import torch import numpy as np MAX_USER_QUERY_LEN = 35 # List of example queries for easy access DEFAULT_QUERIES = { "Example Query 1": "Who visited microsoft.com on September 18?", "Example Query 2": "Does Kate has drive ?", "Example Query 3": "What phone number can be used to contact David Johnson?", } def get_batch_text_representation(texts, model, tokenizer, batch_size=1): """ Get mean-pooled representations of given texts in batches. """ mean_pooled_batch = [] for i in range(0, len(texts), batch_size): batch_texts = texts[i:i+batch_size] inputs = tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True) with torch.no_grad(): outputs = model(**inputs, output_hidden_states=False) last_hidden_states = outputs.last_hidden_state input_mask_expanded = inputs['attention_mask'].unsqueeze(-1).expand(last_hidden_states.size()).float() sum_embeddings = torch.sum(last_hidden_states * input_mask_expanded, 1) sum_mask = input_mask_expanded.sum(1) mean_pooled = sum_embeddings / sum_mask mean_pooled_batch.extend(mean_pooled.cpu().detach().numpy()) return np.array(mean_pooled_batch) def is_user_query_valid(user_query: str) -> bool: """ Check if the `user_query` is None and not empty. Args: user_query (str): The input text to be checked. Returns: bool: True if the `user_query` is None or empty, False otherwise. """ # If the query is not part of the default queries is_default_query = user_query in DEFAULT_QUERIES.values() # Check if the query exceeds the length limit is_exceeded_max_length = user_query is not None and len(user_query) <= MAX_USER_QUERY_LEN return not is_default_query and not is_exceeded_max_length