Spaces:
Sleeping
Sleeping
fix
Browse files
app.py
CHANGED
@@ -6,12 +6,11 @@ import matplotlib.pyplot as plt
|
|
6 |
import joblib
|
7 |
import os
|
8 |
import shutil
|
9 |
-
from xgboost import XGBClassifier
|
10 |
from sklearn.tree import DecisionTreeClassifier
|
11 |
from sklearn.model_selection import train_test_split
|
12 |
from sklearn.preprocessing import StandardScaler
|
13 |
from sklearn.metrics import confusion_matrix
|
14 |
-
from concrete.ml.sklearn.tree import
|
15 |
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
|
16 |
|
17 |
# Define the directory for FHE client/server files
|
@@ -25,39 +24,43 @@ else:
|
|
25 |
shutil.rmtree(fhe_directory)
|
26 |
os.makedirs(fhe_directory)
|
27 |
|
28 |
-
# Streamlit title
|
29 |
-
st.title("Heart Disease Prediction Model")
|
30 |
-
|
31 |
# Load the data
|
32 |
data = pd.read_csv('data/heart.xls')
|
33 |
-
st.write("### Dataset Information")
|
34 |
-
st.write(data.info())
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
data_corr = data.corr()
|
38 |
plt.figure(figsize=(20, 20))
|
39 |
sns.heatmap(data=data_corr, annot=True)
|
40 |
st.write("### Correlation Heatmap")
|
41 |
st.pyplot(plt)
|
42 |
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
45 |
features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation'])
|
46 |
feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False)
|
47 |
-
feature_selected = feature_sorted.index
|
48 |
|
49 |
-
st.write("### Selected Features
|
50 |
st.write(feature_selected)
|
51 |
|
|
|
52 |
clean_data = data[feature_selected]
|
53 |
|
54 |
-
# Prepare
|
55 |
X = clean_data.iloc[:, 1:]
|
56 |
Y = clean_data['output']
|
57 |
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.25, random_state=0)
|
58 |
|
59 |
-
st.write("### Training
|
60 |
-
st.write(f"Train
|
|
|
61 |
|
62 |
# Feature scaling
|
63 |
sc = StandardScaler()
|
@@ -65,33 +68,28 @@ x_train = sc.fit_transform(x_train)
|
|
65 |
x_test = sc.transform(x_test)
|
66 |
|
67 |
# Train the model
|
68 |
-
dt =
|
69 |
dt.fit(x_train, y_train)
|
70 |
|
71 |
-
#
|
72 |
y_pred = dt.predict(x_test)
|
73 |
-
|
74 |
-
# Confusion matrix
|
75 |
conf_mat = confusion_matrix(y_test, y_pred)
|
|
|
|
|
76 |
st.write("### Confusion Matrix")
|
77 |
st.write(conf_mat)
|
78 |
-
|
79 |
-
# Model accuracy
|
80 |
-
accuracy = dt.score(x_test, y_test)
|
81 |
-
st.write(f"### Model Accuracy: {round(accuracy * 100, 2)}%")
|
82 |
|
83 |
# Save the model
|
84 |
joblib.dump(dt, 'heart_disease_dt_model.pkl')
|
85 |
|
86 |
-
#
|
87 |
-
fhe_compatible =
|
88 |
fhe_compatible.compile(x_train)
|
89 |
|
90 |
-
# Setup the
|
91 |
dev = FHEModelDev(path_dir=fhe_directory, model=fhe_compatible)
|
92 |
dev.save()
|
93 |
-
|
94 |
-
# Setup the server
|
95 |
server = FHEModelServer(path_dir=fhe_directory)
|
96 |
server.load()
|
97 |
|
@@ -99,28 +97,13 @@ server.load()
|
|
99 |
client = FHEModelClient(path_dir=fhe_directory, key_dir="/tmp/keys_client")
|
100 |
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
|
101 |
|
102 |
-
# Load the dataset and
|
103 |
-
|
104 |
-
data_corr = data.corr()
|
105 |
-
|
106 |
-
# Select features based on correlation with 'output'
|
107 |
-
feature_value = np.abs(data_corr['output'])
|
108 |
-
features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation'])
|
109 |
-
feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False)
|
110 |
-
feature_selected = feature_sorted.index.tolist()
|
111 |
-
|
112 |
-
# Clean the data by selecting the most correlated features
|
113 |
-
clean_data = data[feature_selected]
|
114 |
-
|
115 |
-
# Extract the first row of feature data for prediction
|
116 |
-
sample_data = clean_data.iloc[0, 1:].values.reshape(1, -1) # Reshape to 2D array for model input
|
117 |
-
|
118 |
-
# Encrypt the sample data
|
119 |
encrypted_data = client.quantize_encrypt_serialize(sample_data)
|
120 |
|
121 |
-
# Run the server
|
122 |
encrypted_result = server.run(encrypted_data, serialized_evaluation_keys)
|
123 |
result = client.deserialize_decrypt_dequantize(encrypted_result)
|
124 |
|
125 |
-
st.write("### Prediction Result")
|
126 |
st.write(result)
|
|
|
6 |
import joblib
|
7 |
import os
|
8 |
import shutil
|
|
|
9 |
from sklearn.tree import DecisionTreeClassifier
|
10 |
from sklearn.model_selection import train_test_split
|
11 |
from sklearn.preprocessing import StandardScaler
|
12 |
from sklearn.metrics import confusion_matrix
|
13 |
+
from concrete.ml.sklearn.tree import DecisionTreeClassifier as FHEDecisionTreeClassifier
|
14 |
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
|
15 |
|
16 |
# Define the directory for FHE client/server files
|
|
|
24 |
shutil.rmtree(fhe_directory)
|
25 |
os.makedirs(fhe_directory)
|
26 |
|
|
|
|
|
|
|
27 |
# Load the data
|
28 |
data = pd.read_csv('data/heart.xls')
|
|
|
|
|
29 |
|
30 |
+
st.write("### Data Overview")
|
31 |
+
st.write(data.head())
|
32 |
+
data.info() # Show info in the Streamlit app
|
33 |
+
|
34 |
+
# Correlation analysis
|
35 |
data_corr = data.corr()
|
36 |
plt.figure(figsize=(20, 20))
|
37 |
sns.heatmap(data=data_corr, annot=True)
|
38 |
st.write("### Correlation Heatmap")
|
39 |
st.pyplot(plt)
|
40 |
|
41 |
+
feature_value = np.array(data_corr['output'])
|
42 |
+
for i in range(len(feature_value)):
|
43 |
+
if feature_value[i] < 0:
|
44 |
+
feature_value[i] = -feature_value[i]
|
45 |
+
|
46 |
features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation'])
|
47 |
feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False)
|
48 |
+
feature_selected = feature_sorted.index
|
49 |
|
50 |
+
st.write("### Selected Features")
|
51 |
st.write(feature_selected)
|
52 |
|
53 |
+
# Clean the data by selecting the most correlated features
|
54 |
clean_data = data[feature_selected]
|
55 |
|
56 |
+
# Prepare the dataset for training
|
57 |
X = clean_data.iloc[:, 1:]
|
58 |
Y = clean_data['output']
|
59 |
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.25, random_state=0)
|
60 |
|
61 |
+
st.write("### Training Data Shape")
|
62 |
+
st.write(f"X Train Shape: {x_train.shape}, Y Train Shape: {y_train.shape}")
|
63 |
+
st.write(f"X Test Shape: {x_test.shape}, Y Test Shape: {y_test.shape}")
|
64 |
|
65 |
# Feature scaling
|
66 |
sc = StandardScaler()
|
|
|
68 |
x_test = sc.transform(x_test)
|
69 |
|
70 |
# Train the model
|
71 |
+
dt = DecisionTreeClassifier(criterion='entropy', max_depth=6)
|
72 |
dt.fit(x_train, y_train)
|
73 |
|
74 |
+
# Predict and evaluate
|
75 |
y_pred = dt.predict(x_test)
|
|
|
|
|
76 |
conf_mat = confusion_matrix(y_test, y_pred)
|
77 |
+
accuracy = dt.score(x_test, y_test)
|
78 |
+
|
79 |
st.write("### Confusion Matrix")
|
80 |
st.write(conf_mat)
|
81 |
+
st.write(f"### Accuracy: {round(accuracy * 100, 2)}%")
|
|
|
|
|
|
|
82 |
|
83 |
# Save the model
|
84 |
joblib.dump(dt, 'heart_disease_dt_model.pkl')
|
85 |
|
86 |
+
# Convert the model for FHE
|
87 |
+
fhe_compatible = FHEDecisionTreeClassifier.from_sklearn_model(dt, x_train, n_bits=10)
|
88 |
fhe_compatible.compile(x_train)
|
89 |
|
90 |
+
# Setup the server
|
91 |
dev = FHEModelDev(path_dir=fhe_directory, model=fhe_compatible)
|
92 |
dev.save()
|
|
|
|
|
93 |
server = FHEModelServer(path_dir=fhe_directory)
|
94 |
server.load()
|
95 |
|
|
|
97 |
client = FHEModelClient(path_dir=fhe_directory, key_dir="/tmp/keys_client")
|
98 |
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
|
99 |
|
100 |
+
# Load the dataset and select the relevant features for prediction
|
101 |
+
sample_data = clean_data.iloc[0, 1:].values.reshape(1, -1) # First sample for prediction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
encrypted_data = client.quantize_encrypt_serialize(sample_data)
|
103 |
|
104 |
+
# Run the server with encrypted data
|
105 |
encrypted_result = server.run(encrypted_data, serialized_evaluation_keys)
|
106 |
result = client.deserialize_decrypt_dequantize(encrypted_result)
|
107 |
|
108 |
+
st.write("### Encrypted Prediction Result")
|
109 |
st.write(result)
|