Spaces:
Sleeping
Sleeping
"""A Gradio app for de-identifying text data using FHE.""" | |
import base64 | |
import os | |
import re | |
import subprocess | |
import time | |
import uuid | |
from typing import Dict, List | |
import gradio as gr | |
import numpy | |
import pandas as pd | |
import requests | |
from fhe_anonymizer import FHEAnonymizer | |
#from openai import OpenAI | |
from utils_demo import * | |
from concrete.ml.deployment import FHEModelClient | |
from models.speech_to_text import * | |
from models.speech_to_text.transcriber.audio import preprocess_audio | |
from models.speech_to_text.transcriber.model import load_model_and_processor | |
from models.speech_to_text.transcriber.audio import transcribe_audio | |
# Ensure the directory is clean before starting processes or reading files | |
clean_directory() | |
anonymizer = FHEAnonymizer() | |
#client = OpenAI(api_key=os.environ.get("openaikey")) | |
# Start the Uvicorn server hosting the FastAPI app | |
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR) | |
time.sleep(3) | |
# Load data from files required for the application | |
UUID_MAP = read_json(MAPPING_UUID_PATH) | |
ANONYMIZED_DOCUMENT = read_txt(ANONYMIZED_FILE_PATH) | |
MAPPING_ANONYMIZED_SENTENCES = read_pickle(MAPPING_ANONYMIZED_SENTENCES_PATH) | |
MAPPING_ENCRYPTED_SENTENCES = read_pickle(MAPPING_ENCRYPTED_SENTENCES_PATH) | |
ORIGINAL_DOCUMENT = read_txt(ORIGINAL_FILE_PATH).split("\n\n") | |
MAPPING_DOC_EMBEDDING = read_pickle(MAPPING_DOC_EMBEDDING_PATH) | |
print(f"{ORIGINAL_DOCUMENT=}\n") | |
print(f"{MAPPING_DOC_EMBEDDING.keys()=}") | |
# 4. Data Processing and Operations (No specific operations shown here, assuming it's part of anonymizer or client usage) | |
# 5. Utilizing External Services or APIs | |
# (Assuming client initialization and anonymizer setup are parts of using external services or application-specific logic) | |
# Generate a random user ID for this session | |
USER_ID = numpy.random.randint(0, 2**32) | |
def select_static_anonymized_sentences_fn(selected_sentences: List): | |
selected_sentences = [MAPPING_ANONYMIZED_SENTENCES[sentence] for sentence in selected_sentences] | |
anonymized_selected_sentence = sorted(selected_sentences, key=lambda x: x[0]) | |
anonymized_selected_sentence = [sentence for _, sentence in anonymized_selected_sentence] | |
return "\n\n".join(anonymized_selected_sentence) | |
def key_gen_fn() -> Dict: | |
"""Generate keys for a given user.""" | |
print("------------ Step 1: Key Generation:") | |
print(f"Your user ID is: {USER_ID}....") | |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}") | |
client.load() | |
# Creates the private and evaluation keys on the client side | |
client.generate_private_and_evaluation_keys() | |
# Get the serialized evaluation keys | |
serialized_evaluation_keys = client.get_serialized_evaluation_keys() | |
assert isinstance(serialized_evaluation_keys, bytes) | |
# Save the evaluation key | |
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key" | |
write_bytes(evaluation_key_path, serialized_evaluation_keys) | |
# anonymizer.generate_key() | |
if not evaluation_key_path.is_file(): | |
error_message = ( | |
f"Error Encountered While generating the evaluation {evaluation_key_path.is_file()=}" | |
) | |
print(error_message) | |
return {gen_key_btn: gr.update(value=error_message)} | |
else: | |
print("Keys have been generated ✅") | |
return {gen_key_btn: gr.update(value="Keys have been generated ✅")} | |
def encrypt_doc_fn(doc): | |
print(f"\n------------ Step 2.1: Doc encryption: {doc=}") | |
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file(): | |
return {encrypted_doc_box: gr.update(value="Error ❌: Please generate the key first!", lines=10)} | |
# Retrieve the client API | |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}") | |
client.load() | |
encrypted_tokens = [] | |
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+|\$\d+(?:\.\d+)?|\€\d+(?:\.\d+)?)", ' '.join(doc)) | |
for token in tokens: | |
if token.strip() and re.match(r"\w+", token): | |
emb_x = MAPPING_DOC_EMBEDDING[token] | |
assert emb_x.shape == (1, 1024) | |
encrypted_x = client.quantize_encrypt_serialize(emb_x) | |
assert isinstance(encrypted_x, bytes) | |
encrypted_tokens.append(encrypted_x) | |
print("Doc encrypted ✅ on Client Side") | |
# No need to save it | |
# write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_doc", b"".join(encrypted_tokens)) | |
encrypted_quant_tokens_hex = [token.hex()[500:510] for token in encrypted_tokens] | |
return { | |
encrypted_doc_box: gr.update(value=" ".join(encrypted_quant_tokens_hex), lines=10), | |
anonymized_doc_output: gr.update(visible=True, value=None), | |
} | |
import presidio_analyzer | |
import presidio_anonymizer | |
from presidio_analyzer import AnalyzerEngine | |
from presidio_anonymizer import AnonymizerEngine | |
def anonymization_with_presidio(prompt): | |
analyzer = AnalyzerEngine() | |
anonymizer = AnonymizerEngine() | |
results = analyzer.analyze(text=prompt,language='en') | |
result = anonymizer.anonymize(text=prompt, analyzer_results=results) | |
return result.text | |
def encrypt_query_fn(query): | |
print(f"\n------------ Step 2: Query encryption: {query=}") | |
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file(): | |
return {output_encrypted_box: gr.update(value="Error ❌: Please generate the key first!", lines=8)} | |
if is_user_query_valid(query): | |
return { | |
query_box: gr.update( | |
value=( | |
"Unable to process ❌: The request exceeds the length limit or falls " | |
"outside the scope of this document. Please refine your query." | |
) | |
) | |
} | |
# Retrieve the client API | |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}") | |
client.load() | |
encrypted_tokens = [] | |
# Pattern to identify words and non-words (including punctuation, spaces, etc.) | |
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", query) | |
for token in tokens: | |
# 1- Ignore non-words tokens | |
if bool(re.match(r"^\s+$", token)): | |
continue | |
# 2- Directly append non-word tokens or whitespace to processed_tokens | |
# Prediction for each word | |
emb_x = get_batch_text_representation([token], EMBEDDINGS_MODEL, TOKENIZER) | |
encrypted_x = client.quantize_encrypt_serialize(emb_x) | |
assert isinstance(encrypted_x, bytes) | |
encrypted_tokens.append(encrypted_x) | |
print("Data encrypted ✅ on Client Side") | |
assert len({len(token) for token in encrypted_tokens}) == 1 | |
write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_input", b"".join(encrypted_tokens)) | |
write_bytes( | |
KEYS_DIR / f"{USER_ID}/encrypted_input_len", len(encrypted_tokens[0]).to_bytes(10, "big") | |
) | |
encrypted_quant_tokens_hex = [token.hex()[500:580] for token in encrypted_tokens] | |
return { | |
output_encrypted_box: gr.update(value=" ".join(encrypted_quant_tokens_hex), lines=8), | |
anonymized_query_output: gr.update(visible=True, value=None), | |
identified_words_output_df: gr.update(visible=False, value=None), | |
} | |
def send_input_fn(query) -> Dict: | |
"""Send the encrypted data and the evaluation key to the server.""" | |
print("------------ Step 3.1: Send encrypted_data to the Server") | |
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key" | |
encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input" | |
encrypted_input_len_path = KEYS_DIR / f"{USER_ID}/encrypted_input_len" | |
if not evaluation_key_path.is_file(): | |
error_message = ( | |
"Error Encountered While Sending Data to the Server: " | |
f"The key has been generated correctly - {evaluation_key_path.is_file()=}" | |
) | |
return {anonymized_query_output: gr.update(value=error_message)} | |
if not encrypted_input_path.is_file(): | |
error_message = ( | |
"Error Encountered While Sending Data to the Server: The data has not been encrypted " | |
f"correctly on the client side - {encrypted_input_path.is_file()=}" | |
) | |
return {anonymized_query_output: gr.update(value=error_message)} | |
# Define the data and files to post | |
data = {"user_id": USER_ID, "input": query} | |
files = [ | |
("files", open(evaluation_key_path, "rb")), | |
("files", open(encrypted_input_path, "rb")), | |
("files", open(encrypted_input_len_path, "rb")), | |
] | |
# Send the encrypted input and evaluation key to the server | |
url = SERVER_URL + "send_input" | |
with requests.post( | |
url=url, | |
data=data, | |
files=files, | |
) as resp: | |
print("Data sent to the server ✅" if resp.ok else "Error ❌ in sending data to the server") | |
def run_fhe_in_server_fn() -> Dict: | |
"""Run in FHE the anonymization of the query""" | |
print("------------ Step 3.2: Run in FHE on the Server Side") | |
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key" | |
encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input" | |
if not evaluation_key_path.is_file(): | |
error_message = ( | |
"Error Encountered While Sending Data to the Server: " | |
f"The key has been generated correctly - {evaluation_key_path.is_file()=}" | |
) | |
return {anonymized_query_output: gr.update(value=error_message)} | |
if not encrypted_input_path.is_file(): | |
error_message = ( | |
"Error Encountered While Sending Data to the Server: The data has not been encrypted " | |
f"correctly on the client side - {encrypted_input_path.is_file()=}" | |
) | |
return {anonymized_query_output: gr.update(value=error_message)} | |
data = { | |
"user_id": USER_ID, | |
} | |
url = SERVER_URL + "run_fhe" | |
with requests.post( | |
url=url, | |
data=data, | |
) as response: | |
if not response.ok: | |
return { | |
anonymized_query_output: gr.update( | |
value=( | |
"⚠️ An error occurred on the Server Side. " | |
"Please check connectivity and data transmission." | |
), | |
), | |
} | |
else: | |
time.sleep(1) | |
print(f"The query anonymization was computed in {response.json():.2f} s per token.") | |
def get_output_fn() -> Dict: | |
print("------------ Step 3.3: Get the output from the Server Side") | |
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file(): | |
error_message = ( | |
"Error Encountered While Sending Data to the Server: " | |
"The key has not been generated correctly" | |
) | |
return {anonymized_query_output: gr.update(value=error_message)} | |
if not (KEYS_DIR / f"{USER_ID}/encrypted_input").is_file(): | |
error_message = ( | |
"Error Encountered While Sending Data to the Server: " | |
"The data has not been encrypted correctly on the client side" | |
) | |
return {anonymized_query_output: gr.update(value=error_message)} | |
data = { | |
"user_id": USER_ID, | |
} | |
# Retrieve the encrypted output | |
url = SERVER_URL + "get_output" | |
with requests.post( | |
url=url, | |
data=data, | |
) as response: | |
if response.ok: | |
print("Data received ✅ from the remote Server") | |
response_data = response.json() | |
encrypted_output_base64 = response_data["encrypted_output"] | |
length_encrypted_output_base64 = response_data["length"] | |
# Decode the base64 encoded data | |
encrypted_output = base64.b64decode(encrypted_output_base64) | |
length_encrypted_output = base64.b64decode(length_encrypted_output_base64) | |
# Save the encrypted output to bytes in a file as it is too large to pass through | |
# regular Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877) | |
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output", encrypted_output) | |
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len", length_encrypted_output) | |
else: | |
print("Error ❌ in getting data to the server") | |
def decrypt_fn(text) -> Dict: | |
"""Dencrypt the data on the `Client Side`.""" | |
print("------------ Step 4: Dencrypt the data on the `Client Side`") | |
# Get the encrypted output path | |
encrypted_output_path = CLIENT_DIR / f"{USER_ID}_encrypted_output" | |
if not encrypted_output_path.is_file(): | |
error_message = """⚠️ Please ensure that: \n | |
- the connectivity \n | |
- the query has been submitted \n | |
- the evaluation key has been generated \n | |
- the server processed the encrypted data \n | |
- the Client received the data from the Server before decrypting the prediction | |
""" | |
print(error_message) | |
return error_message, None | |
# Retrieve the client API | |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}") | |
client.load() | |
# Load the encrypted output as bytes | |
encrypted_output = read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output") | |
length = int.from_bytes(read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len"), "big") | |
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", text) | |
decrypted_output, identified_words_with_prob = [], [] | |
i = 0 | |
for token in tokens: | |
# Directly append non-word tokens or whitespace to processed_tokens | |
if bool(re.match(r"^\s+$", token)): | |
continue | |
else: | |
encrypted_token = encrypted_output[i : i + length] | |
prediction_proba = client.deserialize_decrypt_dequantize(encrypted_token) | |
probability = prediction_proba[0][1] | |
i += length | |
if probability >= 0.77: | |
identified_words_with_prob.append((token, probability)) | |
# Use the existing UUID if available, otherwise generate a new one | |
tmp_uuid = UUID_MAP.get(token, str(uuid.uuid4())[:8]) | |
decrypted_output.append(tmp_uuid) | |
UUID_MAP[token] = tmp_uuid | |
else: | |
decrypted_output.append(token) | |
# Update the UUID map with query. | |
write_json(MAPPING_UUID_PATH, UUID_MAP) | |
# Removing Spaces Before Punctuation: | |
anonymized_text = re.sub(r"\s([,.!?;:])", r"\1", " ".join(decrypted_output)) | |
# Convert the list of identified words and probabilities into a DataFrame | |
if identified_words_with_prob: | |
identified_df = pd.DataFrame( | |
identified_words_with_prob, columns=["Identified Words", "Probability"] | |
) | |
else: | |
identified_df = pd.DataFrame(columns=["Identified Words", "Probability"]) | |
print("Decryption done ✅ on Client Side") | |
return anonymized_text, identified_df | |
def anonymization_with_fn(selected_sentences, query): | |
encrypt_query_fn(query) | |
send_input_fn(query) | |
run_fhe_in_server_fn() | |
get_output_fn() | |
anonymized_text, identified_df = decrypt_fn(query) | |
return { | |
anonymized_doc_output: gr.update(value=select_static_anonymized_sentences_fn(selected_sentences)), | |
anonymized_query_output: gr.update(value=anonymized_text), | |
identified_words_output_df: gr.update(value=identified_df, visible=False), | |
} | |
# Define the folder path containing audio files | |
AUDIO_FOLDER_PATH = "./files/" | |
# Function to list available audio files in the folder | |
def get_audio_files(): | |
files = [f for f in os.listdir(AUDIO_FOLDER_PATH) if f.endswith(('.wav', '.mp3'))] | |
return files | |
# Step 1: Load and display audio file | |
def load_audio_file(selected_audio): | |
file_path = os.path.join(AUDIO_FOLDER_PATH, selected_audio) | |
return file_path | |
# Step 1.1: Record and save the audio file | |
def save_recorded_audio(audio): | |
file_path = os.path.join(AUDIO_FOLDER_PATH, "recorded_audio.wav") | |
audio.export(file_path, format="wav") # Save the audio as a .wav file | |
return file_path | |
def click_js(): | |
return """function audioRecord() { | |
var xPathRes = document.evaluate ('//*[@id="audio"]//button', document, null, XPathResult.FIRST_ORDERED_NODE_TYPE, null); | |
xPathRes.singleNodeValue.click();}""" | |
def action(btn): | |
"""Changes button text on click""" | |
if btn == 'Speak': | |
return 'Stop' | |
else: | |
return 'Speak' | |
def check_btn(btn): | |
"""Checks for correct button text before invoking transcribe()""" | |
if btn != 'Speak': | |
raise Exception('Recording...') | |
def transcribe(): | |
return 'Success' | |
def transcribe_audio_app(audio_path): | |
# Prétraitement de l'audio | |
audio = preprocess_audio(audio_path) | |
# Chargement du modèle | |
model,processor = load_model_and_processor(model_name="openai/whisper-base") | |
# Transcription | |
transcription = transcribe_audio(model=model,processor=processor,audio=audio) | |
return transcription | |
def enregistrer_audio(audio): | |
if audio is not None: | |
return audio | |
return None | |
demo = gr.Blocks(css=".markdown-body { font-size: 18px; }") | |
with demo: | |
gr.Markdown( | |
""" | |
<p align="center"> | |
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png"> | |
</p> | |
""") | |
gr.Markdown( | |
""" | |
<h1 style="text-align: center;">Encrypted de-identification Audio Files Using Fully Homomorphic Encryption</h1> | |
<!-- <p align="center"> | |
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a> | |
— | |
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a> | |
— | |
<a href=" https://community.zama.ai/c/concrete-ml/8"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a> | |
— | |
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a> | |
</p> --> | |
""" | |
) | |
gr.Markdown( | |
""" | |
<p align="center" style="font-size: 16px;"> | |
Anonymization makes it impossible to identify a person from a data set and thus allows their privacy to be respected </p> Concealing some of PII information is a helpful technique for de-identification. However, this can't be considered as anonymization. | |
<p align="center" style="font-size: 16px;"> | |
De-identification uses Fully Homomorphic Encryption (FHE) to conceal personally | |
identifiable information (PII) within encrypted documents, enabling computations to be | |
performed on the encrypted data.</p> | |
""" | |
) | |
# Step 1: Add an audio file | |
gr.Markdown("## Step 1: Add an Audio File") | |
audio_files = get_audio_files() | |
with gr.Row(): | |
audio_file_dropdown = gr.Dropdown(audio_files, label="Select an Audio File", interactive=True) | |
audio_output = gr.Audio(label="Selected Audio", type="filepath") | |
# When an audio file is selected, it will display the file path | |
audio_file_dropdown.change(fn=load_audio_file, inputs=[audio_file_dropdown], outputs=[audio_output]) | |
with gr.Row(): | |
transcribe_btn = gr.Button("Transcrire l'audio") | |
transcription_output = gr.Textbox(label="Transcription", lines=5) | |
transcribe_btn.click( | |
fn=transcribe_audio_app, | |
inputs=[audio_output], | |
outputs=[transcription_output] | |
) | |
########################## Step 1.1: Record Audio ########################## | |
gr.Markdown("## Step 1.1: Record an Audio File") | |
""" | |
with gr.Row(): | |
audio_recorder = gr.Audio(source="microphone", type="file", label="Record Audio") | |
record_output = gr.Audio(label="Recorded Audio", type="filepath") | |
# When the user records an audio, save it | |
audio_recorder.change(fn=save_recorded_audio, inputs=[audio_recorder], outputs=[record_output]) | |
gen_key_btn = gr.Button("Generate the secret and evaluation keys") | |
gen_key_btn.click( | |
key_gen_fn, | |
inputs=[], | |
outputs=[gen_key_btn], | |
) """ | |
msg = gr.Textbox(label="Message") | |
audio_output = gr.Audio(label="Audio enregistré", visible=False) | |
transcription_output = gr.Textbox(label="Transcription", lines=5) | |
audio_box = gr.Audio(label="Enregistrer Audio", source="microphone", type="filepath", elem_id='audio') | |
with gr.Row(): | |
audio_btn = gr.Button('Enregistrer') | |
transcribe_btn = gr.Button('Transcrire') | |
clear = gr.Button("Effacer") | |
audio_btn.click(fn=enregistrer_audio, inputs=[audio_box], outputs=[audio_output, msg]) \ | |
.then(fn=check_btn, inputs=audio_btn) \ | |
.success(fn=lambda: "Audio enregistré avec succès!", outputs=msg) | |
transcribe_btn.click( | |
fn=transcribe_audio_app, | |
inputs=[audio_output], | |
outputs=[transcription_output] | |
) | |
clear.click(lambda: (None, None, None), None, [audio_output, msg, transcription_output], queue=False) | |
########################## Transcription ########################## | |
with gr.Row(): | |
transcribe_btn = gr.Button("Transcrire l'audio") | |
transcription_output = gr.Textbox(label="Transcription", lines=5) | |
transcribe_btn.click( | |
fn=transcribe_audio_app, | |
inputs=[audio_output], | |
outputs=[transcription_output] | |
) | |
########################## Key Gen Part ########################## | |
gr.Markdown( | |
"## Step 1.2: Generate the keys\n\n" | |
"""In Fully Homomorphic Encryption (FHE) methods, two types of keys are created. The first | |
type, called secret keys, are used to encrypt and decrypt the user's data. The second type, | |
called evaluation keys, enables a server to work on the encrypted data without seeing the | |
actual data. | |
""" | |
) | |
gen_key_btn = gr.Button("Generate the secret and evaluation keys") | |
gen_key_btn.click( | |
key_gen_fn, | |
inputs=[], | |
outputs=[gen_key_btn], | |
) | |
########################## Main document Part ########################## | |
gr.Markdown("<hr />") | |
gr.Markdown("## Step 2.1: Select the document you want to encrypt\n\n" | |
"""To make it simple, we pre-compiled the following document, but you are free to choose | |
on which part you want to run this example. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=5): | |
original_sentences_box = gr.CheckboxGroup( | |
ORIGINAL_DOCUMENT, | |
value=ORIGINAL_DOCUMENT, | |
label="Contract:", | |
show_label=True, | |
) | |
with gr.Column(scale=1, min_width=6): | |
gr.HTML("<div style='height: 77px;'></div>") | |
encrypt_doc_btn = gr.Button("Encrypt the document") | |
with gr.Column(scale=5): | |
encrypted_doc_box = gr.Textbox( | |
label="Encrypted document:", show_label=True, interactive=False, lines=10 | |
) | |
########################## User Query Part ########################## | |
gr.Markdown("<hr />") | |
gr.Markdown("## Step 2.2: Select the prompt you want to encrypt\n\n" | |
"""Please choose from the predefined options in | |
<span style='color:grey'>“Prompt examples”</span> or craft a custom question in | |
the <span style='color:grey'>“Customized prompt”</span> text box. | |
Remain concise and relevant to the context. Any off-topic query will not be processed.""") | |
with gr.Row(): | |
with gr.Column(scale=5): | |
with gr.Column(scale=5): | |
default_query_box = gr.Dropdown( | |
list(DEFAULT_QUERIES.values()), label="PROMPT EXAMPLES:" | |
) | |
gr.Markdown("Or") | |
query_box = gr.Textbox( | |
value="What is Kate international bank account number?", label="CUSTOMIZED PROMPT:", interactive=True | |
) | |
default_query_box.change( | |
fn=lambda default_query_box: default_query_box, | |
inputs=[default_query_box], | |
outputs=[query_box], | |
) | |
with gr.Column(scale=1, min_width=6): | |
gr.HTML("<div style='height: 77px;'></div>") | |
encrypt_query_btn = gr.Button("Encrypt the prompt") | |
# gr.HTML("<div style='height: 50px;'></div>") | |
with gr.Column(scale=5): | |
output_encrypted_box = gr.Textbox( | |
label="Encrypted de-identified query that will be sent to the de-identification server:", | |
lines=8, | |
) | |
########################## FHE processing Part ########################## | |
gr.Markdown("<hr />") | |
gr.Markdown("## Step 3: De-identify the document and the prompt using FHE") | |
gr.Markdown( | |
"""Once the client encrypts the document and the prompt locally, it will be sent to a remote | |
server to perform the de-identification on encrypted data. When the computation is done, the | |
server will return the result to the client for decryption.""" | |
) | |
run_fhe_btn = gr.Button("De-identify using FHE") | |
with gr.Row(): | |
with gr.Column(scale=5): | |
anonymized_doc_output = gr.Textbox( | |
label="Decrypted and de-idenntified document", lines=10, interactive=True | |
) | |
with gr.Column(scale=5): | |
anonymized_query_output = gr.Textbox( | |
label="Decrypted and de-identified prompt", lines=10, interactive=True | |
) | |
identified_words_output_df = gr.Dataframe(label="Identified words:", visible=False) | |
encrypt_doc_btn.click( | |
fn=encrypt_doc_fn, | |
inputs=[original_sentences_box], | |
outputs=[encrypted_doc_box, anonymized_doc_output], | |
) | |
encrypt_query_btn.click( | |
fn=encrypt_query_fn, | |
inputs=[query_box], | |
outputs=[ | |
query_box, | |
output_encrypted_box, | |
anonymized_query_output, | |
identified_words_output_df, | |
], | |
) | |
run_fhe_btn.click( | |
anonymization_with_fn, | |
inputs=[original_sentences_box, query_box], | |
outputs=[anonymized_doc_output, anonymized_query_output, identified_words_output_df], | |
) | |
########################## Presidio ########################## | |
gr.Markdown("<hr />") | |
gr.Markdown("## Step 3: De-identify the document and the prompt") | |
gr.Markdown( | |
"""This step will demonstrate de-identification using both FHE and Presidio methods. | |
The same prompt will be used for both to allow for direct comparison.""") | |
with gr.Row(): | |
run_presidio_btn = gr.Button("De-identify using Presidio") | |
with gr.Row(): | |
presidio_output = gr.Textbox( | |
label="Presidio: De-identified prompt", lines=10, interactive=True | |
) | |
run_presidio_btn.click( | |
anonymization_with_presidio, | |
inputs=[query_box], | |
outputs=[presidio_output], | |
) | |
# Launch the app | |
demo.launch(share=False) | |