Spaces:
Sleeping
Sleeping
File size: 7,534 Bytes
5f7b796 9d5b2f3 5f7b796 fcea57d 5f7b796 9d5b2f3 5f7b796 9d5b2f3 5f7b796 9d5b2f3 5f7b796 9d5b2f3 5f7b796 1139515 5f7b796 9d5b2f3 5f7b796 9d5b2f3 5f7b796 9d5b2f3 5f7b796 9d5b2f3 5f7b796 9d5b2f3 9ee8309 7501763 9d5b2f3 7501763 9d5b2f3 7501763 9d5b2f3 7501763 9d5b2f3 7501763 9d5b2f3 7501763 9d5b2f3 7501763 d5bb18b 1139515 32fa21c f89e969 32fa21c 7501763 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import time
import numpy as np
import pandas as pd
import torch
import faiss
from sklearn.preprocessing import normalize
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from sentence_transformers import SentenceTransformer
import pickle
import gradio as gr
print(torch.cuda.is_available())
__all__ = [
"mdeberta",
"wangchanberta-hyp", # Best model
]
predict_method = [
"faiss",
"faissWithModel",
"cosineWithModel",
"semanticSearchWithModel",
]
DEFAULT_MODEL = 'wangchanberta-hyp'
DEFAULT_SENTENCE_EMBEDDING_MODEL = 'intfloat/multilingual-e5-base'
MODEL_DICT = {
'wangchanberta': 'Chananchida/wangchanberta-th-wiki-qa_ref-params',
'wangchanberta-hyp': 'Chananchida/wangchanberta-th-wiki-qa_hyp-params',
'mdeberta': 'Chananchida/mdeberta-v3-th-wiki-qa_ref-params',
'mdeberta-hyp': 'Chananchida/mdeberta-v3-th-wiki-qa_hyp-params',
}
DATA_PATH = 'models/dataset.xlsx'
EMBEDDINGS_PATH = 'models/embeddings.pkl'
class ChatbotModel:
def __init__(self, model=DEFAULT_MODEL):
self._chatbot = Chatbot()
self._chatbot.load_data()
self._chatbot.load_model(model)
self._chatbot.load_embedding_model(DEFAULT_SENTENCE_EMBEDDING_MODEL)
self._chatbot.set_vectors()
self._chatbot.set_index()
def chat(self, question):
return self._chatbot.answer_question(question)
def eval(self, model, predict_method):
return self._chatbot.eval(model_name=model, predict_method=predict_method)
class Chatbot:
def __init__(self):
# Initialize variables
self.df = None
self.test_df = None
self.model = None
self.model_name = None
self.tokenizer = None
self.embedding_model = None
self.vectors = None
self.index = None
self.k = 1 # top k most similar
def load_data(self, path: str = DATA_PATH):
self.df = pd.read_excel(path, sheet_name='Default')
self.test_df = pd.read_excel(path, sheet_name='Test')
self.df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context']
def load_model(self, model_name: str = DEFAULT_MODEL):
self.model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name])
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name])
self.model_name = model_name
def load_embedding_model(self, model_name: str = DEFAULT_SENTENCE_EMBEDDING_MODEL):
if torch.cuda.is_available():
self.embedding_model = SentenceTransformer(model_name, device='cuda')
else:
self.embedding_model = SentenceTransformer(model_name)
def set_vectors(self):
self.vectors = self.prepare_sentences_vector(self.load_embeddings(EMBEDDINGS_PATH))
def set_index(self):
if torch.cuda.is_available():
res = faiss.StandardGpuResources()
self.index = faiss.IndexFlatL2(self.vectors.shape[1])
gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, self.index)
gpu_index_flat.add(self.vectors)
self.index = gpu_index_flat
else:
self.index = faiss.IndexFlatL2(self.vectors.shape[1])
self.index.add(self.vectors)
def get_embeddings(self, text_list):
return self.embedding_model.encode(text_list)
def prepare_sentences_vector(self, encoded_list):
encoded_list = [i.reshape(1, -1) for i in encoded_list]
encoded_list = np.vstack(encoded_list).astype('float32')
encoded_list = normalize(encoded_list)
return encoded_list
def store_embeddings(self, embeddings):
with open('models/embeddings.pkl', "wb") as fOut:
pickle.dump({'sentences': self.df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL)
def load_embeddings(self, file_path):
with open(file_path, "rb") as fIn:
stored_data = pickle.load(fIn)
stored_sentences = stored_data['sentences']
stored_embeddings = stored_data['embeddings']
return stored_embeddings
def model_pipeline(self, question, similar_context):
inputs = self.tokenizer(question, similar_context, return_tensors="pt")
with torch.no_grad():
outputs = self.model(**inputs)
answer_start_index = outputs.start_logits.argmax()
answer_end_index = outputs.end_logits.argmax()
predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1]
Answer = self.tokenizer.decode(predict_answer_tokens)
return Answer
def faiss_search(self, question_vector):
distances, indices = self.index.search(question_vector, self.k)
similar_questions = [self.df['Question'][indices[0][i]] for i in range(self.k)]
similar_contexts = [self.df['Context'][indices[0][i]] for i in range(self.k)]
return similar_questions, similar_contexts, distances, indices
def predict(self, message):
message = message.strip()
question_vector = self.get_embeddings(message)
question_vector = self.prepare_sentences_vector([question_vector])
similar_questions, similar_contexts, distances, indices = self.faiss_search(question_vector)
context = similar_contexts[0]
Answer = self.model_pipeline(str(message), context)
start_index = context.find(Answer)
end_index = start_index + len(Answer)
output = {
"user_question": message,
"answer": self.df['Answer'][indices[0][0]],
"distance": round(distances[0][0], 4),
"highlight_start": start_index,
"highlight_end": end_index
}
return output
def highlight_text(text, start_index, end_index):
if start_index < 0:
start_index = 0
if end_index > len(text):
end_index = len(text)
highlighted_text = ""
for i, char in enumerate(text):
if i == start_index:
highlighted_text += "<mark>"
highlighted_text += char
if i == end_index - 1:
highlighted_text += "</mark>"
return highlighted_text
if __name__ == "__main__":
bot = ChatbotModel()
def chat_interface(question, history):
response = bot._chatbot.predict(question)
highlighted_answer = highlight_text(response["answer"], response["highlight_start"], response["highlight_end"])
return highlighted_answer
# EXAMPLE = ["หลิน ไห่เฟิง มีชื่อเรียกอีกชื่อว่าอะไร" , "ใครเป็นผู้ตั้งสภาเศรษฐกิจโลกขึ้นในปี พ.ศ. 2514 โดยทุกปีจะมีการประชุมที่ประเทศสวิตเซอร์แลนด์", "โปรดิวเซอร์ของอัลบั้มตลอดกาล ของวงคีรีบูนคือใคร", "สกุลเดิมของหม่อมครูนุ่ม นวรัตน ณ อยุธยา คืออะไร"]
description = 'Test Data: https://docs.google.com/spreadsheets/d/1UFNsALyx38XLZEcK1CKFpz424DQwMXrYOnu3h5GGp0A/edit?usp=sharing'
demo = gr.ChatInterface(
fn=chat_interface,
examples=bot._chatbot.test_df,
examples_per_page=4,
title="CE66-04: Thai Question Answering System by using Deep Learning",
description=description
)
demo.launch()
|