Spaces:
Building
on
CPU Upgrade
Building
on
CPU Upgrade
feat: add user frontend
Browse files
app.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from concrete.ml.deployment import FHEModelClient
|
3 |
+
from pathlib import Path
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
import requests
|
7 |
+
from sklearn.preprocessing import OneHotEncoder
|
8 |
+
|
9 |
+
# Store the server's URL
|
10 |
+
SERVER_URL = "http://127.0.0.1:7860/"
|
11 |
+
CURRENT_DIR = Path(__file__).parent
|
12 |
+
DEPLOYMENT_DIR = CURRENT_DIR / "deployment_files"
|
13 |
+
KEYS_DIR = DEPLOYMENT_DIR / ".fhe_keys"
|
14 |
+
CLIENT_DIR = DEPLOYMENT_DIR / "client_dir"
|
15 |
+
SERVER_DIR = DEPLOYMENT_DIR / "server_dir"
|
16 |
+
|
17 |
+
|
18 |
+
USER_ID = "user_id"
|
19 |
+
EXAMPLE_CLINICAL_TRIAL_LINK = "https://www.trials4us.co.uk/ongoing-clinical-trials/recruiting-healthy-adults-c23026?_gl=1*1ysp815*_up*MQ..&gclid=Cj0KCQjwr9m3BhDHARIsANut04bHqi5zE3sjS3f8JK2WRN3YEgY4bTfWbvTdZTxkUTSISxXX5ZWL7qEaAowwEALw_wcB&gbraid=0AAAAAD3Qci2k_3IERmM6U1FGDuYVayZWH"
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
# Define possible categories for fields without predefined categories
|
25 |
+
additional_categories = {
|
26 |
+
"Gender": ["Male", "Female", "Other"],
|
27 |
+
"Ethnicity": ["White", "Black or African American", "Asian", "American Indian or Alaska Native", "Native Hawaiian or Other Pacific Islander", "Other"],
|
28 |
+
"Geographic_Location": ["North America", "South America", "Europe", "Asia", "Africa", "Australia", "Antarctica"],
|
29 |
+
"Smoking_Status": ["Never", "Former", "Current"],
|
30 |
+
"Diagnoses_ICD10": ["E11.9", "I10", "J45.909", "M54.5", "F32.9", "K21.9"],
|
31 |
+
"Medications": ["Metformin", "Lisinopril", "Atorvastatin", "Amlodipine", "Omeprazole", "Simvastatin", "Levothyroxine", "None"],
|
32 |
+
"Allergies": ["Penicillin", "Peanuts", "Shellfish", "Latex", "Bee stings", "None"],
|
33 |
+
"Previous_Treatments": ["Chemotherapy", "Radiation Therapy", "Surgery", "Physical Therapy", "Immunotherapy", "None"],
|
34 |
+
"Alcohol_Consumption": ["None", "Occasionally", "Regularly", "Heavy"],
|
35 |
+
"Exercise_Habits": ["Sedentary", "Light", "Moderate", "Active", "Very Active"],
|
36 |
+
"Diet": ["Omnivore", "Vegetarian", "Vegan", "Pescatarian", "Keto", "Mediterranean"],
|
37 |
+
"Functional_Status": ["Independent", "Assisted", "Dependent"],
|
38 |
+
"Previous_Trial_Participation": ["Yes", "No"]
|
39 |
+
}
|
40 |
+
|
41 |
+
# Define the input components for the form
|
42 |
+
age_input = gr.Slider(minimum=18, maximum=100, label="Age ", step=1)
|
43 |
+
gender_input = gr.Radio(choices=additional_categories["Gender"], label="Gender")
|
44 |
+
ethnicity_input = gr.Radio(choices=additional_categories["Ethnicity"], label="Ethnicity")
|
45 |
+
geographic_location_input = gr.Radio(choices=additional_categories["Geographic_Location"], label="Geographic Location")
|
46 |
+
diagnoses_icd10_input = gr.CheckboxGroup(choices=additional_categories["Diagnoses_ICD10"], label="Diagnoses (ICD-10)")
|
47 |
+
medications_input = gr.CheckboxGroup(choices=additional_categories["Medications"], label="Medications")
|
48 |
+
allergies_input = gr.CheckboxGroup(choices=additional_categories["Allergies"], label="Allergies")
|
49 |
+
previous_treatments_input = gr.CheckboxGroup(choices=additional_categories["Previous_Treatments"], label="Previous Treatments")
|
50 |
+
blood_glucose_level_input = gr.Slider(minimum=0, maximum=300, label="Blood Glucose Level", step=1)
|
51 |
+
blood_pressure_systolic_input = gr.Slider(minimum=80, maximum=200, label="Blood Pressure (Systolic)", step=1)
|
52 |
+
blood_pressure_diastolic_input = gr.Slider(minimum=40, maximum=120, label="Blood Pressure (Diastolic)", step=1)
|
53 |
+
bmi_input = gr.Slider(minimum=10, maximum=50, label="BMI ", step=1)
|
54 |
+
smoking_status_input = gr.Radio(choices=additional_categories["Smoking_Status"], label="Smoking Status")
|
55 |
+
alcohol_consumption_input = gr.Radio(choices=additional_categories["Alcohol_Consumption"], label="Alcohol Consumption")
|
56 |
+
exercise_habits_input = gr.Radio(choices=additional_categories["Exercise_Habits"], label="Exercise Habits")
|
57 |
+
diet_input = gr.Radio(choices=additional_categories["Diet"], label="Diet")
|
58 |
+
condition_severity_input = gr.Slider(minimum=1, maximum=10, label="Condition Severity", step=1)
|
59 |
+
functional_status_input = gr.Radio(choices=additional_categories["Functional_Status"], label="Functional Status")
|
60 |
+
previous_trial_participation_input = gr.Radio(choices=additional_categories["Previous_Trial_Participation"], label="Previous Trial Participation")
|
61 |
+
|
62 |
+
|
63 |
+
def encrypt_array(user_symptoms: np.ndarray, user_id: str) -> bytes:
|
64 |
+
"""
|
65 |
+
Encrypt the user symptoms vector.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
user_symptoms (np.ndarray): The vector of symptoms provided by the user.
|
69 |
+
user_id (str): The current user's ID.
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
bytes: Encrypted and serialized symptoms.
|
73 |
+
"""
|
74 |
+
|
75 |
+
# Retrieve the client API
|
76 |
+
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
|
77 |
+
client.load()
|
78 |
+
|
79 |
+
# Ensure the symptoms are properly formatted as an array
|
80 |
+
user_symptoms = np.array(user_symptoms).reshape(1, -1)
|
81 |
+
|
82 |
+
# Encrypt and serialize the symptoms
|
83 |
+
encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms)
|
84 |
+
|
85 |
+
# Ensure the encryption process returned bytes
|
86 |
+
assert isinstance(encrypted_quantized_user_symptoms, bytes)
|
87 |
+
|
88 |
+
# Save the encrypted data to a file (optional)
|
89 |
+
encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_input"
|
90 |
+
with encrypted_input_path.open("wb") as f:
|
91 |
+
f.write(encrypted_quantized_user_symptoms)
|
92 |
+
|
93 |
+
# Return the encrypted data
|
94 |
+
return encrypted_quantized_user_symptoms
|
95 |
+
|
96 |
+
|
97 |
+
def decrypt_result(encrypted_answer: bytes, user_id: str) -> bool:
|
98 |
+
"""
|
99 |
+
Decrypt the encrypted result.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
encrypted_answer (bytes): The encrypted result.
|
103 |
+
user_id (str): The current user's ID.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
bool: The decrypted result.
|
107 |
+
"""
|
108 |
+
|
109 |
+
# Retrieve the client API
|
110 |
+
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
|
111 |
+
client.load()
|
112 |
+
|
113 |
+
# Decrypt the result
|
114 |
+
decrypted_result = client.decrypt_deserialize(encrypted_answer)
|
115 |
+
|
116 |
+
# Return the decrypted result
|
117 |
+
return decrypted_result
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
def encode_categorical_data(data):
|
122 |
+
categories = ["Gender", "Ethnicity", "Geographic_Location", "Smoking_Status", "Alcohol_Consumption", "Exercise_Habits", "Diet", "Functional_Status", "Previous_Trial_Participation"]
|
123 |
+
encoded_data = []
|
124 |
+
for i in range(len(categories)):
|
125 |
+
sub_cats = additional_categories[categories[i]]
|
126 |
+
if data[i] in sub_cats:
|
127 |
+
encoded_data.append(sub_cats.index(data[i]) + 1)
|
128 |
+
else:
|
129 |
+
encoded_data.append(0)
|
130 |
+
|
131 |
+
return encoded_data
|
132 |
+
|
133 |
+
|
134 |
+
def process_patient_data(age, gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments, blood_glucose_level, blood_pressure_systolic, blood_pressure_diastolic, bmi, smoking_status, alcohol_consumption, exercise_habits, diet, condition_severity, functional_status, previous_trial_participation):
|
135 |
+
|
136 |
+
# Encode the data
|
137 |
+
categorical_data = [gender, ethnicity, geographic_location, smoking_status, alcohol_consumption, exercise_habits, diet, functional_status, previous_trial_participation]
|
138 |
+
print(f"Categorical data: {categorical_data}")
|
139 |
+
encoded_categorical_data = encode_categorical_data(categorical_data)
|
140 |
+
numerical_data = np.array([age, blood_glucose_level, blood_pressure_systolic, blood_pressure_diastolic, bmi, condition_severity])
|
141 |
+
print(f"Numerical data: {numerical_data}")
|
142 |
+
print(f"One-hot encoded data: {encoded_categorical_data}")
|
143 |
+
combined_data = np.hstack((numerical_data, encoded_categorical_data))
|
144 |
+
print(f"Combined data: {combined_data}")
|
145 |
+
encrypted_array = encrypt_array(combined_data, "user_id")
|
146 |
+
|
147 |
+
# Send the encrypted data to the server
|
148 |
+
response = requests.post(SERVER_URL, data=encrypted_array)
|
149 |
+
|
150 |
+
# Check if the data was sent successfully
|
151 |
+
if response.status_code == 200:
|
152 |
+
print("Data sent successfully.")
|
153 |
+
else:
|
154 |
+
print("Error sending data.")
|
155 |
+
|
156 |
+
# Decrypt the result
|
157 |
+
decrypted_result = decrypt_result(response.content, USER_ID)
|
158 |
+
|
159 |
+
# If the answer is True, return the link
|
160 |
+
if decrypted_result:
|
161 |
+
return (
|
162 |
+
f"Encrypted data: {encrypted_array}",
|
163 |
+
f"Decrypted result: {decrypted_result}",
|
164 |
+
f"You may now access the link to the [clinical trial]({EXAMPLE_CLINICAL_TRIAL_LINK})"
|
165 |
+
)
|
166 |
+
else:
|
167 |
+
return (
|
168 |
+
f"Encrypted data: {encrypted_array}",
|
169 |
+
f"Decrypted result: {decrypted_result}",
|
170 |
+
f"Unfortunately, there are no clinical trials available for the provided criteria."
|
171 |
+
)
|
172 |
+
|
173 |
+
# Create the Gradio interface
|
174 |
+
demo = gr.Interface(
|
175 |
+
fn=process_patient_data,
|
176 |
+
inputs=[
|
177 |
+
age_input, gender_input, ethnicity_input, geographic_location_input, diagnoses_icd10_input, medications_input, allergies_input, previous_treatments_input, blood_glucose_level_input, blood_pressure_systolic_input, blood_pressure_diastolic_input, bmi_input, smoking_status_input, alcohol_consumption_input, exercise_habits_input, diet_input, condition_severity_input, functional_status_input, previous_trial_participation_input
|
178 |
+
],
|
179 |
+
outputs="text",
|
180 |
+
title="Patient Data Criteria Form",
|
181 |
+
description="Please fill in the criteria for the type of patients you are looking for."
|
182 |
+
)
|
183 |
+
|
184 |
+
# Launch the app
|
185 |
+
demo.launch()
|