Spaces:
Sleeping
Sleeping
import gradio as gr | |
from requests import head | |
from transformer_vectorizer import TransformerVectorizer | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
import numpy as np | |
from concrete.ml.deployment import FHEModelClient | |
import numpy | |
import os | |
from pathlib import Path | |
import requests | |
import json | |
import base64 | |
import subprocess | |
import shutil | |
import time | |
# This repository's directory | |
REPO_DIR = Path(__file__).parent | |
subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR) | |
# Wait 5 sec for the server to start | |
time.sleep(5) | |
# Encrypted data limit for the browser to display | |
# (encrypted data is too large to display in the browser) | |
ENCRYPTED_DATA_BROWSER_LIMIT = 500 | |
N_USER_KEY_STORED = 20 | |
model_names=['financial_rating','legal_rating'] | |
FHE_MODEL_PATH = "deployment/financial_rating" | |
FHE_LEGAL_PATH = "deployment/legal_rating" | |
#FHE_LEGAL_PATH="deployment/legal_rating" | |
print("Loading the transformer model...") | |
# Initialize the transformer vectorizer | |
transformer_vectorizer = TransformerVectorizer() | |
vectorizer = TfidfVectorizer() | |
def clean_tmp_directory(): | |
# Allow 20 user keys to be stored. | |
# Once that limitation is reached, deleted the oldest. | |
path_sub_directories = sorted([f for f in Path(".fhe_keys/").iterdir() if f.is_dir()], key=os.path.getmtime) | |
user_ids = [] | |
if len(path_sub_directories) > N_USER_KEY_STORED: | |
n_files_to_delete = len(path_sub_directories) - N_USER_KEY_STORED | |
for p in path_sub_directories[:n_files_to_delete]: | |
user_ids.append(p.name) | |
shutil.rmtree(p) | |
list_files_tmp = Path("tmp/").iterdir() | |
# Delete all files related to user_id | |
for file in list_files_tmp: | |
for user_id in user_ids: | |
if file.name.endswith(f"{user_id}.npy"): | |
file.unlink() | |
mes=[] | |
def keygen(selected_tasks): | |
# Clean tmp directory if needed | |
clean_tmp_directory() | |
print("Initializing FHEModelClient...") | |
if not selected_tasks: | |
return "choose a task first" # 修改提示信息为英文 | |
user_id = numpy.random.randint(0, 2**32) | |
if "legal_rating" in selected_tasks: | |
model_names.append('legal_rating') | |
# Let's create a user_id | |
fhe_api= FHEModelClient(FHE_LEGAL_PATH, f".fhe_keys/{user_id}") | |
if "financial_rating" in selected_tasks: | |
model_names.append('financial_rating') | |
fhe_api = FHEModelClient(FHE_MODEL_PATH, f".fhe_keys/{user_id}") | |
# Let's create a user_id | |
fhe_api.load() | |
# Generate a fresh key | |
fhe_api.generate_private_and_evaluation_keys(force=True) | |
evaluation_key = fhe_api.get_serialized_evaluation_keys() | |
# Save evaluation_key in a file, since too large to pass through regular Gradio | |
# buttons, https://github.com/gradio-app/gradio/issues/1877 | |
numpy.save(f"tmp/tmp_evaluation_key_{user_id}.npy", evaluation_key) | |
return [list(evaluation_key)[:ENCRYPTED_DATA_BROWSER_LIMIT], user_id] | |
def encode_quantize_encrypt(text, user_id): | |
if not user_id: | |
raise gr.Error("You need to generate FHE keys first.") | |
if "legal_rating" in model_names: | |
fhe_api = FHEModelClient(FHE_LEGAL_PATH, f".fhe_keys/{user_id}") | |
encodings =vectorizer.fit_transform([text]).toarray() | |
if encodings.shape[1] < 1736: | |
# 在后面填充零 | |
padding = np.zeros((1, 1736 - encodings.shape[1])) | |
encodings = np.hstack((encodings, padding)) | |
elif encodings.shape[1] > 1736: | |
# 截取前1736列 | |
encodings = encodings[:, :1736] | |
else: | |
fhe_api = FHEModelClient(FHE_MODEL_PATH, f".fhe_keys/{user_id}") | |
encodings = transformer_vectorizer.transform([text]) | |
fhe_api.load() | |
quantized_encodings = fhe_api.model.quantize_input(encodings).astype(numpy.uint8) | |
encrypted_quantized_encoding = fhe_api.quantize_encrypt_serialize(encodings) | |
# Save encrypted_quantized_encoding in a file, since too large to pass through regular Gradio | |
# buttons, https://github.com/gradio-app/gradio/issues/1877 | |
numpy.save(f"tmp/tmp_encrypted_quantized_encoding_{user_id}.npy", encrypted_quantized_encoding) | |
# Compute size | |
encrypted_quantized_encoding_shorten = list(encrypted_quantized_encoding)[:ENCRYPTED_DATA_BROWSER_LIMIT] | |
encrypted_quantized_encoding_shorten_hex = ''.join(f'{i:02x}' for i in encrypted_quantized_encoding_shorten) | |
return ( | |
encodings[0], | |
quantized_encodings[0], | |
encrypted_quantized_encoding_shorten_hex, | |
) | |
def run_fhe(user_id): | |
encoded_data_path = Path(f"tmp/tmp_encrypted_quantized_encoding_{user_id}.npy") | |
if not user_id: | |
raise gr.Error("You need to generate FHE keys first.") | |
if not encoded_data_path.is_file(): | |
raise gr.Error("No encrypted data was found. Encrypt the data before trying to predict.") | |
# Read encrypted_quantized_encoding from the file | |
encrypted_quantized_encoding = numpy.load(encoded_data_path) | |
# Read evaluation_key from the file | |
evaluation_key = numpy.load(f"tmp/tmp_evaluation_key_{user_id}.npy") | |
# Use base64 to encode the encodings and evaluation key | |
encrypted_quantized_encoding = base64.b64encode(encrypted_quantized_encoding).decode() | |
encoded_evaluation_key = base64.b64encode(evaluation_key).decode() | |
query = {} | |
query["evaluation_key"] = encoded_evaluation_key | |
query["encrypted_encoding"] = encrypted_quantized_encoding | |
headers = {"Content-type": "application/json"} | |
if "legal_rating" in model_names: | |
response = requests.post( | |
"http://localhost:8000/predict_legal", data=json.dumps(query), headers=headers | |
) | |
else: | |
response = requests.post( | |
"http://localhost:8000/predict_sentiment", data=json.dumps(query), headers=headers | |
) | |
encrypted_prediction = base64.b64decode(response.json()["encrypted_prediction"]) | |
# Save encrypted_prediction in a file, since too large to pass through regular Gradio | |
# buttons, https://github.com/gradio-app/gradio/issues/1877 | |
numpy.save(f"tmp/tmp_encrypted_prediction_{user_id}.npy", encrypted_prediction) | |
encrypted_prediction_shorten = list(encrypted_prediction)[:ENCRYPTED_DATA_BROWSER_LIMIT] | |
encrypted_prediction_shorten_hex = ''.join(f'{i:02x}' for i in encrypted_prediction_shorten) | |
return encrypted_prediction_shorten_hex | |
def decrypt_prediction(user_id): | |
encoded_data_path = Path(f"tmp/tmp_encrypted_prediction_{user_id}.npy") | |
if not user_id: | |
raise gr.Error("You need to generate FHE keys first.") | |
if not encoded_data_path.is_file(): | |
raise gr.Error("No encrypted prediction was found. Run the prediction over the encrypted data first.") | |
# Read encrypted_prediction from the file | |
encrypted_prediction = numpy.load(encoded_data_path).tobytes() | |
if "legal_rating" in model_names: | |
fhe_api = FHEModelClient(FHE_LEGAL_PATH, f".fhe_keys/{user_id}") | |
fhe_api = FHEModelClient(FHE_MODEL_PATH, f".fhe_keys/{user_id}") | |
fhe_api.load() | |
# We need to retrieve the private key that matches the client specs (see issue #18) | |
fhe_api.generate_private_and_evaluation_keys(force=False) | |
predictions = fhe_api.deserialize_decrypt_dequantize(encrypted_prediction) | |
print(predictions) | |
return { | |
"low_relative": predictions[0][0], | |
"medium_relative": predictions[0][1], | |
"high_relative": predictions[0][2], | |
} | |
demo = gr.Blocks() | |
print("Starting the demo...") | |
with demo: | |
gr.Markdown( | |
""" | |
<h2 align="center">📄Cipher Clause</h2> | |
<p align="center"> | |
<img width=600 src="https://www.helloimg.com/i/2024/09/28/66f7f6701bcfb.jpeg"> | |
</p> | |
""" | |
) | |
gr.Markdown( | |
""" | |
<p align="center"> | |
</p> | |
<p align="center"> | |
</p> | |
""" | |
) | |
gr.Markdown("## Notes") | |
gr.Markdown( | |
""" | |
- The private key is used to encrypt and decrypt the data and shall never be shared. | |
- The evaluation key is a public key that the server needs to process encrypted data. | |
""" | |
) | |
gr.Markdown( | |
""" | |
<hr/> | |
""" | |
) | |
gr.Markdown("# Step 0: Select Task") | |
task_checkbox = gr.CheckboxGroup( | |
choices=["legal_rating", "financial_rating"], | |
label="select_tasks" | |
) | |
gr.Markdown( | |
""" | |
<hr/> | |
""" | |
) | |
gr.Markdown("# Step 1: Generate the keys") | |
b_gen_key_and_install = gr.Button("Generate all the keys and send public part to server") | |
evaluation_key = gr.Textbox( | |
label="Evaluation key (truncated):", | |
max_lines=4, | |
interactive=False, | |
) | |
user_id = gr.Textbox( | |
label="", | |
max_lines=4, | |
interactive=False, | |
visible=False | |
) | |
gr.Markdown( | |
""" | |
<hr/> | |
""" | |
) | |
gr.Markdown("# Step 2: Provide a contract or clause") | |
gr.Markdown("## Client side") | |
gr.Markdown( | |
"Enter a contract or clause you want to analysis)." | |
) | |
text = gr.Textbox(label="Enter some words:", value="The Employee is entitled to two weeks of paid vacation annually, to be scheduled at the mutual convenience of the Employee and Employer.") | |
gr.Markdown( | |
""" | |
<hr/> | |
""" | |
) | |
gr.Markdown("# Step 3: Encode the message with the private key") | |
b_encode_quantize_text = gr.Button( | |
"Encode, quantize and encrypt the text with vectorizer, and send to server" | |
) | |
with gr.Row(): | |
encoding = gr.Textbox( | |
label="Representation:", | |
max_lines=4, | |
interactive=False, | |
) | |
quantized_encoding = gr.Textbox( | |
label="Quantized representation:", max_lines=4, interactive=False | |
) | |
encrypted_quantized_encoding = gr.Textbox( | |
label="Encrypted quantized representation (truncated):", | |
max_lines=4, | |
interactive=False, | |
) | |
gr.Markdown( | |
""" | |
<hr/> | |
""" | |
) | |
gr.Markdown("# Step 4: Run the FHE evaluation") | |
gr.Markdown("## Server side") | |
gr.Markdown( | |
"The encrypted value is received by the server. Thanks to the evaluation key and to FHE, the server can compute the (encrypted) prediction directly over encrypted values. Once the computation is finished, the server returns the encrypted prediction to the client." | |
) | |
b_run_fhe = gr.Button("Run FHE execution there") | |
encrypted_prediction = gr.Textbox( | |
label="Encrypted prediction (truncated):", | |
max_lines=4, | |
interactive=False, | |
) | |
gr.Markdown( | |
""" | |
<hr/> | |
""" | |
) | |
gr.Markdown("# Step 5: Decrypt the class") | |
gr.Markdown("## Client side") | |
gr.Markdown( | |
"The encrypted sentiment is sent back to client, who can finally decrypt it with its private key. Only the client is aware of the original tweet and the prediction." | |
) | |
b_decrypt_prediction = gr.Button("Decrypt prediction") | |
labels_sentiment = gr.Label(label="level:") | |
# Button for key generation | |
b_gen_key_and_install.click(keygen, inputs=[task_checkbox], outputs=[evaluation_key, user_id]) | |
# Button to quantize and encrypt | |
b_encode_quantize_text.click( | |
encode_quantize_encrypt, | |
inputs=[text, user_id], | |
outputs=[ | |
encoding, | |
quantized_encoding, | |
encrypted_quantized_encoding, | |
], | |
) | |
# Button to send the encodings to the server using post at (localhost:8000/predict_sentiment) | |
b_run_fhe.click(run_fhe, inputs=[user_id], outputs=[encrypted_prediction]) | |
# Button to decrypt the prediction on the client | |
b_decrypt_prediction.click(decrypt_prediction, inputs=[user_id], outputs=[labels_sentiment]) | |
gr.Markdown( | |
"The app was built with [Concrete-ML](https://github.com/zama-ai/concrete-ml), a Privacy-Preserving Machine Learning (PPML) open-source set of tools by [Zama](https://zama.ai/). Try it yourself and don't forget to star on Github ⭐." | |
) | |
demo.launch(share=False) |