import time import numpy as np import pandas as pd import torch import faiss from sklearn.preprocessing import normalize from transformers import AutoTokenizer, AutoModelForQuestionAnswering from sentence_transformers import SentenceTransformer import pickle import gradio as gr print(torch.cuda.is_available()) __all__ = [ "mdeberta", "wangchanberta-hyp", # Best model ] predict_method = [ "faiss", "faissWithModel", "cosineWithModel", "semanticSearchWithModel", ] DEFAULT_MODEL = 'wangchanberta-hyp' DEFAULT_SENTENCE_EMBEDDING_MODEL = 'intfloat/multilingual-e5-base' MODEL_DICT = { 'wangchanberta': 'Chananchida/wangchanberta-th-wiki-qa_ref-params', 'wangchanberta-hyp': 'Chananchida/wangchanberta-th-wiki-qa_hyp-params', 'mdeberta': 'Chananchida/mdeberta-v3-th-wiki-qa_ref-params', 'mdeberta-hyp': 'Chananchida/mdeberta-v3-th-wiki-qa_hyp-params', } DATA_PATH = 'models/dataset.xlsx' EMBEDDINGS_PATH = 'models/embeddings.pkl' class ChatbotModel: def __init__(self, model=DEFAULT_MODEL): self._chatbot = Chatbot() self._chatbot.load_data() self._chatbot.load_model(model) self._chatbot.load_embedding_model(DEFAULT_SENTENCE_EMBEDDING_MODEL) self._chatbot.set_vectors() self._chatbot.set_index() def chat(self, question): return self._chatbot.answer_question(question) def eval(self, model, predict_method): return self._chatbot.eval(model_name=model, predict_method=predict_method) class Chatbot: def __init__(self): # Initialize variables self.df = None self.test_df = None self.model = None self.model_name = None self.tokenizer = None self.embedding_model = None self.vectors = None self.index = None self.k = 1 # top k most similar def load_data(self, path: str = DATA_PATH): self.df = pd.read_excel(path, sheet_name='Default') self.df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context'] def load_model(self, model_name: str = DEFAULT_MODEL): self.model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name]) self.tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name]) self.model_name = model_name def load_embedding_model(self, model_name: str = DEFAULT_SENTENCE_EMBEDDING_MODEL): if torch.cuda.is_available(): self.embedding_model = SentenceTransformer(model_name, device='cuda') else: self.embedding_model = SentenceTransformer(model_name) def set_vectors(self): self.vectors = self.prepare_sentences_vector(self.load_embeddings(EMBEDDINGS_PATH)) def set_index(self): if torch.cuda.is_available(): res = faiss.StandardGpuResources() self.index = faiss.IndexFlatL2(self.vectors.shape[1]) gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, self.index) gpu_index_flat.add(self.vectors) self.index = gpu_index_flat else: self.index = faiss.IndexFlatL2(self.vectors.shape[1]) self.index.add(self.vectors) def get_embeddings(self, text_list): return self.embedding_model.encode(text_list) def prepare_sentences_vector(self, encoded_list): encoded_list = [i.reshape(1, -1) for i in encoded_list] encoded_list = np.vstack(encoded_list).astype('float32') encoded_list = normalize(encoded_list) return encoded_list def store_embeddings(self, embeddings): with open('models/embeddings.pkl', "wb") as fOut: pickle.dump({'sentences': self.df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL) def load_embeddings(self, file_path): with open(file_path, "rb") as fIn: stored_data = pickle.load(fIn) stored_sentences = stored_data['sentences'] stored_embeddings = stored_data['embeddings'] return stored_embeddings def model_pipeline(self, question, similar_context): inputs = self.tokenizer(question, similar_context, return_tensors="pt") with torch.no_grad(): outputs = self.model(**inputs) answer_start_index = outputs.start_logits.argmax() answer_end_index = outputs.end_logits.argmax() predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1] Answer = self.tokenizer.decode(predict_answer_tokens) return Answer def faiss_search(self, question_vector): distances, indices = self.index.search(question_vector, self.k) similar_questions = [self.df['Question'][indices[0][i]] for i in range(self.k)] similar_contexts = [self.df['Context'][indices[0][i]] for i in range(self.k)] return similar_questions, similar_contexts, distances, indices def predict(self, message): message = message.strip() question_vector = self.get_embeddings(message) question_vector = self.prepare_sentences_vector([question_vector]) similar_questions, similar_contexts, distances, indices = self.faiss_search(question_vector) Answer = self.model_pipeline(message, similar_contexts) start_index = similar_contexts.find(Answer) end_index = start_index + len(Answer) output = { "user_question": message, "answer": self.df['Answer'][indices[0][0]], "distance": round(distances[0][0], 4), "highlight_start": start_index, "highlight_end": end_index } return output def highlight_text(text, start_index, end_index): if start_index < 0: start_index = 0 if end_index > len(text): end_index = len(text) highlighted_text = "" for i, char in enumerate(text): if i == start_index: highlighted_text += "" highlighted_text += char if i == end_index - 1: highlighted_text += "" return highlighted_text if __name__ == "__main__": bot = ChatbotModel() def chat_interface(question, history): response = bot._chatbot.predict(question) highlighted_answer = highlight_text(response["answer"], response["highlight_start"], response["highlight_end"]) return highlighted_answer demo = gr.Interface(fn=chat_interface, title="Thai Question Answering System", inputs="text", outputs="html") demo.launch()