- app.py +90 -4
- custom_resnet.py +726 -0
- requirements.txt +5 -0
app.py
CHANGED
@@ -1,7 +1,93 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torchvision import transforms
|
5 |
+
from PIL import Image
|
6 |
+
import time
|
7 |
+
from concrete.ml.torch.compile import compile_torch_model
|
8 |
|
9 |
+
from custom_resnet import resnet18_custom # Assuming custom_resnet.py is in the same directory
|
|
|
10 |
|
11 |
+
# Load class names (FLIPPED as ['Fake', 'Real'])
|
12 |
+
class_names = ['Fake', 'Real'] # Fix the incorrect mapping
|
13 |
+
|
14 |
+
# Load the trained model
|
15 |
+
def load_model(model_path, device):
|
16 |
+
model = resnet18_custom(weights=None)
|
17 |
+
num_ftrs = model.fc.in_features
|
18 |
+
model.fc = nn.Linear(num_ftrs, len(class_names)) # Assuming 2 classes: Fake and Real
|
19 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
20 |
+
model = model.to(device)
|
21 |
+
model.eval() # Set model to evaluation mode
|
22 |
+
return model
|
23 |
+
|
24 |
+
|
25 |
+
def load_secure_model(model):
|
26 |
+
print("Compiling secure model...")
|
27 |
+
secure_model = compile_torch_model(model.to("cpu"),
|
28 |
+
n_bits={"model_inputs": 4, "op_inputs": 3, "op_weights": 3, "model_outputs": 5},
|
29 |
+
rounding_threshold_bits={"n_bits": 7},
|
30 |
+
torch_inputset=torch.rand(10, 3, 224, 224))
|
31 |
+
return secure_model
|
32 |
+
|
33 |
+
# Image preprocessing (match with the transforms used during training)
|
34 |
+
data_transform = transforms.Compose([
|
35 |
+
transforms.Resize((224, 224)),
|
36 |
+
transforms.ToTensor(),
|
37 |
+
])
|
38 |
+
|
39 |
+
# Prediction function
|
40 |
+
def predict(image, mode):
|
41 |
+
# Device configuration
|
42 |
+
device = torch.device(
|
43 |
+
"cuda:0" if torch.cuda.is_available() else
|
44 |
+
"mps" if torch.backends.mps.is_available() else
|
45 |
+
"cpu"
|
46 |
+
)
|
47 |
+
|
48 |
+
print(f"Device: {device}")
|
49 |
+
# Load model
|
50 |
+
model_path = 'models/deepfake_detection_model.pth'
|
51 |
+
model = load_model(model_path, device)
|
52 |
+
|
53 |
+
# Apply transformations to the input image
|
54 |
+
image = Image.open(image).convert('RGB')
|
55 |
+
image = data_transform(image).unsqueeze(0).to(device) # Add batch dimension
|
56 |
+
|
57 |
+
# Inference
|
58 |
+
with torch.no_grad():
|
59 |
+
start_time = time.time()
|
60 |
+
|
61 |
+
if mode == "Fast":
|
62 |
+
# Fast mode (less computation)
|
63 |
+
outputs = model(image)
|
64 |
+
elif mode == "Secure":
|
65 |
+
# Secure mode (e.g., running multiple times for higher confidence)
|
66 |
+
secure_model = load_secure_model(model)
|
67 |
+
detached_input = image.detach().numpy()
|
68 |
+
outputs = secure_model(detached_input, fhe="simulate")
|
69 |
+
|
70 |
+
print(outputs)
|
71 |
+
_, preds = torch.max(outputs, 1)
|
72 |
+
elapsed_time = time.time() - start_time
|
73 |
+
|
74 |
+
predicted_class = class_names[preds[0]]
|
75 |
+
return f"Predicted: {predicted_class}", f"Time taken: {elapsed_time:.2f} seconds"
|
76 |
+
|
77 |
+
# Gradio interface
|
78 |
+
iface = gr.Interface(
|
79 |
+
fn=predict,
|
80 |
+
inputs=[
|
81 |
+
gr.Image(type="filepath", label="Upload an Image"), # Update to gr.Image
|
82 |
+
gr.Radio(choices=["Fast", "Secure"], label="Inference Mode", value="Fast") # Update to gr.Radio
|
83 |
+
],
|
84 |
+
outputs=[
|
85 |
+
gr.Textbox(label="Prediction"), # Update to gr.Textbox
|
86 |
+
gr.Textbox(label="Time Taken") # Update to gr.Textbox
|
87 |
+
],
|
88 |
+
title="Deepfake Detection Model",
|
89 |
+
description="Upload an image and select the inference mode (Fast or Secure)."
|
90 |
+
)
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
iface.launch(share=True)
|
custom_resnet.py
ADDED
@@ -0,0 +1,726 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is a modification of the original ResNet implementation from:
|
3 |
+
https://github.com/pytorch/vision/blob/bf01bab6125c5f1152e4f336b470399e52a8559d/torchvision/models/resnet.py
|
4 |
+
"""
|
5 |
+
|
6 |
+
from functools import partial
|
7 |
+
from typing import Any, Callable, List, Optional, Type, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from torch import Tensor
|
12 |
+
from torchvision.models._api import Weights, WeightsEnum, register_model
|
13 |
+
from torchvision.models._meta import _IMAGENET_CATEGORIES
|
14 |
+
from torchvision.models._utils import _ovewrite_named_param, handle_legacy_interface
|
15 |
+
from torchvision.transforms._presets import ImageClassification
|
16 |
+
from torchvision.utils import _log_api_usage_once
|
17 |
+
|
18 |
+
__all__ = [
|
19 |
+
"ResNet",
|
20 |
+
"ResNet18_Weights",
|
21 |
+
"ResNet34_Weights",
|
22 |
+
"ResNet50_Weights",
|
23 |
+
"ResNet101_Weights",
|
24 |
+
"ResNet152_Weights",
|
25 |
+
"ResNeXt50_32X4D_Weights",
|
26 |
+
"ResNeXt101_32X8D_Weights",
|
27 |
+
"ResNeXt101_64X4D_Weights",
|
28 |
+
"Wide_ResNet50_2_Weights",
|
29 |
+
"Wide_ResNet101_2_Weights",
|
30 |
+
"resnet18",
|
31 |
+
"resnet34",
|
32 |
+
"resnet50",
|
33 |
+
"resnet101",
|
34 |
+
"resnet152",
|
35 |
+
"resnext50_32x4d",
|
36 |
+
"resnext101_32x8d",
|
37 |
+
"resnext101_64x4d",
|
38 |
+
"wide_resnet50_2",
|
39 |
+
"wide_resnet101_2",
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
def conv3x3(
|
44 |
+
in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1
|
45 |
+
) -> nn.Conv2d:
|
46 |
+
"""3x3 convolution with padding"""
|
47 |
+
return nn.Conv2d(
|
48 |
+
in_planes,
|
49 |
+
out_planes,
|
50 |
+
kernel_size=3,
|
51 |
+
stride=stride,
|
52 |
+
padding=dilation,
|
53 |
+
groups=groups,
|
54 |
+
bias=False,
|
55 |
+
dilation=dilation,
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
|
60 |
+
"""1x1 convolution"""
|
61 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
62 |
+
|
63 |
+
|
64 |
+
class BasicBlock(nn.Module):
|
65 |
+
expansion: int = 1
|
66 |
+
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
inplanes: int,
|
70 |
+
planes: int,
|
71 |
+
stride: int = 1,
|
72 |
+
downsample: Optional[nn.Module] = None,
|
73 |
+
groups: int = 1,
|
74 |
+
base_width: int = 64,
|
75 |
+
dilation: int = 1,
|
76 |
+
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
77 |
+
) -> None:
|
78 |
+
super().__init__()
|
79 |
+
if norm_layer is None:
|
80 |
+
norm_layer = nn.BatchNorm2d
|
81 |
+
if groups != 1 or base_width != 64:
|
82 |
+
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
|
83 |
+
if dilation > 1:
|
84 |
+
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
85 |
+
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
86 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
87 |
+
self.bn1 = norm_layer(planes)
|
88 |
+
self.relu = nn.ReLU(inplace=True)
|
89 |
+
self.conv2 = conv3x3(planes, planes)
|
90 |
+
self.bn2 = norm_layer(planes)
|
91 |
+
self.downsample = downsample
|
92 |
+
self.stride = stride
|
93 |
+
|
94 |
+
def forward(self, x: Tensor) -> Tensor:
|
95 |
+
identity = x
|
96 |
+
|
97 |
+
out = self.conv1(x)
|
98 |
+
out = self.bn1(out)
|
99 |
+
out = self.relu(out)
|
100 |
+
|
101 |
+
out = self.conv2(out)
|
102 |
+
out = self.bn2(out)
|
103 |
+
|
104 |
+
if self.downsample is not None:
|
105 |
+
identity = self.downsample(x)
|
106 |
+
|
107 |
+
out += identity
|
108 |
+
out = self.relu(out)
|
109 |
+
|
110 |
+
return out
|
111 |
+
|
112 |
+
|
113 |
+
class Bottleneck(nn.Module):
|
114 |
+
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
|
115 |
+
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
|
116 |
+
# according to "Deep residual learning for image recognition" https://arxiv.org/abs/1512.03385.
|
117 |
+
# This variant is also known as ResNet V1.5 and improves accuracy according to
|
118 |
+
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
|
119 |
+
|
120 |
+
expansion: int = 4
|
121 |
+
|
122 |
+
def __init__(
|
123 |
+
self,
|
124 |
+
inplanes: int,
|
125 |
+
planes: int,
|
126 |
+
stride: int = 1,
|
127 |
+
downsample: Optional[nn.Module] = None,
|
128 |
+
groups: int = 1,
|
129 |
+
base_width: int = 64,
|
130 |
+
dilation: int = 1,
|
131 |
+
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
132 |
+
) -> None:
|
133 |
+
super().__init__()
|
134 |
+
if norm_layer is None:
|
135 |
+
norm_layer = nn.BatchNorm2d
|
136 |
+
width = int(planes * (base_width / 64.0)) * groups
|
137 |
+
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
138 |
+
self.conv1 = conv1x1(inplanes, width)
|
139 |
+
self.bn1 = norm_layer(width)
|
140 |
+
self.conv2 = conv3x3(width, width, stride, groups, dilation)
|
141 |
+
self.bn2 = norm_layer(width)
|
142 |
+
self.conv3 = conv1x1(width, planes * self.expansion)
|
143 |
+
self.bn3 = norm_layer(planes * self.expansion)
|
144 |
+
self.relu = nn.ReLU(inplace=True)
|
145 |
+
self.downsample = downsample
|
146 |
+
self.stride = stride
|
147 |
+
|
148 |
+
def forward(self, x: Tensor) -> Tensor:
|
149 |
+
identity = x
|
150 |
+
|
151 |
+
out = self.conv1(x)
|
152 |
+
out = self.bn1(out)
|
153 |
+
out = self.relu(out)
|
154 |
+
|
155 |
+
out = self.conv2(out)
|
156 |
+
out = self.bn2(out)
|
157 |
+
out = self.relu(out)
|
158 |
+
|
159 |
+
out = self.conv3(out)
|
160 |
+
out = self.bn3(out)
|
161 |
+
|
162 |
+
if self.downsample is not None:
|
163 |
+
identity = self.downsample(x)
|
164 |
+
|
165 |
+
out += identity
|
166 |
+
out = self.relu(out)
|
167 |
+
|
168 |
+
return out
|
169 |
+
|
170 |
+
|
171 |
+
class ResNet(nn.Module):
|
172 |
+
def __init__(
|
173 |
+
self,
|
174 |
+
block: Type[Union[BasicBlock, Bottleneck]],
|
175 |
+
layers: List[int],
|
176 |
+
num_classes: int = 1000,
|
177 |
+
zero_init_residual: bool = False,
|
178 |
+
groups: int = 1,
|
179 |
+
width_per_group: int = 64,
|
180 |
+
replace_stride_with_dilation: Optional[List[bool]] = None,
|
181 |
+
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
182 |
+
) -> None:
|
183 |
+
super().__init__()
|
184 |
+
_log_api_usage_once(self)
|
185 |
+
if norm_layer is None:
|
186 |
+
norm_layer = nn.BatchNorm2d
|
187 |
+
self._norm_layer = norm_layer
|
188 |
+
|
189 |
+
self.inplanes = 64
|
190 |
+
self.dilation = 1
|
191 |
+
if replace_stride_with_dilation is None:
|
192 |
+
# each element in the tuple indicates if we should replace
|
193 |
+
# the 2x2 stride with a dilated convolution instead
|
194 |
+
replace_stride_with_dilation = [False, False, False]
|
195 |
+
if len(replace_stride_with_dilation) != 3:
|
196 |
+
raise ValueError(
|
197 |
+
"replace_stride_with_dilation should be None "
|
198 |
+
f"or a 3-element tuple, got {replace_stride_with_dilation}"
|
199 |
+
)
|
200 |
+
self.groups = groups
|
201 |
+
self.base_width = width_per_group
|
202 |
+
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
|
203 |
+
self.bn1 = norm_layer(self.inplanes)
|
204 |
+
self.relu = nn.ReLU(inplace=True)
|
205 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
206 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
207 |
+
self.layer2 = self._make_layer(
|
208 |
+
block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]
|
209 |
+
)
|
210 |
+
self.layer3 = self._make_layer(
|
211 |
+
block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]
|
212 |
+
)
|
213 |
+
self.layer4 = self._make_layer(
|
214 |
+
block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]
|
215 |
+
)
|
216 |
+
# self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # FIXME
|
217 |
+
self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1, padding=0)
|
218 |
+
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
219 |
+
|
220 |
+
for m in self.modules():
|
221 |
+
if isinstance(m, nn.Conv2d):
|
222 |
+
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
223 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
224 |
+
nn.init.constant_(m.weight, 1)
|
225 |
+
nn.init.constant_(m.bias, 0)
|
226 |
+
|
227 |
+
# Zero-initialize the last BN in each residual branch,
|
228 |
+
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
|
229 |
+
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
|
230 |
+
if zero_init_residual:
|
231 |
+
for m in self.modules():
|
232 |
+
if isinstance(m, Bottleneck) and m.bn3.weight is not None:
|
233 |
+
nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
|
234 |
+
elif isinstance(m, BasicBlock) and m.bn2.weight is not None:
|
235 |
+
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
|
236 |
+
|
237 |
+
def _make_layer(
|
238 |
+
self,
|
239 |
+
block: Type[Union[BasicBlock, Bottleneck]],
|
240 |
+
planes: int,
|
241 |
+
blocks: int,
|
242 |
+
stride: int = 1,
|
243 |
+
dilate: bool = False,
|
244 |
+
) -> nn.Sequential:
|
245 |
+
norm_layer = self._norm_layer
|
246 |
+
downsample = None
|
247 |
+
previous_dilation = self.dilation
|
248 |
+
if dilate:
|
249 |
+
self.dilation *= stride
|
250 |
+
stride = 1
|
251 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
252 |
+
downsample = nn.Sequential(
|
253 |
+
conv1x1(self.inplanes, planes * block.expansion, stride),
|
254 |
+
norm_layer(planes * block.expansion),
|
255 |
+
)
|
256 |
+
|
257 |
+
layers = []
|
258 |
+
layers.append(
|
259 |
+
block(
|
260 |
+
self.inplanes,
|
261 |
+
planes,
|
262 |
+
stride,
|
263 |
+
downsample,
|
264 |
+
self.groups,
|
265 |
+
self.base_width,
|
266 |
+
previous_dilation,
|
267 |
+
norm_layer,
|
268 |
+
)
|
269 |
+
)
|
270 |
+
self.inplanes = planes * block.expansion
|
271 |
+
for _ in range(1, blocks):
|
272 |
+
layers.append(
|
273 |
+
block(
|
274 |
+
self.inplanes,
|
275 |
+
planes,
|
276 |
+
groups=self.groups,
|
277 |
+
base_width=self.base_width,
|
278 |
+
dilation=self.dilation,
|
279 |
+
norm_layer=norm_layer,
|
280 |
+
)
|
281 |
+
)
|
282 |
+
|
283 |
+
return nn.Sequential(*layers)
|
284 |
+
|
285 |
+
def _forward_impl(self, x: Tensor) -> Tensor:
|
286 |
+
# See note [TorchScript super()]
|
287 |
+
x = self.conv1(x)
|
288 |
+
x = self.bn1(x)
|
289 |
+
x = self.relu(x)
|
290 |
+
x = self.maxpool(x)
|
291 |
+
|
292 |
+
x = self.layer1(x)
|
293 |
+
x = self.layer2(x)
|
294 |
+
x = self.layer3(x)
|
295 |
+
x = self.layer4(x)
|
296 |
+
|
297 |
+
x = self.avgpool(x)
|
298 |
+
x = torch.flatten(x, 1)
|
299 |
+
x = self.fc(x)
|
300 |
+
|
301 |
+
return x
|
302 |
+
|
303 |
+
def forward(self, x: Tensor) -> Tensor:
|
304 |
+
return self._forward_impl(x)
|
305 |
+
|
306 |
+
|
307 |
+
def _resnet(
|
308 |
+
block: Type[Union[BasicBlock, Bottleneck]],
|
309 |
+
layers: List[int],
|
310 |
+
weights: Optional[WeightsEnum],
|
311 |
+
progress: bool,
|
312 |
+
**kwargs: Any,
|
313 |
+
) -> ResNet:
|
314 |
+
if weights is not None:
|
315 |
+
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
|
316 |
+
|
317 |
+
model = ResNet(block, layers, **kwargs)
|
318 |
+
|
319 |
+
if weights is not None:
|
320 |
+
model.load_state_dict(weights.get_state_dict(progress=progress))
|
321 |
+
|
322 |
+
return model
|
323 |
+
|
324 |
+
|
325 |
+
_COMMON_META = {
|
326 |
+
"min_size": (1, 1),
|
327 |
+
"categories": _IMAGENET_CATEGORIES,
|
328 |
+
}
|
329 |
+
|
330 |
+
|
331 |
+
class ResNet18_Weights(WeightsEnum):
|
332 |
+
IMAGENET1K_V1 = Weights(
|
333 |
+
url="https://download.pytorch.org/models/resnet18-f37072fd.pth",
|
334 |
+
transforms=partial(ImageClassification, crop_size=224),
|
335 |
+
meta={
|
336 |
+
**_COMMON_META,
|
337 |
+
"num_params": 11689512,
|
338 |
+
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
|
339 |
+
"_metrics": {
|
340 |
+
"ImageNet-1K": {
|
341 |
+
"acc@1": 69.758,
|
342 |
+
"acc@5": 89.078,
|
343 |
+
}
|
344 |
+
},
|
345 |
+
"_ops": 1.814,
|
346 |
+
"_file_size": 44.661,
|
347 |
+
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
348 |
+
},
|
349 |
+
)
|
350 |
+
DEFAULT = IMAGENET1K_V1
|
351 |
+
|
352 |
+
|
353 |
+
class ResNet34_Weights(WeightsEnum):
|
354 |
+
IMAGENET1K_V1 = Weights(
|
355 |
+
url="https://download.pytorch.org/models/resnet34-b627a593.pth",
|
356 |
+
transforms=partial(ImageClassification, crop_size=224),
|
357 |
+
meta={
|
358 |
+
**_COMMON_META,
|
359 |
+
"num_params": 21797672,
|
360 |
+
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
|
361 |
+
"_metrics": {
|
362 |
+
"ImageNet-1K": {
|
363 |
+
"acc@1": 73.314,
|
364 |
+
"acc@5": 91.420,
|
365 |
+
}
|
366 |
+
},
|
367 |
+
"_ops": 3.664,
|
368 |
+
"_file_size": 83.275,
|
369 |
+
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
370 |
+
},
|
371 |
+
)
|
372 |
+
DEFAULT = IMAGENET1K_V1
|
373 |
+
|
374 |
+
|
375 |
+
class ResNet50_Weights(WeightsEnum):
|
376 |
+
IMAGENET1K_V1 = Weights(
|
377 |
+
url="https://download.pytorch.org/models/resnet50-0676ba61.pth",
|
378 |
+
transforms=partial(ImageClassification, crop_size=224),
|
379 |
+
meta={
|
380 |
+
**_COMMON_META,
|
381 |
+
"num_params": 25557032,
|
382 |
+
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
|
383 |
+
"_metrics": {
|
384 |
+
"ImageNet-1K": {
|
385 |
+
"acc@1": 76.130,
|
386 |
+
"acc@5": 92.862,
|
387 |
+
}
|
388 |
+
},
|
389 |
+
"_ops": 4.089,
|
390 |
+
"_file_size": 97.781,
|
391 |
+
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
392 |
+
},
|
393 |
+
)
|
394 |
+
IMAGENET1K_V2 = Weights(
|
395 |
+
url="https://download.pytorch.org/models/resnet50-11ad3fa6.pth",
|
396 |
+
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
397 |
+
meta={
|
398 |
+
**_COMMON_META,
|
399 |
+
"num_params": 25557032,
|
400 |
+
"recipe": "https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621",
|
401 |
+
"_metrics": {
|
402 |
+
"ImageNet-1K": {
|
403 |
+
"acc@1": 80.858,
|
404 |
+
"acc@5": 95.434,
|
405 |
+
}
|
406 |
+
},
|
407 |
+
"_ops": 4.089,
|
408 |
+
"_file_size": 97.79,
|
409 |
+
"_docs": """
|
410 |
+
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
|
411 |
+
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
412 |
+
""",
|
413 |
+
},
|
414 |
+
)
|
415 |
+
DEFAULT = IMAGENET1K_V2
|
416 |
+
|
417 |
+
|
418 |
+
class ResNet101_Weights(WeightsEnum):
|
419 |
+
IMAGENET1K_V1 = Weights(
|
420 |
+
url="https://download.pytorch.org/models/resnet101-63fe2227.pth",
|
421 |
+
transforms=partial(ImageClassification, crop_size=224),
|
422 |
+
meta={
|
423 |
+
**_COMMON_META,
|
424 |
+
"num_params": 44549160,
|
425 |
+
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
|
426 |
+
"_metrics": {
|
427 |
+
"ImageNet-1K": {
|
428 |
+
"acc@1": 77.374,
|
429 |
+
"acc@5": 93.546,
|
430 |
+
}
|
431 |
+
},
|
432 |
+
"_ops": 7.801,
|
433 |
+
"_file_size": 170.511,
|
434 |
+
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
435 |
+
},
|
436 |
+
)
|
437 |
+
IMAGENET1K_V2 = Weights(
|
438 |
+
url="https://download.pytorch.org/models/resnet101-cd907fc2.pth",
|
439 |
+
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
440 |
+
meta={
|
441 |
+
**_COMMON_META,
|
442 |
+
"num_params": 44549160,
|
443 |
+
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
|
444 |
+
"_metrics": {
|
445 |
+
"ImageNet-1K": {
|
446 |
+
"acc@1": 81.886,
|
447 |
+
"acc@5": 95.780,
|
448 |
+
}
|
449 |
+
},
|
450 |
+
"_ops": 7.801,
|
451 |
+
"_file_size": 170.53,
|
452 |
+
"_docs": """
|
453 |
+
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
|
454 |
+
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
455 |
+
""",
|
456 |
+
},
|
457 |
+
)
|
458 |
+
DEFAULT = IMAGENET1K_V2
|
459 |
+
|
460 |
+
|
461 |
+
class ResNet152_Weights(WeightsEnum):
|
462 |
+
IMAGENET1K_V1 = Weights(
|
463 |
+
url="https://download.pytorch.org/models/resnet152-394f9c45.pth",
|
464 |
+
transforms=partial(ImageClassification, crop_size=224),
|
465 |
+
meta={
|
466 |
+
**_COMMON_META,
|
467 |
+
"num_params": 60192808,
|
468 |
+
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
|
469 |
+
"_metrics": {
|
470 |
+
"ImageNet-1K": {
|
471 |
+
"acc@1": 78.312,
|
472 |
+
"acc@5": 94.046,
|
473 |
+
}
|
474 |
+
},
|
475 |
+
"_ops": 11.514,
|
476 |
+
"_file_size": 230.434,
|
477 |
+
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
478 |
+
},
|
479 |
+
)
|
480 |
+
IMAGENET1K_V2 = Weights(
|
481 |
+
url="https://download.pytorch.org/models/resnet152-f82ba261.pth",
|
482 |
+
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
483 |
+
meta={
|
484 |
+
**_COMMON_META,
|
485 |
+
"num_params": 60192808,
|
486 |
+
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
|
487 |
+
"_metrics": {
|
488 |
+
"ImageNet-1K": {
|
489 |
+
"acc@1": 82.284,
|
490 |
+
"acc@5": 96.002,
|
491 |
+
}
|
492 |
+
},
|
493 |
+
"_ops": 11.514,
|
494 |
+
"_file_size": 230.474,
|
495 |
+
"_docs": """
|
496 |
+
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
|
497 |
+
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
498 |
+
""",
|
499 |
+
},
|
500 |
+
)
|
501 |
+
DEFAULT = IMAGENET1K_V2
|
502 |
+
|
503 |
+
|
504 |
+
class ResNeXt50_32X4D_Weights(WeightsEnum):
|
505 |
+
IMAGENET1K_V1 = Weights(
|
506 |
+
url="https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth",
|
507 |
+
transforms=partial(ImageClassification, crop_size=224),
|
508 |
+
meta={
|
509 |
+
**_COMMON_META,
|
510 |
+
"num_params": 25028904,
|
511 |
+
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
|
512 |
+
"_metrics": {
|
513 |
+
"ImageNet-1K": {
|
514 |
+
"acc@1": 77.618,
|
515 |
+
"acc@5": 93.698,
|
516 |
+
}
|
517 |
+
},
|
518 |
+
"_ops": 4.23,
|
519 |
+
"_file_size": 95.789,
|
520 |
+
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
521 |
+
},
|
522 |
+
)
|
523 |
+
IMAGENET1K_V2 = Weights(
|
524 |
+
url="https://download.pytorch.org/models/resnext50_32x4d-1a0047aa.pth",
|
525 |
+
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
526 |
+
meta={
|
527 |
+
**_COMMON_META,
|
528 |
+
"num_params": 25028904,
|
529 |
+
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
|
530 |
+
"_metrics": {
|
531 |
+
"ImageNet-1K": {
|
532 |
+
"acc@1": 81.198,
|
533 |
+
"acc@5": 95.340,
|
534 |
+
}
|
535 |
+
},
|
536 |
+
"_ops": 4.23,
|
537 |
+
"_file_size": 95.833,
|
538 |
+
"_docs": """
|
539 |
+
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
|
540 |
+
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
541 |
+
""",
|
542 |
+
},
|
543 |
+
)
|
544 |
+
DEFAULT = IMAGENET1K_V2
|
545 |
+
|
546 |
+
|
547 |
+
class ResNeXt101_32X8D_Weights(WeightsEnum):
|
548 |
+
IMAGENET1K_V1 = Weights(
|
549 |
+
url="https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth",
|
550 |
+
transforms=partial(ImageClassification, crop_size=224),
|
551 |
+
meta={
|
552 |
+
**_COMMON_META,
|
553 |
+
"num_params": 88791336,
|
554 |
+
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
|
555 |
+
"_metrics": {
|
556 |
+
"ImageNet-1K": {
|
557 |
+
"acc@1": 79.312,
|
558 |
+
"acc@5": 94.526,
|
559 |
+
}
|
560 |
+
},
|
561 |
+
"_ops": 16.414,
|
562 |
+
"_file_size": 339.586,
|
563 |
+
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
564 |
+
},
|
565 |
+
)
|
566 |
+
IMAGENET1K_V2 = Weights(
|
567 |
+
url="https://download.pytorch.org/models/resnext101_32x8d-110c445d.pth",
|
568 |
+
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
569 |
+
meta={
|
570 |
+
**_COMMON_META,
|
571 |
+
"num_params": 88791336,
|
572 |
+
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
|
573 |
+
"_metrics": {
|
574 |
+
"ImageNet-1K": {
|
575 |
+
"acc@1": 82.834,
|
576 |
+
"acc@5": 96.228,
|
577 |
+
}
|
578 |
+
},
|
579 |
+
"_ops": 16.414,
|
580 |
+
"_file_size": 339.673,
|
581 |
+
"_docs": """
|
582 |
+
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
|
583 |
+
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
584 |
+
""",
|
585 |
+
},
|
586 |
+
)
|
587 |
+
DEFAULT = IMAGENET1K_V2
|
588 |
+
|
589 |
+
|
590 |
+
class ResNeXt101_64X4D_Weights(WeightsEnum):
|
591 |
+
IMAGENET1K_V1 = Weights(
|
592 |
+
url="https://download.pytorch.org/models/resnext101_64x4d-173b62eb.pth",
|
593 |
+
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
594 |
+
meta={
|
595 |
+
**_COMMON_META,
|
596 |
+
"num_params": 83455272,
|
597 |
+
"recipe": "https://github.com/pytorch/vision/pull/5935",
|
598 |
+
"_metrics": {
|
599 |
+
"ImageNet-1K": {
|
600 |
+
"acc@1": 83.246,
|
601 |
+
"acc@5": 96.454,
|
602 |
+
}
|
603 |
+
},
|
604 |
+
"_ops": 15.46,
|
605 |
+
"_file_size": 319.318,
|
606 |
+
"_docs": """
|
607 |
+
These weights were trained from scratch by using TorchVision's `new training recipe
|
608 |
+
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
609 |
+
""",
|
610 |
+
},
|
611 |
+
)
|
612 |
+
DEFAULT = IMAGENET1K_V1
|
613 |
+
|
614 |
+
|
615 |
+
class Wide_ResNet50_2_Weights(WeightsEnum):
|
616 |
+
IMAGENET1K_V1 = Weights(
|
617 |
+
url="https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth",
|
618 |
+
transforms=partial(ImageClassification, crop_size=224),
|
619 |
+
meta={
|
620 |
+
**_COMMON_META,
|
621 |
+
"num_params": 68883240,
|
622 |
+
"recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
|
623 |
+
"_metrics": {
|
624 |
+
"ImageNet-1K": {
|
625 |
+
"acc@1": 78.468,
|
626 |
+
"acc@5": 94.086,
|
627 |
+
}
|
628 |
+
},
|
629 |
+
"_ops": 11.398,
|
630 |
+
"_file_size": 131.82,
|
631 |
+
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
632 |
+
},
|
633 |
+
)
|
634 |
+
IMAGENET1K_V2 = Weights(
|
635 |
+
url="https://download.pytorch.org/models/wide_resnet50_2-9ba9bcbe.pth",
|
636 |
+
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
637 |
+
meta={
|
638 |
+
**_COMMON_META,
|
639 |
+
"num_params": 68883240,
|
640 |
+
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
|
641 |
+
"_metrics": {
|
642 |
+
"ImageNet-1K": {
|
643 |
+
"acc@1": 81.602,
|
644 |
+
"acc@5": 95.758,
|
645 |
+
}
|
646 |
+
},
|
647 |
+
"_ops": 11.398,
|
648 |
+
"_file_size": 263.124,
|
649 |
+
"_docs": """
|
650 |
+
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
|
651 |
+
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
652 |
+
""",
|
653 |
+
},
|
654 |
+
)
|
655 |
+
DEFAULT = IMAGENET1K_V2
|
656 |
+
|
657 |
+
|
658 |
+
class Wide_ResNet101_2_Weights(WeightsEnum):
|
659 |
+
IMAGENET1K_V1 = Weights(
|
660 |
+
url="https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth",
|
661 |
+
transforms=partial(ImageClassification, crop_size=224),
|
662 |
+
meta={
|
663 |
+
**_COMMON_META,
|
664 |
+
"num_params": 126886696,
|
665 |
+
"recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
|
666 |
+
"_metrics": {
|
667 |
+
"ImageNet-1K": {
|
668 |
+
"acc@1": 78.848,
|
669 |
+
"acc@5": 94.284,
|
670 |
+
}
|
671 |
+
},
|
672 |
+
"_ops": 22.753,
|
673 |
+
"_file_size": 242.896,
|
674 |
+
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
675 |
+
},
|
676 |
+
)
|
677 |
+
IMAGENET1K_V2 = Weights(
|
678 |
+
url="https://download.pytorch.org/models/wide_resnet101_2-d733dc28.pth",
|
679 |
+
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
680 |
+
meta={
|
681 |
+
**_COMMON_META,
|
682 |
+
"num_params": 126886696,
|
683 |
+
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
|
684 |
+
"_metrics": {
|
685 |
+
"ImageNet-1K": {
|
686 |
+
"acc@1": 82.510,
|
687 |
+
"acc@5": 96.020,
|
688 |
+
}
|
689 |
+
},
|
690 |
+
"_ops": 22.753,
|
691 |
+
"_file_size": 484.747,
|
692 |
+
"_docs": """
|
693 |
+
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
|
694 |
+
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
695 |
+
""",
|
696 |
+
},
|
697 |
+
)
|
698 |
+
DEFAULT = IMAGENET1K_V2
|
699 |
+
|
700 |
+
|
701 |
+
@register_model()
|
702 |
+
@handle_legacy_interface(weights=("pretrained", ResNet18_Weights.IMAGENET1K_V1))
|
703 |
+
def resnet18_custom(
|
704 |
+
*, weights: Optional[ResNet18_Weights] = None, progress: bool = True, **kwargs: Any
|
705 |
+
) -> ResNet:
|
706 |
+
"""ResNet-18 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__.
|
707 |
+
|
708 |
+
Args:
|
709 |
+
weights (:class:`~torchvision.models.ResNet18_Weights`, optional): The
|
710 |
+
pre-trained weights to use. See
|
711 |
+
:class:`~torchvision.models.ResNet18_Weights` below for
|
712 |
+
more details, and possible values. By default, no pre-trained
|
713 |
+
weights are used.
|
714 |
+
progress (bool, optional): If True, displays a progress bar of the
|
715 |
+
download to stderr. Default is True.
|
716 |
+
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
717 |
+
base class. Please refer to the `source code
|
718 |
+
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
719 |
+
for more details about this class.
|
720 |
+
|
721 |
+
.. autoclass:: torchvision.models.ResNet18_Weights
|
722 |
+
:members:
|
723 |
+
"""
|
724 |
+
weights = ResNet18_Weights.verify(weights)
|
725 |
+
|
726 |
+
return _resnet(BasicBlock, [2, 2, 2, 2], weights, progress, **kwargs)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
Pillow
|
5 |
+
concrete-ml
|