Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
import joblib | |
import os | |
import shutil | |
from sklearn.tree import DecisionTreeClassifier | |
from sklearn.model_selection import train_test_split | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.metrics import confusion_matrix | |
from concrete.ml.sklearn.tree import DecisionTreeClassifier as FHEDecisionTreeClassifier | |
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer | |
# Define the directory for FHE client/server files | |
fhe_directory = '/tmp/fhe_client_server_files/' | |
# Create the directory if it does not exist | |
if not os.path.exists(fhe_directory): | |
os.makedirs(fhe_directory) | |
else: | |
# If it exists, delete its contents | |
shutil.rmtree(fhe_directory) | |
os.makedirs(fhe_directory) | |
# Load the data | |
data = pd.read_csv('data/heart.xls') | |
st.write("### Data Overview") | |
st.write(data.head()) | |
data.info() # Show info in the Streamlit app | |
# Correlation analysis | |
data_corr = data.corr() | |
plt.figure(figsize=(20, 20)) | |
sns.heatmap(data=data_corr, annot=True) | |
st.write("### Correlation Heatmap") | |
st.pyplot(plt) | |
feature_value = np.array(data_corr['output']) | |
for i in range(len(feature_value)): | |
if feature_value[i] < 0: | |
feature_value[i] = -feature_value[i] | |
features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation']) | |
feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False) | |
feature_selected = feature_sorted.index | |
st.write("### Selected Features") | |
st.write(feature_selected) | |
# Clean the data by selecting the most correlated features | |
clean_data = data[feature_selected] | |
# Prepare the dataset for training | |
X = clean_data.iloc[:, 1:] | |
Y = clean_data['output'] | |
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.25, random_state=0) | |
st.write("### Training Data Shape") | |
st.write(f"X Train Shape: {x_train.shape}, Y Train Shape: {y_train.shape}") | |
st.write(f"X Test Shape: {x_test.shape}, Y Test Shape: {y_test.shape}") | |
# Feature scaling | |
sc = StandardScaler() | |
x_train = sc.fit_transform(x_train) | |
x_test = sc.transform(x_test) | |
# Train the model | |
dt = DecisionTreeClassifier(criterion='entropy', max_depth=6) | |
dt.fit(x_train, y_train) | |
# Predict and evaluate | |
y_pred = dt.predict(x_test) | |
conf_mat = confusion_matrix(y_test, y_pred) | |
accuracy = dt.score(x_test, y_test) | |
st.write("### Confusion Matrix") | |
st.write(conf_mat) | |
st.write(f"### Accuracy: {round(accuracy * 100, 2)}%") | |
# Save the model | |
joblib.dump(dt, 'heart_disease_dt_model.pkl') | |
# Convert the model for FHE | |
st.write("### Converting the model for FHE...") | |
fhe_compatible = FHEDecisionTreeClassifier.from_sklearn_model(dt, x_train, n_bits=10) | |
fhe_compatible.compile(x_train) | |
# Setup the server | |
st.write("### Setting up the FHE server...") | |
dev = FHEModelDev(path_dir=fhe_directory, model=fhe_compatible) | |
dev.save() | |
server = FHEModelServer(path_dir=fhe_directory) | |
server.load() | |
# Setup the client | |
st.write("### Setting up the FHE client...") | |
client = FHEModelClient(path_dir=fhe_directory, key_dir="/tmp/keys_client") | |
serialized_evaluation_keys = client.get_serialized_evaluation_keys() | |
# Load the dataset and select the relevant features for prediction | |
sample_data = clean_data.iloc[0, 1:].values.reshape(1, -1) # First sample for prediction | |
encrypted_data = client.quantize_encrypt_serialize(sample_data) | |
st.write("### Running the server with encrypted data...") | |
# Run the server with encrypted data | |
encrypted_result = server.run(encrypted_data, serialized_evaluation_keys) | |
st.write("### Decrypting the prediction result...") | |
result = client.deserialize_decrypt_dequantize(encrypted_result) | |
st.write("### Encrypted Prediction Result") | |
if result == 1: | |
st.write("Prediction: The patient is likely to have heart disease.") | |
else: | |
st.write("Prediction: The patient is unlikely to have heart disease.") |