Spaces:
Sleeping
Sleeping
import numpy as np | |
import pandas as pd | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
import joblib | |
import os | |
import shutil | |
# Define the directory for FHE client/server files | |
fhe_directory = '/tmp/fhe_client_server_files/' | |
# Create the directory if it does not exist | |
if not os.path.exists(fhe_directory): | |
os.makedirs(fhe_directory) | |
else: | |
# If it exists, delete its contents | |
shutil.rmtree(fhe_directory) | |
os.makedirs(fhe_directory) | |
data=pd.read_csv('data/heart.xls') | |
data.info() #checking the info | |
data_corr=data.corr() | |
plt.figure(figsize=(20,20)) | |
sns.heatmap(data=data_corr,annot=True) | |
#Heatmap for data | |
feature_value=np.array(data_corr['output']) | |
for i in range(len(feature_value)): | |
if feature_value[i]<0: | |
feature_value[i]=-feature_value[i] | |
print(feature_value) | |
features_corr=pd.DataFrame(feature_value,index=data_corr['output'].index,columns=['correalation']) | |
feature_sorted=features_corr.sort_values(by=['correalation'],ascending=False) | |
feature_selected=feature_sorted.index | |
feature_selected #selected features which are very much correalated | |
clean_data=data[feature_selected] | |
from xgboost import XGBClassifier | |
from sklearn.tree import DecisionTreeClassifier #using sklearn decisiontreeclassifier | |
from sklearn.model_selection import train_test_split | |
#making input and output dataset | |
X=clean_data.iloc[:,1:] | |
Y=clean_data['output'] | |
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.25,random_state=0) | |
print(x_train.shape,y_train.shape,x_test.shape,y_test.shape) #data is splited in traing and testing dataset | |
# feature scaling | |
from sklearn.preprocessing import StandardScaler | |
sc=StandardScaler() | |
x_train=sc.fit_transform(x_train) | |
x_test=sc.transform(x_test) | |
#training our model | |
dt=XGBClassifier(max_depth=6) | |
dt.fit(x_train,y_train) | |
#dt.compile(x_trqin) | |
#predicting the value on testing data | |
y_pred=dt.predict(x_test) | |
#ploting the data | |
from sklearn.metrics import confusion_matrix | |
conf_mat=confusion_matrix(y_test,y_pred) | |
print(conf_mat) | |
accuracy=dt.score(x_test,y_test) | |
print("\nThe accuracy of decisiontreelassifier on Heart disease prediction dataset is "+str(round(accuracy*100,2))+"%") | |
joblib.dump(dt, 'heart_disease_dt_model.pkl') | |
from concrete.ml.sklearn.tree import XGBClassifier as ConcreteXGBClassifier | |
fhe_compatible = ConcreteXGBClassifier.from_sklearn_model(dt, x_train, n_bits = 10) | |
fhe_compatible.compile(x_train) | |
#### server | |
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer | |
# Setup the development environment | |
dev = FHEModelDev(path_dir=fhe_directory, model=fhe_compatible) | |
dev.save() | |
# Setup the server | |
server = FHEModelServer(path_dir=fhe_directory) | |
server.load() | |
####### client | |
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer | |
# Setup the client | |
client = FHEModelClient(path_dir=fhe_directory, key_dir="/tmp/keys_client") | |
serialized_evaluation_keys = client.get_serialized_evaluation_keys() | |
# Load the dataset and select the relevant features | |
data = pd.read_csv('data/heart.xls') | |
# Perform the correlation analysis | |
data_corr = data.corr() | |
# Select features based on correlation with 'output' | |
feature_value = np.array(data_corr['output']) | |
for i in range(len(feature_value)): | |
if feature_value[i] < 0: | |
feature_value[i] = -feature_value[i] | |
features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation']) | |
feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False) | |
feature_selected = feature_sorted.index | |
# Clean the data by selecting the most correlated features | |
clean_data = data[feature_selected] | |
# Extract the first row of feature data for prediction (excluding 'output' column) | |
sample_data = clean_data.iloc[0, 1:].values.reshape(1, -1) # Reshape to 2D array for model input | |
encrypted_data = client.quantize_encrypt_serialize(sample_data) | |
##### end client | |
encrypted_result = server.run(encrypted_data, serialized_evaluation_keys) | |
result = client.deserialize_decrypt_dequantize(encrypted_result) | |
print(result) |