Spaces:
Sleeping
Sleeping
File size: 10,050 Bytes
5f7b796 fcea57d 5f7b796 610dfca 5f7b796 fcea57d 5f7b796 fcea57d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# -*- coding: utf-8 -*-
#@title scirpts
import time
import numpy as np
import pandas as pd
import torch
import faiss
from sklearn.preprocessing import normalize
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from sentence_transformers import SentenceTransformer,util
from pythainlp import Tokenizer
import pickle
import evaluate
from sklearn.metrics.pairwise import cosine_similarity,euclidean_distances
import gradio as gr
print(torch.cuda.is_available())
__all__ = [
"mdeberta",
"wangchanberta-hyp", # Best model
]
predict_method = [
"faiss",
"faissWithModel",
"cosineWithModel",
"semanticSearchWithModel",
]
DEFAULT_MODEL='wangchanberta-hyp'
DEFAULT_SENTENCE_EMBEDDING_MODEL='intfloat/multilingual-e5-base'
MODEL_DICT = {
'wangchanberta': 'Chananchida/wangchanberta-th-wiki-qa_ref-params',
'wangchanberta-hyp': 'Chananchida/wangchanberta-th-wiki-qa_hyp-params',
'mdeberta': 'Chananchida/mdeberta-v3-th-wiki-qa_ref-params',
'mdeberta-hyp': 'Chananchida/mdeberta-v3-th-wiki-qa_hyp-params',
}
DATA_PATH='models/dataset.xlsx'
EMBEDDINGS_PATH='models/embeddings.pkl'
class ChatbotModel:
def __init__(self, model=DEFAULT_MODEL):
self._chatbot = Chatbot()
self._chatbot.load_data()
self._chatbot.load_model(model)
self._chatbot.load_embedding_model(DEFAULT_SENTENCE_EMBEDDING_MODEL)
self._chatbot.set_vectors()
self._chatbot.set_index()
def chat(self, question):
return self._chatbot.answer_question(question)
def eval(self,model,predict_method):
return self._chatbot.eval(model_name=model,predict_method=predict_method)
class Chatbot:
def __init__(self):
# Initialize variables
self.df = None
self.test_df = None
self.model = None
self.model_name = None
self.tokenizer = None
self.embedding_model = None
self.vectors = None
self.index = None
self.k = 1 # top k most similar
def load_data(self, path: str = DATA_PATH):
self.df = pd.read_excel(path, sheet_name='Default')
self.df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context']
print('Load data done')
def load_model(self, model_name: str = DEFAULT_MODEL):
self.model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name])
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name])
self.model_name = model_name
print('Load model done')
def load_embedding_model(self, model_name: str = DEFAULT_SENTENCE_EMBEDDING_MODEL):
if torch.cuda.is_available(): # Check if GPU is available
self.embedding_model = SentenceTransformer(model_name, device='cpu')
else: self.embedding_model = SentenceTransformer(model_name)
print('Load sentence embedding model done')
def set_vectors(self):
self.vectors = self.prepare_sentences_vector(self.load_embeddings(EMBEDDINGS_PATH))
def set_index(self):
if torch.cuda.is_available(): # Check if GPU is available
res = faiss.StandardGpuResources()
self.index = faiss.IndexFlatL2(self.vectors.shape[1])
gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, self.index)
gpu_index_flat.add(self.vectors)
self.index = gpu_index_flat
else: # If GPU is not available, use CPU-based Faiss index
self.index = faiss.IndexFlatL2(self.vectors.shape[1])
self.index.add(self.vectors)
def get_embeddings(self, text_list):
return self.embedding_model.encode(text_list)
def prepare_sentences_vector(self, encoded_list):
encoded_list = [i.reshape(1, -1) for i in encoded_list]
encoded_list = np.vstack(encoded_list).astype('float32')
encoded_list = normalize(encoded_list)
return encoded_list
def store_embeddings(self, embeddings):
with open('models/embeddings.pkl', "wb") as fOut:
pickle.dump({'sentences': self.df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL)
print('Store embeddings done')
def load_embeddings(self, file_path):
with open(file_path, "rb") as fIn:
stored_data = pickle.load(fIn)
stored_sentences = stored_data['sentences']
stored_embeddings = stored_data['embeddings']
print('Load (questions) embeddings done')
return stored_embeddings
def model_pipeline(self, question, similar_context):
inputs = self.tokenizer(question, similar_context, return_tensors="pt")
with torch.no_grad():
outputs = self.model(**inputs)
answer_start_index = outputs.start_logits.argmax()
answer_end_index = outputs.end_logits.argmax()
predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1]
Answer = self.tokenizer.decode(predict_answer_tokens)
return Answer
def faiss_search(self, question_vector):
distances, indices = self.index.search(question_vector, self.k)
similar_questions = [self.df['Question'][indices[0][i]] for i in range(self.k)]
similar_contexts = [self.df['Context'][indices[0][i]] for i in range(self.k)]
return similar_questions, similar_contexts, distances, indices
def predict_faiss(self, message):
message = message.strip()
question_vector = self.get_embeddings(message)
question_vector = self.prepare_sentences_vector([question_vector])
similar_questions, similar_contexts, distances, indices = self.faiss_search(question_vector)
Answers = [self.df['Answer'][i] for i in indices[0]]
Answer = Answers[0]
return Answer
# Function to predict using BERT embedding
def predict_bert_embedding(self,message):
message = message.strip()
question_vector = self.get_embeddings(message)
question_vector=self.prepare_sentences_vector([question_vector])
similar_questions, similar_contexts, distances,indices = self.faiss_search(question_vector)
Answer = self.model_pipeline(similar_questions, similar_contexts)
return Answer
# def predict_semantic_search(self,message,corpus_embeddings):
# message = message.strip()
# query_embedding = self.embedding_model.encode(message, convert_to_tensor=True)
# query_embedding = query_embedding.to('cpu')
# hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=1)
# hit = hits[0][0]
# context=self.df['Context'][hit['corpus_id']]
# score="{:.4f})".format(hit['score'])
# Answer = self.model_pipeline(message, context)
# return Answer
def predict_semantic_search(self, message):
message = message.strip()
query_embedding = self.embedding_model.encode([message], convert_to_tensor=True)[0]
corpus_embeddings = self.embedding_model.encode(self.df['Question'].tolist(), convert_to_tensor=True)
hits = util.semantic_search(query_embedding.unsqueeze(0), corpus_embeddings, top_k=1)
hit = hits[0][0]
context = self.df['Context'][hit['corpus_id']]
Answer = self.model_pipeline(message, context)
return Answer
def predict_semantic_search(self, message):
message = message.strip()
query_embedding = self.embedding_model.encode([message], convert_to_tensor=True)[0] # Fix here
query_embedding = query_embedding.to('cpu')
corpus_embeddings = self.embedding_model.encode(self.df['Question'].tolist(), convert_to_tensor=True) # Fix here
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=1)
hit = hits[0][0]
context = self.df['Context'][hit['corpus_id']]
score = "{:.4f})".format(hit['score'])
Answer = self.model_pipeline(message, context)
return Answer
def predict_without_faiss(self,message):
MostSimilarContext = ""
min_distance = 1000
message = message.strip(' \t\n')
question_vector = self.get_embeddings([message])
question_vector=self.prepare_sentences_vector(question_vector)
for j, _question_vector in enumerate(self.vectors):
distance = euclidean_distances(question_vector, _question_vector.reshape(1, -1))[0][0]
if distance < min_distance:
min_distance = distance
MostSimilarContext = self.df['Context'][j]
similar_question = self.df['Question'][j]
if distance <= 0.02469331026:
break
predict_answer = self.model_pipeline(message, MostSimilarContext)
Answer = predict_answer.strip().replace("<unk>","@")
return Answer
bot = ChatbotModel()
"""#Gradio"""
EXAMPLE_PATH = ["หลิน ไห่เฟิง มีชื่อเรียกอีกชื่อว่าอะไร" , "ใครเป็นผู้ตั้งสภาเศรษฐกิจโลกขึ้นในปี พ.ศ. 2514 โดยทุกปีจะมีการประชุมที่ประเทศสวิตเซอร์แลนด์", "โปรดิวเซอร์ของอัลบั้มตลอดกาล ของวงคีรีบูนคือใคร", "สกุลเดิมของหม่อมครูนุ่ม นวรัตน ณ อยุธยา คืออะไร"]
demoFaiss = gr.ChatInterface(fn=bot._chatbot.predict_faiss, examples=EXAMPLE_PATH)
demoBert = gr.ChatInterface(fn=bot._chatbot.predict_bert_embedding,examples=EXAMPLE_PATH)
demoSemantic = gr.ChatInterface(fn=bot._chatbot.predict_semantic_search,examples=EXAMPLE_PATH)
demoWithoutFiss = gr.ChatInterface(fn=bot._chatbot.predict_without_faiss,examples=EXAMPLE_PATH)
demo = gr.TabbedInterface([demoFaiss, demoWithoutFiss, demoBert, demoSemantic], ["Faiss", "Model", "Faiss & Model", "Semantic Search & Model"])
demo.launch() |