"""A Gradio app for anonymizing text data using FHE.""" import gradio as gr from fhe_anonymizer import FHEAnonymizer import pandas as pd from openai import OpenAI import os import json import re anonymizer = FHEAnonymizer() client = OpenAI( api_key=os.environ.get("openaikey"), ) def deidentify_text(input_text): anonymized_text, identified_words_with_prob = anonymizer(input_text) # Convert the list of identified words and probabilities into a DataFrame if identified_words_with_prob: identified_df = pd.DataFrame( identified_words_with_prob, columns=["Identified Words", "Probability"] ) else: identified_df = pd.DataFrame(columns=["Identified Words", "Probability"]) return anonymized_text, identified_df def query_chatgpt(anonymized_query): with open("files/anonymized_document.txt", "r") as file: anonymized_document = file.read() with open("files/chatgpt_prompt.txt", "r") as file: prompt = file.read() # Prepare prompt full_prompt = ( prompt + "\n" ) query = "Document content:\n```\n" + anonymized_document + "\n\n```" + "Query:\n```\n" + anonymized_query + "\n```" print(full_prompt) completion = client.chat.completions.create( model="gpt-4-1106-preview", # Replace with "gpt-4" if available messages=[ {"role": "system", "content": prompt}, {"role": "user", "content": query}, ], ) anonymized_response = completion.choices[0].message.content with open("original_document_uuid_mapping.json", "r") as file: uuid_map = json.load(file) inverse_uuid_map = {v: k for k, v in uuid_map.items()} # TODO load the inverse mapping from disk for efficiency # Pattern to identify words and non-words (including punctuation, spaces, etc.) token_pattern = r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)" tokens = re.findall(token_pattern, anonymized_response) processed_tokens = [] print(tokens) for token in tokens: # Directly append non-word tokens or whitespace to processed_tokens if not token.strip() or not re.match(r"\w+", token): processed_tokens.append(token) continue print(token) if token in inverse_uuid_map: processed_tokens.append(inverse_uuid_map[token]) else: processed_tokens.append(token) deanonymized_response = "".join(processed_tokens) return anonymized_response, deanonymized_response # Default demo text from the file with open("demo_text.txt", "r") as file: default_demo_text = file.read() with open("files/original_document.txt", "r") as file: original_document = file.read() with open("files/anonymized_document.txt", "r") as file: anonymized_document = file.read() demo = gr.Blocks() with demo: gr.Markdown( """
Concrete-ML — Documentation — Community — @zama_fhe
""" ) with gr.Accordion("What is Encrypted Anonymization?", open=False): gr.Markdown( """ Encrypted Anonymization leverages Fully Homomorphic Encryption (FHE) to protect sensitive information during data processing. This approach allows for the anonymization of text data, such as personal identifiers, while ensuring that the data remains encrypted throughout the entire process. """ ) with gr.Accordion("Original Document", open=False): gr.Markdown(original_document) with gr.Accordion("Anonymized Document", open=False): gr.Markdown(anonymized_document) # gr.Markdown( # """ ## #
# """ # ) with gr.Row(): input_text = gr.Textbox( value=default_demo_text, lines=13, placeholder="Input text here...", label="Input", ) anonymized_text_output = gr.Textbox(label="Anonymized Text with FHE", lines=13) identified_words_output = gr.Dataframe(label="Identified Words", visible=False) submit_button = gr.Button("Anonymize with FHE") submit_button.click( deidentify_text, inputs=[input_text], outputs=[anonymized_text_output, identified_words_output], ) with gr.Row(): chatgpt_response_anonymized = gr.Textbox(label="ChatGPT Anonymized Response", lines=13) chatgpt_response_deanonymized = gr.Textbox(label="ChatGPT Deanonymized Response", lines=13) chatgpt_button = gr.Button("Query ChatGPT") chatgpt_button.click( query_chatgpt, inputs=[anonymized_text_output], outputs=[chatgpt_response_anonymized, chatgpt_response_deanonymized], ) # Launch the app demo.launch(share=False)