Thomas Chardonnens commited on
Commit
9039685
1 Parent(s): e62353e

update model arch

Browse files
Files changed (1) hide show
  1. seizure_detection.py +10 -16
seizure_detection.py CHANGED
@@ -3,37 +3,31 @@ import torch.nn as nn
3
  import torch.nn.functional as F
4
 
5
 
6
- class SeizureDetector(nn.Module):
7
- def __init__(self, num_classes=2):
8
- super(SeizureDetector, self).__init__()
9
- self.conv1= nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) # 32, 224, 224
10
 
11
- self.pool= nn.MaxPool2d(kernel_size=2, stride=2) # 32, 112, 112
12
 
13
- self.conv2= nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) # 64, 112, 112 -> 64, 56, 56
14
- self.conv3= nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1) # 128, 56, 56 -> 128, 28, 28
15
- self.conv4= nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) # 256, 28, 28 -> 256, 14, 14
16
 
17
  # Adding Batch Normalization
18
  self.bn1 = nn.BatchNorm2d(32)
19
  self.bn2 = nn.BatchNorm2d(64)
20
- self.bn3 = nn.BatchNorm2d(128)
21
- self.bn4 = nn.BatchNorm2d(256)
22
 
23
  self.dropout = nn.Dropout(p=0.5) # Dropout with a probability of 50%
24
 
25
- self.fc1= nn.Linear(256*14*14, 120)
26
  self.fc2= nn.Linear(120, 32)
27
  self.fc3= nn.Linear(32, num_classes)
28
 
29
  def forward(self, x):
30
- x = self.pool(F.relu(self.bn1(self.conv1(x)))) # 32, 112, 112
31
- x = self.pool(F.relu(self.bn2(self.conv2(x)))) # 64, 56, 56
32
- x = self.pool(F.relu(self.bn3(self.conv3(x)))) # 128, 28, 28
33
- x = self.pool(F.relu(self.bn4(self.conv4(x)))) # 256, 14, 14
34
 
35
  x = torch.flatten(x, 1)
36
  x = self.dropout(F.relu(self.fc1(x))) # Apply dropout
37
  x = self.dropout(F.relu(self.fc2(x))) # Apply dropout
38
  x = self.fc3(x)
39
- return x
 
3
  import torch.nn.functional as F
4
 
5
 
6
+ class SeizureDetectionCNN(nn.Module):
7
+ def init(self, num_classes=2):
8
+ super(SeizureDetectionCNN, self).init()
9
+ self.conv1= nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) # 32, 32, 32
10
 
11
+ self.pool= nn.MaxPool2d(kernel_size=2, stride=2) # 32, 16, 16
12
 
13
+ self.conv2= nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) # 64, 16, 16 -> 64, 8, 8
 
 
14
 
15
  # Adding Batch Normalization
16
  self.bn1 = nn.BatchNorm2d(32)
17
  self.bn2 = nn.BatchNorm2d(64)
 
 
18
 
19
  self.dropout = nn.Dropout(p=0.5) # Dropout with a probability of 50%
20
 
21
+ self.fc1= nn.Linear(64 * 8 * 8, 120)
22
  self.fc2= nn.Linear(120, 32)
23
  self.fc3= nn.Linear(32, num_classes)
24
 
25
  def forward(self, x):
26
+ x = self.pool(F.relu(self.bn1(self.conv1(x)))) # 32, 32, 32
27
+ x = self.pool(F.relu(self.bn2(self.conv2(x)))) # 64, 8, 8
 
 
28
 
29
  x = torch.flatten(x, 1)
30
  x = self.dropout(F.relu(self.fc1(x))) # Apply dropout
31
  x = self.dropout(F.relu(self.fc2(x))) # Apply dropout
32
  x = self.fc3(x)
33
+ return x