from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer # Setup the client client = FHEModelClient(path_dir=fhe_directory, key_dir="/tmp/keys_client") serialized_evaluation_keys = client.get_serialized_evaluation_keys() # Load the dataset and select the relevant features data = pd.read_csv('data/heart.xls') # Perform the correlation analysis data_corr = data.corr() # Select features based on correlation with 'output' feature_value = np.array(data_corr['output']) for i in range(len(feature_value)): if feature_value[i] < 0: feature_value[i] = -feature_value[i] features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation']) feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False) feature_selected = feature_sorted.index # Clean the data by selecting the most correlated features clean_data = data[feature_selected] # Extract the first row of feature data for prediction (excluding 'output' column) sample_data = clean_data.iloc[0, 1:].values.reshape(1, -1) # Reshape to 2D array for model input encrypted_data = client.quantize_encrypt_serialize(sample_data)