self.vectors = self.prepare_sentences_vector(self.load_embeddings(EMBEDDINGS_PATH))

    def set_index(self):
        if torch.cuda.is_available():  # Check if GPU is available
            res = faiss.StandardGpuResources()
            self.index = faiss.IndexFlatL2(self.vectors.shape[1])
            gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, self.index)
            gpu_index_flat.add(self.vectors)
            self.index = gpu_index_flat
        else:  # If GPU is not available, use CPU-based Faiss index
            self.index = faiss.IndexFlatL2(self.vectors.shape[1])
            self.index.add(self.vectors)

    def get_embeddings(self, text_list):
        return self.embedding_model.encode(text_list)

    def prepare_sentences_vector(self, encoded_list):
        encoded_list = [i.reshape(1, -1) for i in encoded_list]
        encoded_list = np.vstack(encoded_list).astype('float32')
        encoded_list = normalize(encoded_list)
        return encoded_list


    def store_embeddings(self, embeddings):
        with open('models/embeddings.pkl', "wb") as fOut:
            pickle.dump({'sentences': self.df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL)
        print('Store embeddings done')

    def load_embeddings(self, file_path):
        with open(file_path, "rb") as fIn:
            stored_data = pickle.load(fIn)
            stored_sentences = stored_data['sentences']
            stored_embeddings = stored_data['embeddings']
        print('Load (questions) embeddings done')
        return stored_embeddings

    def model_pipeline(self, question, similar_context):
        inputs = self.tokenizer(question, similar_context, return_tensors="pt")
        with torch.no_grad():
            outputs = self.model(**inputs)
        answer_start_index = outputs.start_logits.argmax()
        answer_end_index = outputs.end_logits.argmax()
        predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1]
        Answer = self.tokenizer.decode(predict_answer_tokens)
        return Answer

    def faiss_search(self, question_vector):
        distances, indices = self.index.search(question_vector, self.k)
        similar_questions = [self.df['Question'][indices[0][i]] for i in range(self.k)]
        similar_contexts = [self.df['Context'][indices[0][i]] for i in range(self.k)]
        return similar_questions, similar_contexts, distances, indices

    def predict_faiss(self, message):
        message = message.strip()
        question_vector = self.get_embeddings(message)
        question_vector = self.prepare_sentences_vector([question_vector])
        similar_questions, similar_contexts, distances, indices = self.faiss_search(question_vector)
        Answers = [self.df['Answer'][i] for i in indices[0]]
        Answer = Answers[0]
        
        return Answer

    # Function to predict using BERT embedding
    def predict_bert_embedding(self,message):
        message = message.strip()
        question_vector = self.get_embeddings(message)
        question_vector=self.prepare_sentences_vector([question_vector])
        similar_questions, similar_contexts, distances,indices = self.faiss_search(question_vector)
        Answer = self.model_pipeline(similar_questions, similar_contexts)
        return Answer

    # def predict_semantic_search(self,message,corpus_embeddings):
    #     message = message.strip()
    #     query_embedding = self.embedding_model.encode(message, convert_to_tensor=True)
    #     query_embedding = query_embedding.to('cpu')
    #     hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=1)
    #     hit = hits[0][0]
    #     context=self.df['Context'][hit['corpus_id']]
    #     score="{:.4f})".format(hit['score'])
    #     Answer = self.model_pipeline(message, context)
    #     return Answer
    def predict_semantic_search(self, message):
        message = message.strip()
        query_embedding = self.embedding_model.encode([message], convert_to_tensor=True)[0]  # Fix here
        query_embedding = query_embedding.to('cpu')
        corpus_embeddings = self.embedding_model.encode(self.df['Question'].tolist(), convert_to_tensor=True)  # Fix here
        hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=1)
        hit = hits[0][0]
        context = self.df['Context'][hit['corpus_id']]
        score = "{:.4f})".format(hit['score'])
        Answer = self.model_pipeline(message, context)
        return Answer

    def predict_without_faiss(self,message):
        MostSimilarContext = ""
        min_distance = 1000
        message = message.strip(' \t\n')
        question_vector = self.get_embeddings([message])
        question_vector=self.prepare_sentences_vector(question_vector)
        for j, _question_vector in enumerate(self.vectors):
            distance = euclidean_distances(question_vector, _question_vector.reshape(1, -1))[0][0]
            if distance < min_distance:
                min_distance = distance
                MostSimilarContext = self.df['Context'][j]
                similar_question = self.df['Question'][j]
            if distance <= 0.02469331026:
                break
        predict_answer = self.model_pipeline(message, MostSimilarContext)
        Answer = predict_answer.strip().replace("<unk>","@")
        return Answer

bot = ChatbotModel()

"""#Gradio"""

import gradio as gr

EXAMPLE_PATH = ["หลิน ไห่เฟิง มีชื่อเรียกอีกชื่อว่าอะไร" , "ใครเป็นผู้ตั้งสภาเศรษฐกิจโลกขึ้นในปี พ.ศ. 2514 โดยทุกปีจะมีการประชุมที่ประเทศสวิตเซอร์แลนด์", "โปรดิวเซอร์ของอัลบั้มตลอดกาล ของวงคีรีบูนคือใคร", "สกุลเดิมของหม่อมครูนุ่ม นวรัตน ณ อยุธยา คืออะไร"]

demoFaiss = gr.Interface(fn=bot._chatbot.predict_faiss, inputs="text", outputs="text", examples=EXAMPLE_PATH, title="TH wiki (just Faiss)")
demoBert = gr.Interface(fn=bot._chatbot.predict_bert_embedding, inputs="text", outputs="text",examples=EXAMPLE_PATH, title="TH wiki (Faiss & Model)")
demoSemantic = gr.Interface(fn=bot._chatbot.predict_semantic_search, inputs="text", outputs="text",examples=EXAMPLE_PATH, title="TH wiki (Semantic Search & Model)")
demoWithoutFiss = gr.Interface(fn=bot._chatbot.predict_without_faiss, inputs="text", outputs="text",examples=EXAMPLE_PATH, title="TH wiki (just Model)")

demo = gr.TabbedInterface([demoFaiss, demoWithoutFiss, demoBert, demoSemantic], ["Faiss", "Model", "Faiss & Model", "Semantic Search & Model"])
demo.launch()