"""A Gradio app for anonymizing text data using FHE.""" import os import re from typing import Dict, List import gradio as gr import pandas as pd from fhe_anonymizer import FHEAnonymizer from openai import OpenAI from utils_demo import * ORIGINAL_DOCUMENT = read_txt(ORIGINAL_FILE_PATH).split("\n\n") ANONYMIZED_DOCUMENT = read_txt(ANONYMIZED_FILE_PATH) MAPPING_SENTENCES = read_pickle(MAPPING_SENTENCES_PATH) clean_directory() anonymizer = FHEAnonymizer() client = OpenAI(api_key=os.environ.get("openaikey")) def select_static_sentences_fn(selected_sentences: List): selected_sentences = [MAPPING_SENTENCES[sentence] for sentence in selected_sentences] anonymized_selected_sentence = sorted(selected_sentences, key=lambda x: x[0]) anonymized_selected_sentence = [sentence for _, sentence in anonymized_selected_sentence] return {anonymized_doc_box: gr.update(value="\n\n".join(anonymized_selected_sentence))} def key_gen_fn() -> Dict: """Generate keys for a given user. Returns: dict: A dictionary containing the generated keys and related information. """ print("Key Gen..") anonymizer.generate_key() evaluation_key_path = KEYS_DIR / "evaluation_key" if not evaluation_key_path.is_file(): error_message = ( f"Error Encountered While generating the evaluation {evaluation_key_path.is_file()=}" ) print(error_message) return {gen_key_btn: gr.update(value=error_message)} else: return {gen_key_btn: gr.update(value="Keys have been generated ✅")} def encrypt_query_fn(query): print(f"Query: {query}") evaluation_key_path = KEYS_DIR / "evaluation_key" if not evaluation_key_path.is_file(): error_message = "Error ❌: Please generate the key first!" return {output_encrypted_box: gr.update(value=error_message)} if is_user_query_valid(query): # TODO: check if the query is related to our context error_msg = ( "Unable to process ❌: The request exceeds the length limit or falls " "outside the scope of this document. Please refine your query." ) print(error_msg) return {query_box: gr.update(value=error_msg)} anonymizer.encrypt_query(query) encrypted_tokens = read_pickle(KEYS_DIR / "encrypted_quantized_query") encrypted_quant_tokens_hex = [token.hex()[500:510] for token in encrypted_tokens] return {output_encrypted_box: gr.update(value=" ".join(encrypted_quant_tokens_hex))} def run_fhe_fn(query_box): evaluation_key_path = KEYS_DIR / "evaluation_key" if not evaluation_key_path.is_file(): error_message = "Error ❌: Please generate the key first!" return {anonymized_text_output: gr.update(value=error_message)} encryted_query_path = KEYS_DIR / "encrypted_quantized_query" if not encryted_query_path.is_file(): error_message = "Error ❌: Please encrypt your query first!" return {anonymized_text_output: gr.update(value=error_message)} anonymizer.run_server_and_decrypt_output(query_box) anonymized_text = read_pickle(KEYS_DIR / "reconstructed_sentence") identified_words_with_prob = read_pickle(KEYS_DIR / "identified_words_with_prob") # Convert the list of identified words and probabilities into a DataFrame if identified_words_with_prob: identified_df = pd.DataFrame( identified_words_with_prob, columns=["Identified Words", "Probability"] ) else: identified_df = pd.DataFrame(columns=["Identified Words", "Probability"]) return anonymized_text, identified_df def query_chatgpt_fn(anonymized_query, anonymized_document): evaluation_key_path = KEYS_DIR / "evaluation_key" if not evaluation_key_path.is_file(): error_message = "Error ❌: Please generate the key first!" return {anonymized_text_output: gr.update(value=error_message)} encryted_query_path = KEYS_DIR / "encrypted_quantized_query" if not encryted_query_path.is_file(): error_message = "Error ❌: Please encrypt your query first!" return {anonymized_text_output: gr.update(value=error_message)} decrypted_query_path = KEYS_DIR / "reconstructed_sentence" if not decrypted_query_path.is_file(): error_message = "Error ❌: Please run the FHE computation first!" return {anonymized_text_output: gr.update(value=error_message)} prompt = read_txt(PROMPT_PATH) # Prepare prompt full_prompt = prompt + "\n" query = ( "Document content:\n```\n" + anonymized_document + "\n\n```" + "Query:\n```\n" + anonymized_query + "\n```" ) print(full_prompt) completion = client.chat.completions.create( model="gpt-4-1106-preview", # Replace with "gpt-4" if available messages=[ {"role": "system", "content": prompt}, {"role": "user", "content": query}, ], ) anonymized_response = completion.choices[0].message.content uuid_map = read_json(MAPPING_UUID_PATH) inverse_uuid_map = { v: k for k, v in uuid_map.items() } # TODO load the inverse mapping from disk for efficiency # Pattern to identify words and non-words (including punctuation, spaces, etc.) tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", anonymized_response) processed_tokens = [] for token in tokens: # Directly append non-word tokens or whitespace to processed_tokens if not token.strip() or not re.match(r"\w+", token): processed_tokens.append(token) continue if token in inverse_uuid_map: processed_tokens.append(inverse_uuid_map[token]) else: processed_tokens.append(token) deanonymized_response = "".join(processed_tokens) return anonymized_response, deanonymized_response demo = gr.Blocks(css=".markdown-body { font-size: 18px; }") with demo: gr.Markdown( """
Concrete-ML — Documentation — Community — @zama_fhe
""" ) # gr.Markdown( # """ ## #
# """ # ) with gr.Accordion("What is encrypted anonymization?", open=False): gr.Markdown( <<<<<<< HEAD """ Anonymization is the process of removing personally identifiable information (PII) ======= """Anonymization is the process of removing personally identifiable information (PII) >>>>>>> 053bec9 (chore: update with marketing remarks) from data to protect individual privacy. To resolve trust issues when deploying anonymization as a cloud service, Fully Homomorphic Encryption (FHE) can be used to preserve the privacy of the original data using encryption. The data remains encrypted throughout the anonymization process, eliminating the need for third-party access to the raw data. Once the data is anonymized, it can safely be sent to GenAI services such as ChatGPT. """ ) ########################## Key Gen Part ########################## gr.Markdown( "### Key generation\n\n" """In FHE schemes, two sets of keys are generated. First, secret keys are used for encrypting and decrypting data owned by the client. Second, evaluation keys allow a server to blindly process the encrypted data. """ ) gen_key_btn = gr.Button("Generate the private and evaluation keys") gen_key_btn.click( key_gen_fn, inputs=[], outputs=[gen_key_btn], ) ########################## Main document Part ########################## gr.Markdown("## Private document") with gr.Row(): with gr.Column(): gr.Markdown( """This document was retrieved from the [Microsoft Presidio](https://huggingface.co/spaces/presidio/presidio_demo) demo.\n\n You can select and deselect sentences to customize the document that will be used as the initial prompt for ChatGPT in this space's final stage.\n\n """ ) with gr.Column(): gr.Markdown( """You can see the anonymized document that is sent to ChatGPT here. ChatGPT will answer any queries that you have about the document below. The anonymized information is replaced with hexadecimal strings. """ ) with gr.Row(): with gr.Column(): original_sentences_box = gr.CheckboxGroup( ORIGINAL_DOCUMENT, value=ORIGINAL_DOCUMENT, label="Original document:" ) with gr.Column(): anonymized_doc_box = gr.Textbox( label="Anonymized document:", value=ANONYMIZED_DOCUMENT, interactive=False, lines=11 ) original_sentences_box.change( fn=select_static_sentences_fn, inputs=[original_sentences_box], outputs=[anonymized_doc_box], ) ########################## User Query Part ########################## gr.Markdown("Encrypt data locally with FHE 💻 ⚙️
""" ) encrypt_btn = gr.Button("Encrypt data") gr.HTML("") with gr.Column(scale=5): output_encrypted_box = gr.Textbox( label="Encrypted anonymized query that is sent to the anonymization server", lines=6 ) encrypt_btn.click( fn=encrypt_query_fn, inputs=[query_box], outputs=[query_box, output_encrypted_box] ) gr.Markdown("