Spaces:
Sleeping
Sleeping
import argparse | |
import re | |
import uuid | |
from transformers import AutoModel, AutoTokenizer | |
from concrete.ml.common.serialization.loaders import load | |
from utils_demo import * | |
def load_models(): | |
# Load the tokenizer and the embedding model | |
try: | |
tokenizer = AutoTokenizer.from_pretrained("obi/deid_roberta_i2b2") | |
embeddings_model = AutoModel.from_pretrained("obi/deid_roberta_i2b2") | |
except: | |
print("Error while loading Roberta") | |
# Load the CML trained model | |
with open(LOGREG_MODEL_PATH, "r") as model_file: | |
cml_ner_model = load(file=model_file) | |
return embeddings_model, tokenizer, cml_ner_model | |
def anonymize_with_cml(text, embeddings_model, tokenizer, cml_ner_model): | |
token_pattern = r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+|\$\d+(?:\.\d+)?|\€\d+(?:\.\d+)?)" | |
tokens = re.findall(token_pattern, text) | |
uuid_map = {} | |
processed_tokens = [] | |
for token in tokens: | |
if token.strip() and re.match(r"\w+", token): # If the token is a word | |
x = get_batch_text_representation([token], embeddings_model, tokenizer) | |
prediction_proba = cml_ner_model.predict_proba(x, fhe="disable") | |
probability = prediction_proba[0][1] | |
prediction = probability >= 0.77 | |
if prediction: | |
if token not in uuid_map: | |
uuid_map[token] = str(uuid.uuid4())[:8] | |
processed_tokens.append(uuid_map[token]) | |
else: | |
processed_tokens.append(token) | |
else: | |
processed_tokens.append(token) # Preserve punctuation and spaces as is | |
anonymized_text = "".join(processed_tokens) | |
return anonymized_text, uuid_map | |
def anonymize_text(text, verbose=False, save=False): | |
# Load models | |
if verbose: | |
print("Loading models..") | |
embeddings_model, tokenizer, cml_ner_model = load_models() | |
if verbose: | |
print(f"\nText to process:--------------------\n{text}\n--------------------\n") | |
# Save the original text to its specified file | |
if save: | |
write_txt(ORIGINAL_FILE_PATH, text) | |
# Anonymize the text | |
anonymized_text, uuid_map = anonymize_with_cml(text, embeddings_model, tokenizer, cml_ner_model) | |
# Save the anonymized text to its specified file | |
if save: | |
mapping = {o: (i, a) for i, (o, a) in enumerate(zip(text.split("\n\n"), anonymized_text.split("\n\n")))} | |
write_txt(ANONYMIZED_FILE_PATH, anonymized_text) | |
write_pickle(MAPPING_SENTENCES_PATH, mapping) | |
if verbose: | |
print(f"\nAnonymized text:--------------------\n{anonymized_text}\n--------------------\n") | |
# Save the UUID mapping to a JSON file | |
if save: | |
write_json(MAPPING_UUID_PATH, uuid_map) | |
if verbose and save: | |
print(f"Original text saved to :{ORIGINAL_FILE_PATH}") | |
print(f"Anonymized text saved to :{ANONYMIZED_FILE_PATH}") | |
print(f"UUID mapping saved to :{MAPPING_UUID_PATH}") | |
print(f"Sentence mapping saved to :{MAPPING_SENTENCES_PATH}") | |
return anonymized_text | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser( | |
description="Anonymize named entities in a text file and save the mapping to a JSON file." | |
) | |
parser.add_argument( | |
"--file_path", | |
type=str, | |
default="files/original_document.txt", | |
help="The path to the file to be processed.", | |
) | |
parser.add_argument( | |
"--verbose", | |
type=bool, | |
default=True, | |
help="This provides additional details about the program's execution.", | |
) | |
parser.add_argument("--save", type=bool, default=True, help="Save the files.") | |
args = parser.parse_args() | |
text = read_txt(args.file_path) | |
anonymize_text(text, verbose=args.verbose, save=args.save) | |