Spaces:
Sleeping
Sleeping
chore: update with marketing comments + add unicorn server
Browse files- app.py +300 -76
- files/original_document_uuid_mapping.json +19 -1
- server.py +105 -0
- utils_demo.py +39 -14
app.py
CHANGED
@@ -1,33 +1,48 @@
|
|
1 |
"""A Gradio app for anonymizing text data using FHE."""
|
2 |
|
|
|
3 |
import os
|
4 |
import re
|
|
|
|
|
|
|
5 |
from typing import Dict, List
|
6 |
-
|
7 |
import gradio as gr
|
|
|
8 |
import pandas as pd
|
|
|
9 |
from fhe_anonymizer import FHEAnonymizer
|
10 |
from openai import OpenAI
|
11 |
from utils_demo import *
|
|
|
12 |
from concrete.ml.deployment import FHEModelClient
|
13 |
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
MAPPING_SENTENCES = read_pickle(MAPPING_SENTENCES_PATH)
|
18 |
|
|
|
|
|
|
|
|
|
19 |
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
|
20 |
time.sleep(3)
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
-
# Generate a random user ID
|
29 |
-
user_id = numpy.random.randint(0, 2**32)
|
30 |
-
print(f"Your user ID is: {user_id}....")
|
31 |
|
32 |
def select_static_sentences_fn(selected_sentences: List):
|
33 |
|
@@ -41,14 +56,14 @@ def select_static_sentences_fn(selected_sentences: List):
|
|
41 |
|
42 |
|
43 |
def key_gen_fn() -> Dict:
|
44 |
-
"""Generate keys for a given user.
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
dict: A dictionary containing the generated keys and related information.
|
48 |
-
"""
|
49 |
-
print("Step 1: Key Generation:")
|
50 |
|
51 |
-
|
|
|
52 |
client.load()
|
53 |
|
54 |
# Creates the private and evaluation keys on the client side
|
@@ -59,10 +74,9 @@ def key_gen_fn() -> Dict:
|
|
59 |
assert isinstance(serialized_evaluation_keys, bytes)
|
60 |
|
61 |
# Save the evaluation key
|
62 |
-
evaluation_key_path = KEYS_DIR / f"{
|
63 |
-
|
64 |
-
|
65 |
-
f.write(serialized_evaluation_keys)
|
66 |
|
67 |
# anonymizer.generate_key()
|
68 |
|
@@ -73,39 +87,43 @@ def key_gen_fn() -> Dict:
|
|
73 |
print(error_message)
|
74 |
return {gen_key_btn: gr.update(value=error_message)}
|
75 |
else:
|
|
|
76 |
return {gen_key_btn: gr.update(value="Keys have been generated ✅")}
|
77 |
|
78 |
|
79 |
def encrypt_query_fn(query):
|
80 |
|
81 |
-
print(f"Step 2 Query encryption: {query=}")
|
82 |
-
|
83 |
-
evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key"
|
84 |
|
85 |
-
if not
|
86 |
-
|
87 |
-
return {output_encrypted_box: gr.update(value=error_message)}
|
88 |
|
89 |
if is_user_query_valid(query):
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
96 |
|
97 |
# Retrieve the client API
|
98 |
-
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{
|
99 |
client.load()
|
100 |
|
|
|
|
|
101 |
# Pattern to identify words and non-words (including punctuation, spaces, etc.)
|
102 |
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", query)
|
103 |
-
encrypted_tokens = []
|
104 |
|
105 |
for token in tokens:
|
|
|
|
|
106 |
if bool(re.match(r"^\s+$", token)):
|
107 |
continue
|
108 |
-
|
|
|
109 |
|
110 |
# Prediction for each word
|
111 |
emb_x = get_batch_text_representation([token], EMBEDDINGS_MODEL, TOKENIZER)
|
@@ -114,36 +132,220 @@ def encrypt_query_fn(query):
|
|
114 |
|
115 |
encrypted_tokens.append(encrypted_x)
|
116 |
|
117 |
-
|
|
|
|
|
118 |
|
|
|
|
|
|
|
|
|
119 |
|
120 |
-
|
121 |
|
122 |
-
|
|
|
|
|
|
|
|
|
123 |
|
124 |
-
return {output_encrypted_box: gr.update(value=" ".join(encrypted_quant_tokens_hex))}
|
125 |
|
|
|
|
|
126 |
|
127 |
-
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
evaluation_key_path = KEYS_DIR / "evaluation_key"
|
130 |
if not evaluation_key_path.is_file():
|
131 |
-
error_message =
|
|
|
|
|
|
|
132 |
return {anonymized_text_output: gr.update(value=error_message)}
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
137 |
return {anonymized_text_output: gr.update(value=error_message)}
|
138 |
|
139 |
-
|
|
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
# Convert the list of identified words and probabilities into a DataFrame
|
149 |
if identified_words_with_prob:
|
@@ -152,9 +354,30 @@ def run_fhe_fn(query_box):
|
|
152 |
)
|
153 |
else:
|
154 |
identified_df = pd.DataFrame(columns=["Identified Words", "Probability"])
|
|
|
|
|
|
|
155 |
return anonymized_text, identified_df
|
156 |
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
def query_chatgpt_fn(anonymized_query, anonymized_document):
|
159 |
|
160 |
evaluation_key_path = KEYS_DIR / "evaluation_key"
|
@@ -250,7 +473,7 @@ with demo:
|
|
250 |
|
251 |
with gr.Accordion("What is encrypted anonymization?", open=False):
|
252 |
gr.Markdown(
|
253 |
-
|
254 |
Anonymization is the process of removing personally identifiable information (PII)
|
255 |
from data to protect individual privacy.
|
256 |
|
@@ -268,7 +491,6 @@ with demo:
|
|
268 |
|
269 |
gr.Markdown(
|
270 |
"## Step 1: Key generation\n\n"
|
271 |
-
|
272 |
"""In FHE schemes, two sets of keys are generated. First, the secret keys which are used for
|
273 |
encrypting and decrypting data owned by the client. Second, the evaluation keys that allow
|
274 |
a server to blindly process the encrypted data.
|
@@ -297,7 +519,7 @@ with demo:
|
|
297 |
"""
|
298 |
)
|
299 |
with gr.Column():
|
300 |
-
gr.Markdown("**Anonymized document:**")
|
301 |
gr.Markdown(
|
302 |
"""You can see below the anonymized text, replaced with hexademical strings, that
|
303 |
will be sent to ChatGPT.
|
@@ -309,12 +531,14 @@ with demo:
|
|
309 |
with gr.Row():
|
310 |
with gr.Column():
|
311 |
original_sentences_box = gr.CheckboxGroup(
|
312 |
-
|
|
|
|
|
313 |
)
|
314 |
|
315 |
with gr.Column():
|
316 |
-
anonymized_doc_box = gr.Textbox(
|
317 |
-
value=ANONYMIZED_DOCUMENT, interactive=False, lines=11
|
318 |
)
|
319 |
|
320 |
original_sentences_box.change(
|
@@ -357,27 +581,16 @@ with demo:
|
|
357 |
)
|
358 |
|
359 |
with gr.Column(scale=1, min_width=6):
|
360 |
-
gr.HTML("<div style='height:
|
361 |
-
|
362 |
-
gr.
|
363 |
-
"""
|
364 |
-
<p align="center">
|
365 |
-
Encrypt the query locally with FHE
|
366 |
-
</p>
|
367 |
-
"""
|
368 |
-
)
|
369 |
-
encrypt_btn = gr.Button("Encrypt query”")
|
370 |
-
gr.HTML("<div style='height: 25px;'></div>")
|
371 |
|
372 |
with gr.Column(scale=5):
|
373 |
output_encrypted_box = gr.Textbox(
|
374 |
-
label="Encrypted anonymized query that will be sent to the anonymization server:",
|
|
|
375 |
)
|
376 |
|
377 |
-
encrypt_btn.click(
|
378 |
-
fn=encrypt_query_fn, inputs=[query_box], outputs=[query_box, output_encrypted_box]
|
379 |
-
)
|
380 |
-
|
381 |
########################## FHE processing Part ##########################
|
382 |
|
383 |
gr.Markdown("<hr />")
|
@@ -395,12 +608,23 @@ with demo:
|
|
395 |
label="Decrypted anonymized query that will be sent to ChatGPT:", lines=1, interactive=True
|
396 |
)
|
397 |
|
398 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
|
400 |
run_fhe_btn.click(
|
401 |
-
|
402 |
inputs=[query_box],
|
403 |
-
outputs=[anonymized_text_output,
|
404 |
)
|
405 |
|
406 |
########################## ChatGpt Part ##########################
|
|
|
1 |
"""A Gradio app for anonymizing text data using FHE."""
|
2 |
|
3 |
+
import base64
|
4 |
import os
|
5 |
import re
|
6 |
+
import subprocess
|
7 |
+
import time
|
8 |
+
import uuid
|
9 |
from typing import Dict, List
|
10 |
+
|
11 |
import gradio as gr
|
12 |
+
import numpy
|
13 |
import pandas as pd
|
14 |
+
import requests
|
15 |
from fhe_anonymizer import FHEAnonymizer
|
16 |
from openai import OpenAI
|
17 |
from utils_demo import *
|
18 |
+
|
19 |
from concrete.ml.deployment import FHEModelClient
|
20 |
|
21 |
|
22 |
+
# Ensure the directory is clean before starting processes or reading files
|
23 |
+
clean_directory()
|
|
|
24 |
|
25 |
+
anonymizer = FHEAnonymizer()
|
26 |
+
client = OpenAI(api_key=os.environ.get("openaikey"))
|
27 |
+
|
28 |
+
# Start the Uvicorn server hosting the FastAPI app
|
29 |
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
|
30 |
time.sleep(3)
|
31 |
|
32 |
+
# Load data from files required for the application
|
33 |
+
UUID_MAP = read_json(MAPPING_UUID_PATH)
|
34 |
+
ANONYMIZED_DOCUMENT = read_txt(ANONYMIZED_FILE_PATH)
|
35 |
+
MAPPING_SENTENCES = read_pickle(MAPPING_SENTENCES_PATH)
|
36 |
+
ORIGINAL_DOCUMENT = read_txt(ORIGINAL_FILE_PATH).split("\n\n")
|
37 |
+
|
38 |
+
# 4. Data Processing and Operations (No specific operations shown here, assuming it's part of anonymizer or client usage)
|
39 |
|
40 |
+
# 5. Utilizing External Services or APIs
|
41 |
+
# (Assuming client initialization and anonymizer setup are parts of using external services or application-specific logic)
|
42 |
|
43 |
+
# Generate a random user ID for this session
|
44 |
+
USER_ID = numpy.random.randint(0, 2**32)
|
45 |
|
|
|
|
|
|
|
46 |
|
47 |
def select_static_sentences_fn(selected_sentences: List):
|
48 |
|
|
|
56 |
|
57 |
|
58 |
def key_gen_fn() -> Dict:
|
59 |
+
"""Generate keys for a given user."""
|
60 |
+
|
61 |
+
print("------------ Step 1: Key Generation:")
|
62 |
|
63 |
+
print(f"Your user ID is: {USER_ID}....")
|
|
|
|
|
|
|
64 |
|
65 |
+
|
66 |
+
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
67 |
client.load()
|
68 |
|
69 |
# Creates the private and evaluation keys on the client side
|
|
|
74 |
assert isinstance(serialized_evaluation_keys, bytes)
|
75 |
|
76 |
# Save the evaluation key
|
77 |
+
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
|
78 |
+
|
79 |
+
write_bytes(evaluation_key_path, serialized_evaluation_keys)
|
|
|
80 |
|
81 |
# anonymizer.generate_key()
|
82 |
|
|
|
87 |
print(error_message)
|
88 |
return {gen_key_btn: gr.update(value=error_message)}
|
89 |
else:
|
90 |
+
print("Keys have been generated ✅")
|
91 |
return {gen_key_btn: gr.update(value="Keys have been generated ✅")}
|
92 |
|
93 |
|
94 |
def encrypt_query_fn(query):
|
95 |
|
96 |
+
print(f"\n------------ Step 2: Query encryption: {query=}")
|
|
|
|
|
97 |
|
98 |
+
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
|
99 |
+
return {output_encrypted_box: gr.update(value="Error ❌: Please generate the key first!")}
|
|
|
100 |
|
101 |
if is_user_query_valid(query):
|
102 |
+
return {
|
103 |
+
query_box: gr.update(
|
104 |
+
value=(
|
105 |
+
"Unable to process ❌: The request exceeds the length limit or falls "
|
106 |
+
"outside the scope of this document. Please refine your query."
|
107 |
+
)
|
108 |
+
)
|
109 |
+
}
|
110 |
|
111 |
# Retrieve the client API
|
112 |
+
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
113 |
client.load()
|
114 |
|
115 |
+
encrypted_tokens = []
|
116 |
+
|
117 |
# Pattern to identify words and non-words (including punctuation, spaces, etc.)
|
118 |
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", query)
|
|
|
119 |
|
120 |
for token in tokens:
|
121 |
+
|
122 |
+
# 1- Ignore non-words tokens
|
123 |
if bool(re.match(r"^\s+$", token)):
|
124 |
continue
|
125 |
+
|
126 |
+
# 2- Directly append non-word tokens or whitespace to processed_tokens
|
127 |
|
128 |
# Prediction for each word
|
129 |
emb_x = get_batch_text_representation([token], EMBEDDINGS_MODEL, TOKENIZER)
|
|
|
132 |
|
133 |
encrypted_tokens.append(encrypted_x)
|
134 |
|
135 |
+
print(f"Data encrypted ✅ on Client Side")
|
136 |
+
|
137 |
+
assert len({len(token) for token in encrypted_tokens}) == 1
|
138 |
|
139 |
+
write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_input", b"".join(encrypted_tokens))
|
140 |
+
write_bytes(
|
141 |
+
KEYS_DIR / f"{USER_ID}/encrypted_input_len", len(encrypted_tokens[0]).to_bytes(10, "big")
|
142 |
+
)
|
143 |
|
144 |
+
encrypted_quant_tokens_hex = [token.hex()[500:675] for token in encrypted_tokens]
|
145 |
|
146 |
+
return {
|
147 |
+
output_encrypted_box: gr.update(value=" ".join(encrypted_quant_tokens_hex)),
|
148 |
+
anonymized_text_output: gr.update(visible=True, value=None),
|
149 |
+
identified_words_output_df: gr.update(visible=False, value=None),
|
150 |
+
}
|
151 |
|
|
|
152 |
|
153 |
+
def send_input_fn(query) -> Dict:
|
154 |
+
"""Send the encrypted data and the evaluation key to the server."""
|
155 |
|
156 |
+
print("------------ Step 3.1: Send encrypted_data to the Server")
|
157 |
+
|
158 |
+
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
|
159 |
+
encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input"
|
160 |
+
encrypted_input_len_path = KEYS_DIR / f"{USER_ID}/encrypted_input_len"
|
161 |
|
|
|
162 |
if not evaluation_key_path.is_file():
|
163 |
+
error_message = (
|
164 |
+
"Error Encountered While Sending Data to the Server: "
|
165 |
+
f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
|
166 |
+
)
|
167 |
return {anonymized_text_output: gr.update(value=error_message)}
|
168 |
|
169 |
+
if not encrypted_input_path.is_file():
|
170 |
+
error_message = (
|
171 |
+
"Error Encountered While Sending Data to the Server: The data has not been encrypted "
|
172 |
+
f"correctly on the client side - {encrypted_input_path.is_file()=}"
|
173 |
+
)
|
174 |
return {anonymized_text_output: gr.update(value=error_message)}
|
175 |
|
176 |
+
# Define the data and files to post
|
177 |
+
data = {"user_id": USER_ID, "input": query}
|
178 |
|
179 |
+
files = [
|
180 |
+
("files", open(evaluation_key_path, "rb")),
|
181 |
+
("files", open(encrypted_input_path, "rb")),
|
182 |
+
("files", open(encrypted_input_len_path, "rb")),
|
183 |
+
]
|
184 |
+
|
185 |
+
# Send the encrypted input and evaluation key to the server
|
186 |
+
url = SERVER_URL + "send_input"
|
187 |
+
|
188 |
+
with requests.post(
|
189 |
+
url=url,
|
190 |
+
data=data,
|
191 |
+
files=files,
|
192 |
+
) as resp:
|
193 |
+
print("Data sent to the server ✅" if resp.ok else "Error ❌ in sending data to the server")
|
194 |
+
|
195 |
+
|
196 |
+
def run_fhe_in_server_fn() -> Dict:
|
197 |
+
"""Run in FHE the anonymization of the query"""
|
198 |
|
199 |
+
print("------------ Step 3.2: Run in FHE on the Server Side")
|
200 |
+
|
201 |
+
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
|
202 |
+
encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input"
|
203 |
+
|
204 |
+
if not evaluation_key_path.is_file():
|
205 |
+
error_message = (
|
206 |
+
"Error Encountered While Sending Data to the Server: "
|
207 |
+
f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
|
208 |
+
)
|
209 |
+
return {anonymized_text_output: gr.update(value=error_message)}
|
210 |
+
|
211 |
+
if not encrypted_input_path.is_file():
|
212 |
+
error_message = (
|
213 |
+
"Error Encountered While Sending Data to the Server: The data has not been encrypted "
|
214 |
+
f"correctly on the client side - {encrypted_input_path.is_file()=}"
|
215 |
+
)
|
216 |
+
return {anonymized_text_output: gr.update(value=error_message)}
|
217 |
+
|
218 |
+
data = {
|
219 |
+
"user_id": USER_ID,
|
220 |
+
}
|
221 |
+
|
222 |
+
url = SERVER_URL + "run_fhe"
|
223 |
+
|
224 |
+
with requests.post(
|
225 |
+
url=url,
|
226 |
+
data=data,
|
227 |
+
) as response:
|
228 |
+
if not response.ok:
|
229 |
+
return {
|
230 |
+
anonymized_text_output: gr.update(
|
231 |
+
value=(
|
232 |
+
"⚠️ An error occurred on the Server Side. "
|
233 |
+
"Please check connectivity and data transmission."
|
234 |
+
),
|
235 |
+
),
|
236 |
+
}
|
237 |
+
else:
|
238 |
+
time.sleep(1)
|
239 |
+
print(f"The query anonymization was computed in {response.json():.2f} s per token.")
|
240 |
+
|
241 |
+
|
242 |
+
def get_output_fn() -> Dict:
|
243 |
+
|
244 |
+
print("------------ Step 3.3: Get the output from the Server Side")
|
245 |
+
|
246 |
+
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
|
247 |
+
error_message = (
|
248 |
+
"Error Encountered While Sending Data to the Server: "
|
249 |
+
"The key has not been generated correctly"
|
250 |
+
)
|
251 |
+
return {anonymized_text_output: gr.update(value=error_message)}
|
252 |
+
|
253 |
+
if not (KEYS_DIR / f"{USER_ID}/encrypted_input").is_file():
|
254 |
+
error_message = (
|
255 |
+
"Error Encountered While Sending Data to the Server: "
|
256 |
+
"The data has not been encrypted correctly on the client side"
|
257 |
+
)
|
258 |
+
return {anonymized_text_output: gr.update(value=error_message)}
|
259 |
+
|
260 |
+
data = {
|
261 |
+
"user_id": USER_ID,
|
262 |
+
}
|
263 |
+
|
264 |
+
# Retrieve the encrypted output
|
265 |
+
url = SERVER_URL + "get_output"
|
266 |
+
with requests.post(
|
267 |
+
url=url,
|
268 |
+
data=data,
|
269 |
+
) as response:
|
270 |
+
if response.ok:
|
271 |
+
print("Data received ✅ from the remote Server")
|
272 |
+
response_data = response.json()
|
273 |
+
encrypted_output_base64 = response_data["encrypted_output"]
|
274 |
+
length_encrypted_output_base64 = response_data["length"]
|
275 |
+
|
276 |
+
# Decode the base64 encoded data
|
277 |
+
encrypted_output = base64.b64decode(encrypted_output_base64)
|
278 |
+
length_encrypted_output = base64.b64decode(length_encrypted_output_base64)
|
279 |
+
|
280 |
+
# Save the encrypted output to bytes in a file as it is too large to pass through
|
281 |
+
# regular Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877)
|
282 |
+
|
283 |
+
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output", encrypted_output)
|
284 |
+
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len", length_encrypted_output)
|
285 |
+
|
286 |
+
else:
|
287 |
+
print("Error ❌ in getting data to the server")
|
288 |
+
|
289 |
+
|
290 |
+
def decrypt_fn(text) -> Dict:
|
291 |
+
"""Dencrypt the data on the `Client Side`."""
|
292 |
+
|
293 |
+
print("------------ Step 4: Dencrypt the data on the `Client Side`")
|
294 |
+
|
295 |
+
# Get the encrypted output path
|
296 |
+
encrypted_output_path = CLIENT_DIR / f"{USER_ID}_encrypted_output"
|
297 |
+
|
298 |
+
if not encrypted_output_path.is_file():
|
299 |
+
error_message = """⚠️ Please ensure that: \n
|
300 |
+
- the connectivity \n
|
301 |
+
- the query has been submitted \n
|
302 |
+
- the evaluation key has been generated \n
|
303 |
+
- the server processed the encrypted data \n
|
304 |
+
- the Client received the data from the Server before decrypting the prediction
|
305 |
+
"""
|
306 |
+
print(error_message)
|
307 |
+
|
308 |
+
return error_message, None
|
309 |
+
|
310 |
+
# Retrieve the client API
|
311 |
+
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
312 |
+
client.load()
|
313 |
+
|
314 |
+
# Load the encrypted output as bytes
|
315 |
+
encrypted_output = read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output")
|
316 |
+
length = int.from_bytes(read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len"), "big")
|
317 |
+
|
318 |
+
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", text)
|
319 |
+
|
320 |
+
decrypted_output, identified_words_with_prob = [], []
|
321 |
+
|
322 |
+
i = 0
|
323 |
+
for token in tokens:
|
324 |
+
|
325 |
+
# Directly append non-word tokens or whitespace to processed_tokens
|
326 |
+
if bool(re.match(r"^\s+$", token)):
|
327 |
+
continue
|
328 |
+
else:
|
329 |
+
encrypted_token = encrypted_output[i : i + length]
|
330 |
+
prediction_proba = client.deserialize_decrypt_dequantize(encrypted_token)
|
331 |
+
probability = prediction_proba[0][1]
|
332 |
+
i += length
|
333 |
+
|
334 |
+
if probability >= 0.77:
|
335 |
+
identified_words_with_prob.append((token, probability))
|
336 |
+
|
337 |
+
# Use the existing UUID if available, otherwise generate a new one
|
338 |
+
tmp_uuid = UUID_MAP.get(token, str(uuid.uuid4())[:8])
|
339 |
+
decrypted_output.append(tmp_uuid)
|
340 |
+
UUID_MAP[token] = tmp_uuid
|
341 |
+
else:
|
342 |
+
decrypted_output.append(token)
|
343 |
+
|
344 |
+
# Update the UUID map with query.
|
345 |
+
write_json(MAPPING_UUID_PATH, UUID_MAP)
|
346 |
+
|
347 |
+
# Removing Spaces Before Punctuation:
|
348 |
+
anonymized_text = re.sub(r"\s([,.!?;:])", r"\1", " ".join(decrypted_output))
|
349 |
|
350 |
# Convert the list of identified words and probabilities into a DataFrame
|
351 |
if identified_words_with_prob:
|
|
|
354 |
)
|
355 |
else:
|
356 |
identified_df = pd.DataFrame(columns=["Identified Words", "Probability"])
|
357 |
+
|
358 |
+
print(f"Decryption done ✅ on Client Side")
|
359 |
+
|
360 |
return anonymized_text, identified_df
|
361 |
|
362 |
|
363 |
+
def anonymization_with_fn(query):
|
364 |
+
|
365 |
+
encrypt_query_fn(query)
|
366 |
+
|
367 |
+
send_input_fn(query)
|
368 |
+
|
369 |
+
run_fhe_in_server_fn()
|
370 |
+
|
371 |
+
get_output_fn()
|
372 |
+
|
373 |
+
anonymized_text, identified_df = decrypt_fn(query)
|
374 |
+
|
375 |
+
return {
|
376 |
+
anonymized_text_output: gr.update(value=anonymized_text),
|
377 |
+
identified_words_output_df: gr.update(value=identified_df, visible=True),
|
378 |
+
}
|
379 |
+
|
380 |
+
|
381 |
def query_chatgpt_fn(anonymized_query, anonymized_document):
|
382 |
|
383 |
evaluation_key_path = KEYS_DIR / "evaluation_key"
|
|
|
473 |
|
474 |
with gr.Accordion("What is encrypted anonymization?", open=False):
|
475 |
gr.Markdown(
|
476 |
+
"""
|
477 |
Anonymization is the process of removing personally identifiable information (PII)
|
478 |
from data to protect individual privacy.
|
479 |
|
|
|
491 |
|
492 |
gr.Markdown(
|
493 |
"## Step 1: Key generation\n\n"
|
|
|
494 |
"""In FHE schemes, two sets of keys are generated. First, the secret keys which are used for
|
495 |
encrypting and decrypting data owned by the client. Second, the evaluation keys that allow
|
496 |
a server to blindly process the encrypted data.
|
|
|
519 |
"""
|
520 |
)
|
521 |
with gr.Column():
|
522 |
+
gr.Markdown("**Anonymized document:**")
|
523 |
gr.Markdown(
|
524 |
"""You can see below the anonymized text, replaced with hexademical strings, that
|
525 |
will be sent to ChatGPT.
|
|
|
531 |
with gr.Row():
|
532 |
with gr.Column():
|
533 |
original_sentences_box = gr.CheckboxGroup(
|
534 |
+
ORIGINAL_DOCUMENT,
|
535 |
+
value=ORIGINAL_DOCUMENT,
|
536 |
+
show_label=False,
|
537 |
)
|
538 |
|
539 |
with gr.Column():
|
540 |
+
anonymized_doc_box = gr.Textbox(
|
541 |
+
show_label=False, value=ANONYMIZED_DOCUMENT, interactive=False, lines=11
|
542 |
)
|
543 |
|
544 |
original_sentences_box.change(
|
|
|
581 |
)
|
582 |
|
583 |
with gr.Column(scale=1, min_width=6):
|
584 |
+
gr.HTML("<div style='height: 77px;'></div>")
|
585 |
+
encrypt_btn = gr.Button("Encrypt query")
|
586 |
+
# gr.HTML("<div style='height: 50px;'></div>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
587 |
|
588 |
with gr.Column(scale=5):
|
589 |
output_encrypted_box = gr.Textbox(
|
590 |
+
label="Encrypted anonymized query that will be sent to the anonymization server:",
|
591 |
+
lines=8,
|
592 |
)
|
593 |
|
|
|
|
|
|
|
|
|
594 |
########################## FHE processing Part ##########################
|
595 |
|
596 |
gr.Markdown("<hr />")
|
|
|
608 |
label="Decrypted anonymized query that will be sent to ChatGPT:", lines=1, interactive=True
|
609 |
)
|
610 |
|
611 |
+
identified_words_output_df = gr.Dataframe(label="Identified words:", visible=False)
|
612 |
+
|
613 |
+
encrypt_btn.click(
|
614 |
+
fn=encrypt_query_fn,
|
615 |
+
inputs=[query_box],
|
616 |
+
outputs=[
|
617 |
+
query_box,
|
618 |
+
output_encrypted_box,
|
619 |
+
anonymized_text_output,
|
620 |
+
identified_words_output_df,
|
621 |
+
],
|
622 |
+
)
|
623 |
|
624 |
run_fhe_btn.click(
|
625 |
+
anonymization_with_fn,
|
626 |
inputs=[query_box],
|
627 |
+
outputs=[anonymized_text_output, identified_words_output_df],
|
628 |
)
|
629 |
|
630 |
########################## ChatGpt Part ##########################
|
files/original_document_uuid_mapping.json
CHANGED
@@ -1 +1,19 @@
|
|
1 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"078-05-1126": "d8da62f1",
|
3 |
+
"1234567A": "5e63c327",
|
4 |
+
"16Yeky6GMjeNkAiNcBY7ZhrLoMSgg1BoyZ": "ac41d58b",
|
5 |
+
"191280342": "59a83e41",
|
6 |
+
"192.168.0.1": "116fe81e",
|
7 |
+
"212": "144a2acc",
|
8 |
+
"4095-2609-9393-4932": "e5b499b0",
|
9 |
+
"555-1234": "d9e5704e",
|
10 |
+
"954567876544": "9eb07461",
|
11 |
+
"David": "ebe99761",
|
12 |
+
"IL150120690000003111111": "5ca977a4",
|
13 |
+
"International": "71d0f51c",
|
14 |
+
"Johnson": "53a9291d",
|
15 |
+
"Kate": "b474d794",
|
16 |
+
"Maine": "6337f12f",
|
17 |
+
"microsoft.com": "0d574451",
|
18 |
+
"test@presidio.site": "1f78e797"
|
19 |
+
}
|
server.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Server that will listen for GET and POST requests from the client."""
|
2 |
+
|
3 |
+
import base64
|
4 |
+
import time
|
5 |
+
from typing import List
|
6 |
+
|
7 |
+
import numpy
|
8 |
+
from fastapi import FastAPI, File, Form, UploadFile
|
9 |
+
from fastapi.responses import JSONResponse
|
10 |
+
from utils_demo import *
|
11 |
+
from utils_demo import SERVER_DIR
|
12 |
+
|
13 |
+
from concrete.ml.deployment import FHEModelServer
|
14 |
+
|
15 |
+
# Load the FHE server
|
16 |
+
FHE_SERVER = FHEModelServer(DEPLOYMENT_DIR)
|
17 |
+
|
18 |
+
# Initialize an instance of FastAPI
|
19 |
+
app = FastAPI()
|
20 |
+
|
21 |
+
# Define the default route
|
22 |
+
@app.get("/")
|
23 |
+
def root():
|
24 |
+
"""
|
25 |
+
Root endpoint of the health prediction API.
|
26 |
+
Returns:
|
27 |
+
dict: The welcome message.
|
28 |
+
"""
|
29 |
+
return {"message": "Welcome to your encrypted anonymization use-case with FHE!"}
|
30 |
+
|
31 |
+
|
32 |
+
@app.post("/send_input")
|
33 |
+
def send_input(
|
34 |
+
user_id: str = Form(),
|
35 |
+
files: List[UploadFile] = File(),
|
36 |
+
):
|
37 |
+
"""Send the inputs to the server."""
|
38 |
+
|
39 |
+
# Save the files using the above paths
|
40 |
+
write_bytes(SERVER_DIR / f"{user_id}_valuation_key", files[0].file.read())
|
41 |
+
write_bytes(SERVER_DIR / f"{user_id}_encrypted_input", files[1].file.read())
|
42 |
+
write_bytes(SERVER_DIR / f"{user_id}_encrypted_len_input", files[2].file.read())
|
43 |
+
|
44 |
+
|
45 |
+
@app.post("/run_fhe")
|
46 |
+
def run_fhe(
|
47 |
+
user_id: str = Form(),
|
48 |
+
):
|
49 |
+
"""Inference in FHE."""
|
50 |
+
|
51 |
+
evaluation_key_path = SERVER_DIR / f"{user_id}_valuation_key"
|
52 |
+
encrypted_input_path = SERVER_DIR / f"{user_id}_encrypted_input"
|
53 |
+
encrypted_input_len_path = SERVER_DIR / f"{user_id}_encrypted_len_input"
|
54 |
+
|
55 |
+
# Read the files (Evaluation key + Encrypted symptoms) using the above paths
|
56 |
+
with encrypted_input_path.open("rb") as encrypted_output_file, evaluation_key_path.open(
|
57 |
+
"rb"
|
58 |
+
) as evaluation_key_file, encrypted_input_len_path.open("rb") as lenght:
|
59 |
+
evaluation_key = evaluation_key_file.read()
|
60 |
+
encrypted_tokens = encrypted_output_file.read()
|
61 |
+
length = int.from_bytes(lenght.read(), "big")
|
62 |
+
|
63 |
+
timing, encrypted_output = [], []
|
64 |
+
for i in range(0, len(encrypted_tokens), length):
|
65 |
+
enc_x = encrypted_tokens[i : i + length]
|
66 |
+
start_time = time.time()
|
67 |
+
enc_y = FHE_SERVER.run(enc_x, evaluation_key)
|
68 |
+
timing.append(round(time.time() - start_time, 2))
|
69 |
+
encrypted_output.append(enc_y)
|
70 |
+
|
71 |
+
# Write the files
|
72 |
+
write_bytes(SERVER_DIR / f"{user_id}_encrypted_output", b"".join(encrypted_output))
|
73 |
+
write_bytes(
|
74 |
+
SERVER_DIR / f"{user_id}_encrypted_output_len", len(encrypted_output[0]).to_bytes(10, "big")
|
75 |
+
)
|
76 |
+
|
77 |
+
return JSONResponse(content=numpy.mean(timing))
|
78 |
+
|
79 |
+
|
80 |
+
@app.post("/get_output")
|
81 |
+
def get_output(user_id: str = Form()):
|
82 |
+
"""Retrieve the encrypted output from the server."""
|
83 |
+
|
84 |
+
# Path where the encrypted output is saved
|
85 |
+
encrypted_output_path = SERVER_DIR / f"{user_id}_encrypted_output"
|
86 |
+
encrypted_output_len_path = SERVER_DIR / f"{user_id}_encrypted_output_len"
|
87 |
+
|
88 |
+
# Read the file using the above path
|
89 |
+
with encrypted_output_path.open("rb") as f:
|
90 |
+
encrypted_output = f.read()
|
91 |
+
|
92 |
+
# Read the file using the above path
|
93 |
+
with encrypted_output_len_path.open("rb") as f:
|
94 |
+
length = f.read()
|
95 |
+
|
96 |
+
time.sleep(1)
|
97 |
+
|
98 |
+
# Encode the binary data to a format suitable for JSON serialization
|
99 |
+
content = {
|
100 |
+
"encrypted_output": base64.b64encode(encrypted_output).decode("utf-8"),
|
101 |
+
"length": base64.b64encode(length).decode("utf-8"),
|
102 |
+
}
|
103 |
+
|
104 |
+
# Send the encrypted output
|
105 |
+
return JSONResponse(content)
|
utils_demo.py
CHANGED
@@ -6,38 +6,51 @@ import shutil
|
|
6 |
import string
|
7 |
from collections import Counter
|
8 |
from pathlib import Path
|
9 |
-
from transformers import AutoModel, AutoTokenizer
|
10 |
|
11 |
import numpy as np
|
12 |
import torch
|
|
|
13 |
|
14 |
-
MAX_USER_QUERY_LEN = 80
|
15 |
|
16 |
-
|
17 |
-
DEFAULT_QUERIES = {
|
18 |
-
"Example Query 1": "Who visited microsoft.com on September 18?",
|
19 |
-
"Example Query 2": "Does Kate have a driving licence?",
|
20 |
-
"Example Query 3": "What's David Johnson's phone number?",
|
21 |
-
}
|
22 |
|
|
|
|
|
23 |
|
24 |
-
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
DEPLOYMENT_DIR = CURRENT_DIR / "deployment"
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
|
|
31 |
ORIGINAL_FILE_PATH = DATA_PATH / "original_document.txt"
|
32 |
ANONYMIZED_FILE_PATH = DATA_PATH / "anonymized_document.txt"
|
33 |
MAPPING_UUID_PATH = DATA_PATH / "original_document_uuid_mapping.json"
|
34 |
MAPPING_SENTENCES_PATH = DATA_PATH / "mapping_clear_to_anonymized.pkl"
|
35 |
PROMPT_PATH = DATA_PATH / "chatgpt_prompt.txt"
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Load tokenizer and model
|
40 |
-
TOKENIZER =
|
41 |
EMBEDDINGS_MODEL = AutoModel.from_pretrained("obi/deid_roberta_i2b2")
|
42 |
|
43 |
PUNCTUATION_LIST = list(string.punctuation)
|
@@ -163,3 +176,15 @@ def write_json(file_name, data):
|
|
163 |
"""Save data to a json file."""
|
164 |
with open(file_name, "w", encoding="utf-8") as file:
|
165 |
json.dump(data, file, indent=4, sort_keys=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import string
|
7 |
from collections import Counter
|
8 |
from pathlib import Path
|
|
|
9 |
|
10 |
import numpy as np
|
11 |
import torch
|
12 |
+
from transformers import AutoModel, AutoTokenizer
|
13 |
|
|
|
14 |
|
15 |
+
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Core Application URL
|
18 |
+
SERVER_URL = "http://localhost:8000/"
|
19 |
|
20 |
+
# Maximum length for user queries
|
21 |
+
MAX_USER_QUERY_LEN = 80
|
22 |
|
23 |
+
# Base Directories
|
24 |
+
CURRENT_DIR = Path(__file__).parent
|
25 |
DEPLOYMENT_DIR = CURRENT_DIR / "deployment"
|
26 |
+
DATA_PATH = CURRENT_DIR / "files"
|
27 |
+
|
28 |
+
# Deployment Directories
|
29 |
+
CLIENT_DIR = DEPLOYMENT_DIR / "client_dir"
|
30 |
+
SERVER_DIR = DEPLOYMENT_DIR / "server_dir"
|
31 |
+
KEYS_DIR = DEPLOYMENT_DIR / ".fhe_keys"
|
32 |
|
33 |
+
# All Directories
|
34 |
+
ALL_DIRS = [KEYS_DIR, CLIENT_DIR, SERVER_DIR]
|
35 |
+
|
36 |
+
# Model and Data Files
|
37 |
+
LOGREG_MODEL_PATH = CURRENT_DIR / "models" / "cml_logreg.model"
|
38 |
ORIGINAL_FILE_PATH = DATA_PATH / "original_document.txt"
|
39 |
ANONYMIZED_FILE_PATH = DATA_PATH / "anonymized_document.txt"
|
40 |
MAPPING_UUID_PATH = DATA_PATH / "original_document_uuid_mapping.json"
|
41 |
MAPPING_SENTENCES_PATH = DATA_PATH / "mapping_clear_to_anonymized.pkl"
|
42 |
PROMPT_PATH = DATA_PATH / "chatgpt_prompt.txt"
|
43 |
|
44 |
+
|
45 |
+
# List of example queries for easy access
|
46 |
+
DEFAULT_QUERIES = {
|
47 |
+
"Example Query 1": "Who visited microsoft.com on September 18?",
|
48 |
+
"Example Query 2": "Does Kate have a driving licence?",
|
49 |
+
"Example Query 3": "What's David Johnson's phone number?",
|
50 |
+
}
|
51 |
|
52 |
# Load tokenizer and model
|
53 |
+
TOKENIZER = AutoTokenizer.from_pretrained("obi/deid_roberta_i2b2")
|
54 |
EMBEDDINGS_MODEL = AutoModel.from_pretrained("obi/deid_roberta_i2b2")
|
55 |
|
56 |
PUNCTUATION_LIST = list(string.punctuation)
|
|
|
176 |
"""Save data to a json file."""
|
177 |
with open(file_name, "w", encoding="utf-8") as file:
|
178 |
json.dump(data, file, indent=4, sort_keys=True)
|
179 |
+
|
180 |
+
|
181 |
+
def write_bytes(path, data):
|
182 |
+
"""Save binary data."""
|
183 |
+
with path.open("wb") as f:
|
184 |
+
f.write(data)
|
185 |
+
|
186 |
+
|
187 |
+
def read_bytes(path):
|
188 |
+
"""Load data from a binary file."""
|
189 |
+
with path.open("rb") as f:
|
190 |
+
return f.read()
|