Spaces:
Sleeping
Sleeping
File size: 15,625 Bytes
646bd9e 174cd37 cf6aebf 646bd9e 174cd37 df6182e d812385 1a494e6 174cd37 cf6aebf 174cd37 cf6aebf 174cd37 646bd9e 174cd37 df6182e cf6aebf 646bd9e 174cd37 cf6aebf 174cd37 1a494e6 174cd37 d812385 174cd37 cf6aebf 174cd37 cf6aebf 174cd37 cf6aebf 174cd37 bd20950 174cd37 2b591f4 646bd9e 2b591f4 646bd9e 174cd37 df6182e 174cd37 df6182e 174cd37 df6182e 174cd37 df6182e 174cd37 df6182e 628fe8f df6182e b160148 646bd9e b160148 646bd9e 174cd37 646bd9e 174cd37 525f3d3 174cd37 525f3d3 174cd37 bd20950 525f3d3 bd20950 174cd37 646bd9e bbc133a 525f3d3 bd20950 bbc133a bd20950 174cd37 bd20950 174cd37 bd20950 174cd37 bd20950 174cd37 bbc133a 174cd37 bd20950 174cd37 bd20950 174cd37 646bd9e d812385 174cd37 bd20950 174cd37 bd20950 174cd37 bd20950 174cd37 646bd9e 174cd37 bd20950 174cd37 bd20950 174cd37 bd20950 174cd37 bd20950 174cd37 bd20950 174cd37 bd20950 174cd37 646bd9e bd20950 174cd37 bd20950 174cd37 bd20950 174cd37 b160148 174cd37 646bd9e 174cd37 bd20950 174cd37 646bd9e bd20950 646bd9e 174cd37 646bd9e bd20950 174cd37 bd20950 174cd37 bd20950 174cd37 df6182e 174cd37 bd20950 174cd37 bd20950 174cd37 df6182e 174cd37 df6182e 646bd9e 174cd37 bd20950 174cd37 646bd9e 2b591f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
"""A Gradio app for anonymizing text data using FHE."""
import os
import re
from typing import Dict, List
import numpy
import gradio as gr
import pandas as pd
from fhe_anonymizer import FHEAnonymizer
from openai import OpenAI
from utils_demo import *
from concrete.ml.deployment import FHEModelClient
ORIGINAL_DOCUMENT = read_txt(ORIGINAL_FILE_PATH).split("\n\n")
ANONYMIZED_DOCUMENT = read_txt(ANONYMIZED_FILE_PATH)
MAPPING_SENTENCES = read_pickle(MAPPING_SENTENCES_PATH)
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
time.sleep(3)
clean_directory()
anonymizer = FHEAnonymizer()
client = OpenAI(api_key=os.environ.get("openaikey"))
# Generate a random user ID
user_id = numpy.random.randint(0, 2**32)
print(f"Your user ID is: {user_id}....")
def select_static_sentences_fn(selected_sentences: List):
selected_sentences = [MAPPING_SENTENCES[sentence] for sentence in selected_sentences]
anonymized_selected_sentence = sorted(selected_sentences, key=lambda x: x[0])
anonymized_selected_sentence = [sentence for _, sentence in anonymized_selected_sentence]
return {anonymized_doc_box: gr.update(value="\n\n".join(anonymized_selected_sentence))}
def key_gen_fn() -> Dict:
"""Generate keys for a given user.
Returns:
dict: A dictionary containing the generated keys and related information.
"""
print("Step 1: Key Generation:")
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
client.load()
# Creates the private and evaluation keys on the client side
client.generate_private_and_evaluation_keys()
# Get the serialized evaluation keys
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
assert isinstance(serialized_evaluation_keys, bytes)
# Save the evaluation key
evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key"
with evaluation_key_path.open("wb") as f:
f.write(serialized_evaluation_keys)
# anonymizer.generate_key()
if not evaluation_key_path.is_file():
error_message = (
f"Error Encountered While generating the evaluation {evaluation_key_path.is_file()=}"
)
print(error_message)
return {gen_key_btn: gr.update(value=error_message)}
else:
return {gen_key_btn: gr.update(value="Keys have been generated ✅")}
def encrypt_query_fn(query):
print(f"Step 2 Query encryption: {query=}")
evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key"
if not evaluation_key_path.is_file():
error_message = "Error ❌: Please generate the key first!"
return {output_encrypted_box: gr.update(value=error_message)}
if is_user_query_valid(query):
error_msg = (
"Unable to process ❌: The request exceeds the length limit or falls "
"outside the scope of this document. Please refine your query."
)
print(error_msg)
return {query_box: gr.update(value=error_msg)}
# Retrieve the client API
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
client.load()
# Pattern to identify words and non-words (including punctuation, spaces, etc.)
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", query)
encrypted_tokens = []
for token in tokens:
if bool(re.match(r"^\s+$", token)):
continue
# Directly append non-word tokens or whitespace to processed_tokens
# Prediction for each word
emb_x = get_batch_text_representation([token], EMBEDDINGS_MODEL, TOKENIZER)
encrypted_x = client.quantize_encrypt_serialize(emb_x)
assert isinstance(encrypted_x, bytes)
encrypted_tokens.append(encrypted_x)
write_pickle(KEYS_DIR / f"{user_id}/encrypted_input", encrypted_tokens)
#anonymizer.encrypt_query(query)
encrypted_quant_tokens_hex = [token.hex()[500:510] for token in encrypted_tokens]
return {output_encrypted_box: gr.update(value=" ".join(encrypted_quant_tokens_hex))}
def run_fhe_fn(query_box):
evaluation_key_path = KEYS_DIR / "evaluation_key"
if not evaluation_key_path.is_file():
error_message = "Error ❌: Please generate the key first!"
return {anonymized_text_output: gr.update(value=error_message)}
encryted_query_path = KEYS_DIR / "encrypted_quantized_query"
if not encryted_query_path.is_file():
error_message = "Error ❌: Please encrypt your query first!"
return {anonymized_text_output: gr.update(value=error_message)}
anonymizer.run_server_and_decrypt_output(query_box)
anonymized_text = read_pickle(KEYS_DIR / "reconstructed_sentence")
# Removing Spaces Before Punctuation:
anonymized_text = re.sub(r"\s([,.!?;:])", r"\1", anonymized_text)
identified_words_with_prob = read_pickle(KEYS_DIR / "identified_words_with_prob")
# Convert the list of identified words and probabilities into a DataFrame
if identified_words_with_prob:
identified_df = pd.DataFrame(
identified_words_with_prob, columns=["Identified Words", "Probability"]
)
else:
identified_df = pd.DataFrame(columns=["Identified Words", "Probability"])
return anonymized_text, identified_df
def query_chatgpt_fn(anonymized_query, anonymized_document):
evaluation_key_path = KEYS_DIR / "evaluation_key"
if not evaluation_key_path.is_file():
error_message = "Error ❌: Please generate the key first!"
return {anonymized_text_output: gr.update(value=error_message)}
encryted_query_path = KEYS_DIR / "encrypted_quantized_query"
if not encryted_query_path.is_file():
error_message = "Error ❌: Please encrypt your query first!"
return {anonymized_text_output: gr.update(value=error_message)}
decrypted_query_path = KEYS_DIR / "reconstructed_sentence"
if not decrypted_query_path.is_file():
error_message = "Error ❌: Please run the FHE computation first!"
return {anonymized_text_output: gr.update(value=error_message)}
prompt = read_txt(PROMPT_PATH)
# Prepare prompt
full_prompt = prompt + "\n"
query = (
"Document content:\n```\n"
+ anonymized_document
+ "\n\n```"
+ "Query:\n```\n"
+ anonymized_query
+ "\n```"
)
print(full_prompt)
completion = client.chat.completions.create(
model="gpt-4-1106-preview", # Replace with "gpt-4" if available
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": query},
],
)
anonymized_response = completion.choices[0].message.content
uuid_map = read_json(MAPPING_UUID_PATH)
inverse_uuid_map = {
v: k for k, v in uuid_map.items()
} # TODO load the inverse mapping from disk for efficiency
# Pattern to identify words and non-words (including punctuation, spaces, etc.)
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", anonymized_response)
processed_tokens = []
for token in tokens:
# Directly append non-word tokens or whitespace to processed_tokens
if not token.strip() or not re.match(r"\w+", token):
processed_tokens.append(token)
continue
if token in inverse_uuid_map:
processed_tokens.append(inverse_uuid_map[token])
else:
processed_tokens.append(token)
deanonymized_response = "".join(processed_tokens)
return anonymized_response, deanonymized_response
demo = gr.Blocks(css=".markdown-body { font-size: 18px; }")
with demo:
gr.Markdown(
"""
<p align="center">
<img width=200 src="file/images/logos/zama.jpg">
</p>
<h1 style="text-align: center;">Encrypted Anonymization Using Fully Homomorphic Encryption</h1>
<p align="center">
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a>
—
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a>
—
<a href=" https://community.zama.ai/c/concrete-ml/8"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a>
—
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a>
</p>
"""
)
# gr.Markdown(
# """
# <p align="center">
# <img width="15%" height="15%" src="./encrypted_anonymization_diagram.jpg">
# </p>
# """
# )
with gr.Accordion("What is encrypted anonymization?", open=False):
gr.Markdown(
"""
Anonymization is the process of removing personally identifiable information (PII)
from data to protect individual privacy.
To resolve trust issues when deploying anonymization as a cloud service, Fully Homomorphic
Encryption (FHE) can be used to preserve the privacy of the original data using
encryption.
The data remains encrypted throughout the anonymization process, eliminating the need for
third-party access to the raw data. Once the data is anonymized, it can safely be sent
to GenAI services such as ChatGPT.
"""
)
########################## Key Gen Part ##########################
gr.Markdown(
"## Step 1: Key generation\n\n"
"""In FHE schemes, two sets of keys are generated. First, the secret keys which are used for
encrypting and decrypting data owned by the client. Second, the evaluation keys that allow
a server to blindly process the encrypted data.
"""
)
gen_key_btn = gr.Button("Generate the secret and evaluation keys")
gen_key_btn.click(
key_gen_fn,
inputs=[],
outputs=[gen_key_btn],
)
########################## Main document Part ##########################
gr.Markdown("## Step 2: Private document")
with gr.Row():
with gr.Column():
gr.Markdown("**Original document:**")
gr.Markdown(
"""This document was retrieved from the [Microsoft Presidio](https://huggingface.co/spaces/presidio/presidio_demo) demo.\n\n
You can select and deselect sentences to customize the document that will be used
as the initial prompt for ChatGPT in step 5.
"""
)
with gr.Column():
gr.Markdown("**Anonymized document:**")
gr.Markdown(
"""You can see below the anonymized text, replaced with hexademical strings, that
will be sent to ChatGPT.
ChatGPT will then be able to answer any queries about the document.
"""
)
with gr.Row():
with gr.Column():
original_sentences_box = gr.CheckboxGroup(
ORIGINAL_DOCUMENT, value=ORIGINAL_DOCUMENT, show_label=False,
)
with gr.Column():
anonymized_doc_box = gr.Textbox(show_label=False,
value=ANONYMIZED_DOCUMENT, interactive=False, lines=11
)
original_sentences_box.change(
fn=select_static_sentences_fn,
inputs=[original_sentences_box],
outputs=[anonymized_doc_box],
)
########################## User Query Part ##########################
gr.Markdown("<hr />")
gr.Markdown("## Step 3: Private query")
gr.Markdown(
"""Now, you can formulate a query. Please choose from the predefined options in
“Queries examples” or craft a custom question in the “Customized query” text box.
Remain concise and relevant to the context. Any off-topic query will not be processed.
"""
)
with gr.Row():
with gr.Column(scale=5):
with gr.Column(scale=5):
default_query_box = gr.Dropdown(
list(DEFAULT_QUERIES.values()), label="Queries examples:"
)
gr.Markdown("Or")
query_box = gr.Textbox(
value="Who lives in Maine?", label="Customized query:", interactive=True
)
default_query_box.change(
fn=lambda default_query_box: default_query_box,
inputs=[default_query_box],
outputs=[query_box],
)
with gr.Column(scale=1, min_width=6):
gr.HTML("<div style='height: 25px;'></div>")
gr.Markdown(
"""
<p align="center">
Encrypt the query locally with FHE
</p>
"""
)
encrypt_btn = gr.Button("Encrypt query”")
gr.HTML("<div style='height: 25px;'></div>")
with gr.Column(scale=5):
output_encrypted_box = gr.Textbox(
label="Encrypted anonymized query that will be sent to the anonymization server:", lines=8
)
encrypt_btn.click(
fn=encrypt_query_fn, inputs=[query_box], outputs=[query_box, output_encrypted_box]
)
########################## FHE processing Part ##########################
gr.Markdown("<hr />")
gr.Markdown("## Step 4: Secure anonymization with FHE")
gr.Markdown(
""" Once the client encrypts the private query locally, it will be sent to a remote server
to perform the anonymization on encrypted data. When the computation is done, the server
will return the result to the client for decryption.
"""
)
run_fhe_btn = gr.Button("Anonymize with FHE")
anonymized_text_output = gr.Textbox(
label="Decrypted anonymized query that will be sent to ChatGPT:", lines=1, interactive=True
)
identified_words_output = gr.Dataframe(label="Identified words:", visible=False)
run_fhe_btn.click(
run_fhe_fn,
inputs=[query_box],
outputs=[anonymized_text_output, identified_words_output],
)
########################## ChatGpt Part ##########################
gr.Markdown("<hr />")
gr.Markdown("## Spet 5: Secure your communication on ChatGPT with anonymized queries")
gr.Markdown(
"""After securely anonymizing the query with FHE,
you can forward it to ChatGPT without having any concern about information leakage."""
)
chatgpt_button = gr.Button("Query ChatGPT")
with gr.Row():
chatgpt_response_anonymized = gr.Textbox(label="ChatGPT's anonymized response:", lines=13)
chatgpt_response_deanonymized = gr.Textbox(
label="ChatGPT's non-anonymized response:", lines=13
)
chatgpt_button.click(
query_chatgpt_fn,
inputs=[anonymized_text_output, anonymized_doc_box],
outputs=[chatgpt_response_anonymized, chatgpt_response_deanonymized],
)
gr.Markdown(
"""**Please note**: As this space is intended solely for demonstration purposes, some
private information may be missed during by the anonymization algorithm. Please validate the
following query before sending it to ChatGPT."""
)
# Launch the app
demo.launch(share=False)
|