Spaces:
Sleeping
Sleeping
File size: 1,679 Bytes
f04dd6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
"""Server that will listen for GET requests from the client."""
from fastapi import FastAPI
from joblib import load
from concrete.ml.deployment import FHEModelServer
from pydantic import BaseModel
import base64
from pathlib import Path
current_dir = Path(__file__).parent
# Load the model
fhe_model = FHEModelServer("deployment/financial_rating")
fhe_legal_model = FHEModelServer("deployment/legal_rating")
class PredictRequest(BaseModel):
evaluation_key: str
encrypted_encoding: str
# Initialize an instance of FastAPI
app = FastAPI()
# Define the default route
@app.get("/")
def root():
return {"message": "Welcome to Your Sentiment Classification FHE Model Server!"}
@app.post("/predict_sentiment")
def predict_sentiment(query: PredictRequest):
fhe_model = FHEModelServer("deployment/financial_rating")
encrypted_encoding = base64.b64decode(query.encrypted_encoding)
evaluation_key = base64.b64decode(query.evaluation_key)
prediction = fhe_model.run(encrypted_encoding, evaluation_key)
# Encode base64 the prediction
encoded_prediction = base64.b64encode(prediction).decode()
return {"encrypted_prediction": encoded_prediction}
@app.post("/predict_legal")
def predict_legal(query: PredictRequest):
fhe_legal_model = FHEModelServer("deployment/legal_rating")
encrypted_encoding = base64.b64decode(query.encrypted_encoding)
evaluation_key = base64.b64decode(query.evaluation_key)
prediction = fhe_legal_model.run(encrypted_encoding, evaluation_key)
# Encode base64 the prediction
encoded_prediction = base64.b64encode(prediction).decode()
return {"encrypted_prediction": encoded_prediction}
|