Spaces:
Sleeping
Sleeping
import gensim | |
import re | |
from concrete.ml.deployment import FHEModelClient, FHEModelServer | |
from pathlib import Path | |
from concrete.ml.common.serialization.loaders import load | |
import uuid | |
import json | |
base_dir = Path(__file__).parent | |
class FHEAnonymizer: | |
def __init__(self, punctuation_list=".,!?:;"): | |
self.embeddings_model = gensim.models.FastText.load( | |
str(base_dir / "embedded_model.model") | |
) | |
self.punctuation_list = punctuation_list | |
with open(base_dir / "cml_xgboost.model", "r") as model_file: | |
self.fhe_ner_detection = load(file=model_file) | |
with open(base_dir / "original_document_uuid_mapping.json", 'r') as file: | |
self.uuid_map = json.load(file) | |
path_to_model = (base_dir / "deployment").resolve() | |
self.client = FHEModelClient(path_to_model) | |
self.server = FHEModelServer(path_to_model) | |
self.client.generate_private_and_evaluation_keys() | |
self.evaluation_key = self.client.get_serialized_evaluation_keys() | |
def fhe_inference(self, x): | |
enc_x = self.client.quantize_encrypt_serialize(x) | |
enc_y = self.server.run(enc_x, self.evaluation_key) | |
y = self.client.deserialize_decrypt_dequantize(enc_y) | |
return y | |
def __call__(self, text: str): | |
# Pattern to identify words and non-words (including punctuation, spaces, etc.) | |
token_pattern = r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)" | |
tokens = re.findall(token_pattern, text) | |
identified_words_with_prob = [] | |
processed_tokens = [] | |
print(tokens) | |
for token in tokens: | |
# Directly append non-word tokens or whitespace to processed_tokens | |
if not token.strip() or not re.match(r"\w+", token): | |
processed_tokens.append(token) | |
continue | |
# Prediction for each word | |
x = self.embeddings_model.wv[token][None] | |
prediction_proba = self.fhe_ner_detection.predict_proba(x) | |
probability = prediction_proba[0][1] | |
if probability >= 0.5: | |
identified_words_with_prob.append((token, probability)) | |
# Use the existing UUID if available, otherwise generate a new one | |
tmp_uuid = self.uuid_map.get(token, str(uuid.uuid4())[:8]) | |
processed_tokens.append(tmp_uuid) | |
self.uuid_map[token] = tmp_uuid | |
else: | |
processed_tokens.append(token) | |
# Reconstruct the sentence | |
reconstructed_sentence = ''.join(processed_tokens) | |
return reconstructed_sentence, identified_words_with_prob | |