Spaces:
Sleeping
Sleeping
"""A Gradio app for anonymizing text data using FHE.""" | |
import gradio as gr | |
from fhe_anonymizer import FHEAnonymizer | |
import pandas as pd | |
from openai import OpenAI | |
import os | |
import json | |
import re | |
from utils_demo import * | |
from typing import List, Dict, Tuple | |
anonymizer = FHEAnonymizer() | |
client = OpenAI( | |
api_key=os.environ.get("openaikey"), | |
) | |
def check_user_query_fn(user_query: str) -> Dict: | |
if is_user_query_valid(user_query): | |
# TODO: check if the query is related to our context | |
error_msg = ("Unable to process β: The request exceeds the length limit or falls " | |
"outside the scope of this document. Please refine your query.") | |
print(error_msg) | |
return {input_text: gr.update(value=error_msg)} | |
else: | |
# Collapsing Multiple Spaces | |
return {input_text: gr.update(value=re.sub(" +", " ", user_query))} | |
def deidentify_text(input_text): | |
anonymized_text, identified_words_with_prob = anonymizer(input_text) | |
# Convert the list of identified words and probabilities into a DataFrame | |
if identified_words_with_prob: | |
identified_df = pd.DataFrame( | |
identified_words_with_prob, columns=["Identified Words", "Probability"] | |
) | |
else: | |
identified_df = pd.DataFrame(columns=["Identified Words", "Probability"]) | |
return anonymized_text, identified_df | |
def query_chatgpt(anonymized_query): | |
with open("files/anonymized_document.txt", "r") as file: | |
anonymized_document = file.read() | |
with open("files/chatgpt_prompt.txt", "r") as file: | |
prompt = file.read() | |
# Prepare prompt | |
full_prompt = ( | |
prompt + "\n" | |
) | |
query = "Document content:\n```\n" + anonymized_document + "\n\n```" + "Query:\n```\n" + anonymized_query + "\n```" | |
print(full_prompt) | |
completion = client.chat.completions.create( | |
model="gpt-4-1106-preview", # Replace with "gpt-4" if available | |
messages=[ | |
{"role": "system", "content": prompt}, | |
{"role": "user", "content": query}, | |
], | |
) | |
anonymized_response = completion.choices[0].message.content | |
with open("original_document_uuid_mapping.json", "r") as file: | |
uuid_map = json.load(file) | |
inverse_uuid_map = {v: k for k, v in uuid_map.items()} # TODO load the inverse mapping from disk for efficiency | |
# Pattern to identify words and non-words (including punctuation, spaces, etc.) | |
token_pattern = r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)" | |
tokens = re.findall(token_pattern, anonymized_response) | |
processed_tokens = [] | |
for token in tokens: | |
# Directly append non-word tokens or whitespace to processed_tokens | |
if not token.strip() or not re.match(r"\w+", token): | |
processed_tokens.append(token) | |
continue | |
if token in inverse_uuid_map: | |
processed_tokens.append(inverse_uuid_map[token]) | |
else: | |
processed_tokens.append(token) | |
deanonymized_response = "".join(processed_tokens) | |
return anonymized_response, deanonymized_response | |
with open("files/original_document.txt", "r") as file: | |
original_document = file.read() | |
with open("files/anonymized_document.txt", "r") as file: | |
anonymized_document = file.read() | |
demo = gr.Blocks(css=".markdown-body { font-size: 18px; }") | |
with demo: | |
gr.Markdown( | |
""" | |
<p align="center"> | |
<img width=200 src="file/images/logos/zama.jpg"> | |
</p> | |
<h1 style="text-align: center;">Encrypted Anonymization Using Fully Homomorphic Encryption</h1> | |
<p align="center"> | |
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a> | |
β | |
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a> | |
β | |
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a> | |
β | |
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a> | |
</p> | |
""" | |
) | |
gr.Markdown( | |
""" | |
<p align="center"> | |
<img width="30%" height="25%" src="./encrypted_anonymization_diagram.jpg"> | |
</p> | |
""" | |
) | |
with gr.Accordion("What is Encrypted Anonymization?", open=False): | |
gr.Markdown( | |
""" | |
Encrypted Anonymization leverages Fully Homomorphic Encryption (FHE) to | |
protect sensitive information during data processing. This approach allows for the | |
anonymization of text data, such as personal identifiers, while ensuring that the data | |
remains encrypted throughout the entire process. | |
""" | |
) | |
########################## Main document Part ########################## | |
with gr.Row(): | |
with gr.Column(): | |
original_doc_box = gr.Textbox(label="Original Document:", value=original_document, interactive=True) | |
with gr.Column(): | |
anonymized_doc_box = gr.Textbox(label="Anonymized Document:", value=anonymized_document, interactive=False) | |
########################## User Query Part ########################## | |
with gr.Row(): | |
input_text = gr.Textbox(value="Who lives in Maine?", label="User query", interactive=True) | |
default_query_box = gr.Radio(choices=list(DEFAULT_QUERIES.keys()), label="Example Queries") | |
default_query_box.change( | |
fn=lambda default_query_box: DEFAULT_QUERIES[default_query_box], | |
inputs=[default_query_box], | |
outputs=[input_text] | |
) | |
input_text.change( | |
check_user_query_fn, | |
inputs=[input_text], | |
outputs=[input_text], | |
) | |
anonymized_text_output = gr.Textbox(label="Anonymized Text with FHE", lines=1, interactive=True) | |
identified_words_output = gr.Dataframe(label="Identified Words", visible=False) | |
submit_button = gr.Button("Anonymize with FHE") | |
submit_button.click( | |
deidentify_text, | |
inputs=[input_text], | |
outputs=[anonymized_text_output, identified_words_output], | |
) | |
with gr.Row(): | |
chatgpt_response_anonymized = gr.Textbox(label="ChatGPT Anonymized Response", lines=13) | |
chatgpt_response_deanonymized = gr.Textbox(label="ChatGPT Deanonymized Response", lines=13) | |
chatgpt_button = gr.Button("Query ChatGPT") | |
chatgpt_button.click( | |
query_chatgpt, | |
inputs=[anonymized_text_output], | |
outputs=[chatgpt_response_anonymized, chatgpt_response_deanonymized], | |
) | |
# Launch the app | |
demo.launch(share=False) | |