File size: 2,380 Bytes
f04dd6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Let's import a few requirements
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import numpy

class TransformerVectorizer:
    def __init__(self):
        # Load the tokenizer (converts text to tokens)
        self.tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")

        # Load the pre-trained model
        self.transformer_model = AutoModelForSequenceClassification.from_pretrained(
            "cardiffnlp/twitter-roberta-base-sentiment-latest"
        )
        self.device = "cuda:0" if torch.cuda.is_available() else "cpu"

    def text_to_tensor(
        self,
        texts: list,
    ) -> numpy.ndarray:
        """Function that transforms a list of texts to their learned representation.
        
        Args:
            list_text_X (list): List of texts to be transformed.

        Returns:
            numpy.ndarray: Transformed list of texts.
        """
        # First, tokenize all the input text
        tokenized_text_X_train = self.tokenizer.batch_encode_plus(
            texts, return_tensors="pt"
        )["input_ids"]

        # Depending on the hardware used, the number of examples to be processed can be reduced
        # Here we split the data into 100 examples per batch
        tokenized_text_X_train_split = torch.split(tokenized_text_X_train, split_size_or_sections=50)

        # Send the model to the device
        transformer_model = self.transformer_model.to(self.device)
        output_hidden_states_list = []

        for tokenized_x in tokenized_text_X_train_split:
            # Pass the tokens through the transformer model and get the hidden states
            # Only keep the last hidden layer state for now
            output_hidden_states = transformer_model(tokenized_x.to(self.device), output_hidden_states=True)[
                1
            ][-1]
            # Average over the tokens axis to get a representation at the text level.
            output_hidden_states = output_hidden_states.mean(dim=1)
            output_hidden_states = output_hidden_states.detach().cpu().numpy()
            output_hidden_states_list.append(output_hidden_states)

        self.encodings = numpy.concatenate(output_hidden_states_list, axis=0)
        return self.encodings

    def transform(self, texts: list):
        return self.text_to_tensor(texts)