Spaces:
Sleeping
Sleeping
File size: 9,988 Bytes
646bd9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import logging
import re
import string
from flair.data import Sentence
from flair.models import SequenceTagger
from presidio_analyzer import AnalyzerEngine
from presidio_anonymizer import AnonymizerEngine
entity_label_to_code_map = {'<PERSON>': 0,
'<O>': 1,
'<MISC>-<NRP>': 2,
'<NUMBER>': 3,
'<PER>-<LOCATION>': 4,
'<LOC>': 5,
'<MISC>': 6, # Miscellaneous: doesn't fall into the more common categories of PERSON, LOCATION, ORGANIZATION,
'<DATE_TIME>': 7,
'<LOCATION>': 8,
'<PRONOUNS>': 9,
'<IN_PAN>': 10,
'<MISC>-<DATE_TIME>': 11,
'<ORG>': 12,
'<MISC>-<IN_PAN>': 13,
'<MISC>-<LOCATION>': 14,
'<PER>': 15,
'<MISC>-<PERSON>': 16,
'<LOC>-<PERSON>': 17,
'<PHONE_NUMBER>': 18,
'<LOC>-<DATE_TIME>': 19,
'<LOC>-<NRP>': 20,
'<NRP>': 21,
'<ORG>-<PERSON>': 22,
'<PER>-<NRP>': 23,
'<ORG>-<LOCATION>': 24,
'<PER>-<DATE_TIME>': 25,
'<PER>-<IN_PAN>': 26,
'<ORG>-<IN_PAN>': 27,
'<ORG>-<NRP>': 28,
'<US_DRIVER_LICENSE>': 29,
'<KEY <EMAIL_ADDRESS>': 30,
'<US_BANK_NUMBER>': 33,
'<IN_AADHAAR>': 34,
'<CRYPTO>': 35,
'<IP_ADDRESS>': 36,
'<EMAIL_ADDRESS>': 35,
'<US_PASSPORT>': 36,
'<US_SSN>': 37,
'<MISC>-<URL>': 38}
pronoun_list = [
'I', 'i', 'me', 'my', 'mine', 'myself', 'you', 'your', 'yours', "I'm", "I am",\
'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "i'm", \
'her', 'hers', 'herself', 'it', 'its', 'itself', 'they', 'them', \
'their', 'theirs', 'themselves', 'we', 'us', 'our', 'ours', 'ourselves' \
'Me', 'My', 'Mine', 'Myself', 'You', 'Your', 'Yours', 'Yourself', 'Yourselves', \
'He', 'Him', 'His', 'Himself', 'She', 'Her', 'Hers', 'Herself', 'It', 'Its', 'Itself', \
'They', 'Them', 'Their', 'Theirs', 'Themselves', 'We', 'Us', 'Our', 'Ours', 'Ourselves',
"Lady", "Madam", "Mr.", "Mister", "Sir", "Miss", "Ms.", "Mrs.", "Mr"
]
privacy_category_codes = {'<PRIVATE>': 1, '<NON_PRIVATE>': 2, '<OTHER>': 3}
punctuation_list = list(string.punctuation)
punctuation_list.remove('%')
punctuation_list.remove('$')
punctuation_list = ''.join(punctuation_list)
def get_word_boundaries(sentence):
""" Find the start and end positions of each word in a sentence."""
return [(match.start(), match.end()) for match in re.finditer(r'[^\s]+', sentence)]
def fuse_ner_labels(flair_ner, presidio_ner, text_type="<PRIVATE>"):
"""Merges The NER labels from 'Flair' and 'Presidio' for a given text.
We add take into account custom cases and predefined rules for entity classification.
"""
merged_ner = []
# Sanity check
assert len(flair_ner) == len(presidio_ner)
for i, ((w1, n1), (w2, n2)) in enumerate(zip(presidio_ner, flair_ner)):
assert w1 == w2
if w1.lower() in pronoun_list:
common_ner = "<PRONOUNS>"
# elif w1 in ['A+', 'A-', 'B+', 'B-', 'AB+', 'AB-', 'O+', 'O-']:
# common_ner = "<PRIVATE>"
elif n1 == "<O>" and n2 == "<O>":
if w1.lower() in ["am", "'m"] and (i - 1) >= 0 and presidio_ner[i - 1][0].lower() == 'i':
common_ner = "<PRONOUNS>"
elif bool(re.match(r'(?<!\S)[\$€]?(?:\d{1,3}(?:[ ,.]\d{3})*|\d+)(?:\.\d+)?%?', w1)):
common_ner = "<NUMBER>"
else:
common_ner = '<O>'
elif n1 in n2:
common_ner = n2
elif n1 == '<O>' and n2 != '<O>':
common_ner = n2
elif n2 == '<O>' and n1 != '<O>':
common_ner = f"<{n1}>"
else:
common_ner = f"<{n1}>-{n2}"
try:
common_binary_label = 0 if common_ner =="<O>" else 1
except:
print(f"ERROR: common_binary_label = 0 if common_ner =='<O>' else 1 | {w1=}, {w2=}, {n1=}, {n2=}")
if common_ner not in entity_label_to_code_map.keys():
common_multi_label = len(entity_label_to_code_map)
if common_ner not in entity_label_to_code_map.keys():
print("NOT in KEY", common_ner)
entity_label_to_code_map[common_ner] = common_multi_label
else:
common_multi_label = entity_label_to_code_map[common_ner]
is_private = text_type if common_ner != '<O>' else '<OTHER>'
merged_ner.append([w1, common_ner, is_private, privacy_category_codes[is_private], common_binary_label, common_multi_label])
return merged_ner
analyzer = AnalyzerEngine()
anonymizer = AnonymizerEngine()
def apply_presidio_model(sentence, verbose=True):
"""Get Presidio predictions."""
if verbose: print(f"{sentence=}")
# anonymized_text looks like: ['<PERSON>', 'went', 'to', 'Pitier', 'Hospital', ...]
anonymized_text = anonymizer.anonymize(text=sentence, analyzer_results=analyzer.analyze(text=sentence, language='en'))
anonymized_text = anonymized_text.__dict__['text'].split()
anonymized_text = ' '.join(anonymized_text)
next_word_to_concate = None
if verbose: print(f"{anonymized_text=}")
if verbose: print(f"{anonymized_text.split('<')=}")
start_index, label = 0, []
previous_label = None
for i, before_split in enumerate(anonymized_text.split('<')):
if verbose:
print(f"\nSubseq_{i}: {before_split=}")
if i == 0:
assert len(before_split) == len(sentence[start_index: len(before_split)])
start_index = len(before_split)
label.extend([(s, '<O>') for s in before_split.split()])
else:
after_split = before_split.split(">")
if verbose:
print(f" -----> ", after_split)
print(sentence[start_index:])
print(sentence[start_index:].find(after_split[-1]))
start2_index = start_index + sentence[start_index:].find(after_split[-1])
end2_index = start2_index + len(after_split[-1])
if verbose:
print(f"Sanity check: '[{sentence[start2_index: end2_index]}]' VS '[{after_split[-1]}]'")
print(f"Hidden part: sentence[{start2_index}: {end2_index}] = {sentence[start2_index: end2_index]}")
assert sentence[start2_index: end2_index] == after_split[-1]
start2_index = start2_index if start2_index != start_index else len(sentence)
for j, anonimyzed_word in enumerate((sentence[start_index: start2_index]).split()):
if next_word_to_concate != None and j == 0:
label.append((f"{next_word_to_concate}{anonimyzed_word}", f"<{after_split[0]}>"))
next_word_to_concate = None
else:
label.append((anonimyzed_word, f"<{after_split[0]}>"))
previous_label = f"<{after_split[0]}>"
if len(sentence[start2_index: end2_index]) >= 1 and after_split[-1][-1] != ' ' and i != len(anonymized_text.split('<')) - 1:
if verbose: print("Is there a space after?", after_split, after_split[-1][-1], i, len(anonymized_text.split('<')))
for j, anonimyzed_word in enumerate((after_split[-1]).split()[:-1]):
label.append((anonimyzed_word, "<O>"))
next_word_to_concate = (after_split[-1]).split()[-1]
elif len(sentence[start2_index: end2_index]) >= 1 and after_split[-1][0] != ' ' and i != len(anonymized_text.split('<')) - 1:
if verbose: print("Is there a space before?", after_split, after_split[-1][0], i, len(anonymized_text.split('<')))
label[-1] = (f"{label[-1][0]}{after_split[-1].split()[0]}", previous_label)
for j, anonimyzed_word in enumerate((after_split[-1]).split()[1:]):
label.append((anonimyzed_word, "<O>"))
else:
for j, anonimyzed_word in enumerate((after_split[-1]).split()):
label.append((anonimyzed_word, "<O>"))
start_index = end2_index
return label
def apply_flair_model(original_sentence):
"""Get Flair predictions."""
logging.getLogger('flair').setLevel(logging.WARNING)
tagger = SequenceTagger.load("flair/ner-english-large")
flair_sentence = Sentence(original_sentence)
tagger.predict(flair_sentence)
word_boundaries = get_word_boundaries(original_sentence)
ner = [[i_token.form, \
b_token.get_label().value, \
i_token.get_label().score, \
i_token.start_position, \
i_token.end_position] for b_token in flair_sentence.get_spans("ner") for i_token in b_token]
ner_labels, ner_index = [], 0
for start, end in word_boundaries:
word_from_text = original_sentence[start:end]
if ner_index < len(ner):
form, label, _, s, e = ner[ner_index]
if (s, e) == (start, end) and word_from_text == form:
ner_labels.append((word_from_text, label))
ner_index += 1
else:
ner_labels.append((word_from_text, "<O>"))
else:
ner_labels.append((word_from_text, "<O>"))
assert len(ner_labels) == len(word_boundaries)
return ner_labels
def preprocess_sentences(sentence, verbose=False):
"""Preprocess the sentence."""
# Removing Extra Newlines:
sentence = re.sub(r'\n+', ' ', sentence)
if verbose: print(sentence)
# Collapsing Multiple Spaces:
sentence = re.sub(' +', ' ', sentence)
if verbose: print(sentence)
# Handling Apostrophes in Possessives:
sentence = re.sub(r"'s\b", " s", sentence)
if verbose: print(sentence)
# Removing Spaces Before Punctuation:
sentence = re.sub(r'\s([,.!?;:])', r'\1', sentence)
if verbose: print(sentence)
# Pattern for Matching Leading or Trailing Punctuation:
pattern = r'(?<!\w)[{}]|[{}](?!\w)'.format(re.escape(punctuation_list), re.escape(punctuation_list))
sentence = re.sub(pattern, '', sentence)
if verbose: print(sentence)
return sentence |