File size: 7,210 Bytes
5f7b796
 
 
 
 
 
 
9d5b2f3
5f7b796
fcea57d
5f7b796
 
 
 
 
9d5b2f3
5f7b796
 
 
 
 
 
 
 
 
9d5b2f3
 
5f7b796
 
 
 
 
 
 
 
9d5b2f3
 
5f7b796
 
 
 
 
 
 
 
 
 
 
 
 
 
9d5b2f3
 
 
5f7b796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d5b2f3
 
 
 
5f7b796
 
 
 
 
9d5b2f3
5f7b796
 
 
 
 
9d5b2f3
5f7b796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d5b2f3
5f7b796
 
9d5b2f3
 
c17251d
7501763
 
 
 
9d5b2f3
7501763
 
 
 
 
9d5b2f3
 
7501763
 
 
 
 
 
 
9d5b2f3
7501763
 
 
 
 
 
9d5b2f3
 
7501763
9d5b2f3
7501763
9d5b2f3
7501763
 
d5bb18b
 
9d5b2f3
d5bb18b
7501763
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import time
import numpy as np
import pandas as pd
import torch
import faiss
from sklearn.preprocessing import normalize
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from sentence_transformers import SentenceTransformer
import pickle
import gradio as gr

print(torch.cuda.is_available())

__all__ = [
    "mdeberta",
    "wangchanberta-hyp",  # Best model
]

predict_method = [
    "faiss",
    "faissWithModel",
    "cosineWithModel",
    "semanticSearchWithModel",
]

DEFAULT_MODEL = 'wangchanberta-hyp'
DEFAULT_SENTENCE_EMBEDDING_MODEL = 'intfloat/multilingual-e5-base'

MODEL_DICT = {
    'wangchanberta': 'Chananchida/wangchanberta-th-wiki-qa_ref-params',
    'wangchanberta-hyp': 'Chananchida/wangchanberta-th-wiki-qa_hyp-params',
    'mdeberta': 'Chananchida/mdeberta-v3-th-wiki-qa_ref-params',
    'mdeberta-hyp': 'Chananchida/mdeberta-v3-th-wiki-qa_hyp-params',
}

DATA_PATH = 'models/dataset.xlsx'
EMBEDDINGS_PATH = 'models/embeddings.pkl'


class ChatbotModel:
    def __init__(self, model=DEFAULT_MODEL):
        self._chatbot = Chatbot()
        self._chatbot.load_data()
        self._chatbot.load_model(model)
        self._chatbot.load_embedding_model(DEFAULT_SENTENCE_EMBEDDING_MODEL)
        self._chatbot.set_vectors()
        self._chatbot.set_index()

    def chat(self, question):
        return self._chatbot.answer_question(question)

    def eval(self, model, predict_method):
        return self._chatbot.eval(model_name=model, predict_method=predict_method)


class Chatbot:
    def __init__(self):
        # Initialize variables
        self.df = None
        self.test_df = None
        self.model = None
        self.model_name = None
        self.tokenizer = None
        self.embedding_model = None
        self.vectors = None
        self.index = None
        self.k = 1  # top k most similar

    def load_data(self, path: str = DATA_PATH):
        self.df = pd.read_excel(path, sheet_name='Default')
        self.df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context']

    def load_model(self, model_name: str = DEFAULT_MODEL):
        self.model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name])
        self.tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name])
        self.model_name = model_name

    def load_embedding_model(self, model_name: str = DEFAULT_SENTENCE_EMBEDDING_MODEL):
        if torch.cuda.is_available():
            self.embedding_model = SentenceTransformer(model_name, device='cuda')
        else:
            self.embedding_model = SentenceTransformer(model_name)

    def set_vectors(self):
        self.vectors = self.prepare_sentences_vector(self.load_embeddings(EMBEDDINGS_PATH))

    def set_index(self):
        if torch.cuda.is_available():
            res = faiss.StandardGpuResources()
            self.index = faiss.IndexFlatL2(self.vectors.shape[1])
            gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, self.index)
            gpu_index_flat.add(self.vectors)
            self.index = gpu_index_flat
        else:
            self.index = faiss.IndexFlatL2(self.vectors.shape[1])
            self.index.add(self.vectors)

    def get_embeddings(self, text_list):
        return self.embedding_model.encode(text_list)

    def prepare_sentences_vector(self, encoded_list):
        encoded_list = [i.reshape(1, -1) for i in encoded_list]
        encoded_list = np.vstack(encoded_list).astype('float32')
        encoded_list = normalize(encoded_list)
        return encoded_list

    def store_embeddings(self, embeddings):
        with open('models/embeddings.pkl', "wb") as fOut:
            pickle.dump({'sentences': self.df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL)

    def load_embeddings(self, file_path):
        with open(file_path, "rb") as fIn:
            stored_data = pickle.load(fIn)
            stored_sentences = stored_data['sentences']
            stored_embeddings = stored_data['embeddings']
        return stored_embeddings

    def model_pipeline(self, question, similar_context):
        inputs = self.tokenizer(question, similar_context, return_tensors="pt")
        with torch.no_grad():
            outputs = self.model(**inputs)
        answer_start_index = outputs.start_logits.argmax()
        answer_end_index = outputs.end_logits.argmax()
        predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1]
        Answer = self.tokenizer.decode(predict_answer_tokens)
        return Answer

    def faiss_search(self, question_vector):
        distances, indices = self.index.search(question_vector, self.k)
        similar_questions = [self.df['Question'][indices[0][i]] for i in range(self.k)]
        similar_contexts = [self.df['Context'][indices[0][i]] for i in range(self.k)]
        return similar_questions, similar_contexts, distances, indices

    def predict(self, message):
        message = message.strip()
        question_vector = self.get_embeddings(message)
        question_vector = self.prepare_sentences_vector([question_vector])
        similar_questions, similar_contexts, distances, indices = self.faiss_search(question_vector)
        Answer = self.model_pipeline(str(message), similar_contexts[0])
        start_index = similar_contexts.find(Answer)
        end_index = start_index + len(Answer)
        output = {
            "user_question": message,
            "answer": self.df['Answer'][indices[0][0]],
            "distance": round(distances[0][0], 4),
            "highlight_start": start_index,
            "highlight_end": end_index
        }
        return output


def highlight_text(text, start_index, end_index):
    if start_index < 0:
        start_index = 0
    if end_index > len(text):
        end_index = len(text)
    highlighted_text = ""
    for i, char in enumerate(text):
        if i == start_index:
            highlighted_text += "<mark>"
        highlighted_text += char
        if i == end_index - 1:
            highlighted_text += "</mark>"
    return highlighted_text


if __name__ == "__main__":
    bot = ChatbotModel()
    
    def chat_interface(question, history):
        response = bot._chatbot.predict(question)
        highlighted_answer = highlight_text(response["answer"], response["highlight_start"], response["highlight_end"])
        return highlighted_answer

    EXAMPLE = ["หลิน ไห่เฟิง มีชื่อเรียกอีกชื่อว่าอะไร" , "ใครเป็นผู้ตั้งสภาเศรษฐกิจโลกขึ้นในปี พ.ศ. 2514 โดยทุกปีจะมีการประชุมที่ประเทศสวิตเซอร์แลนด์", "โปรดิวเซอร์ของอัลบั้มตลอดกาล ของวงคีรีบูนคือใคร", "สกุลเดิมของหม่อมครูนุ่ม นวรัตน ณ อยุธยา คืออะไร"]
    
    demo = gr.ChatInterface(fn=chat_interface, examples=EXAMPLE, title="CE66-04: Thai Question Answering System by using Deep Learning")
    demo.launch()