image pairs matching - issue on config file in server.zip
Browse files- .gitignore +1 -0
- README.md +1 -1
- app.py +253 -139
- client_server_interface.py +47 -34
- common.py +13 -9
- data/old_code/client_server_interface.py +153 -0
- filters.py → data/old_code/filters.py +18 -19
- generate_dev_files.py → data/old_code/generate_dev_files.py +3 -3
- generate_deployment_files.py +34 -0
- image_filtering_banner.png +0 -0
- matchers.py +96 -0
- matchers/filter blur/deployment/circuit.mlir +11 -0
- matchers/filter blur/deployment/client.zip +3 -0
- matchers/filter blur/deployment/configuration.json +22 -0
- matchers/filter blur/deployment/server.zip +3 -0
- matchers/random guessing concrete 1.1.0/deployment/client.zip +3 -0
- matchers/random guessing concrete 1.1.0/deployment/server.zip +3 -0
- matchers/random guessing/deployment/client.zip +3 -0
- matchers/random guessing/deployment/server.zip +3 -0
- matchers/random guessing_1.6.1/deployment/circuit.mlir +14 -0
- matchers/random guessing_1.6.1/deployment/client.zip +3 -0
- matchers/random guessing_1.6.1/deployment/composition_rules.json +1 -0
- matchers/random guessing_1.6.1/deployment/configuration.json +94 -0
- matchers/random guessing_1.6.1/deployment/is_simulated +1 -0
- matchers/random guessing_1.6.1/deployment/server.zip +3 -0
- requirements.txt +1 -1
- server.py +63 -30
.gitignore
CHANGED
@@ -7,3 +7,4 @@ server_tmp/
|
|
7 |
client_tmp/
|
8 |
.artifacts
|
9 |
__pycache__/
|
|
|
|
7 |
client_tmp/
|
8 |
.artifacts
|
9 |
__pycache__/
|
10 |
+
.python-version
|
README.md
CHANGED
@@ -43,7 +43,7 @@ In a terminal, run:
|
|
43 |
|
44 |
```bash
|
45 |
source .venv/bin/activate
|
46 |
-
|
47 |
```
|
48 |
|
49 |
## Interact with the application
|
|
|
43 |
|
44 |
```bash
|
45 |
source .venv/bin/activate
|
46 |
+
python app.py
|
47 |
```
|
48 |
|
49 |
## Interact with the application
|
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
"""A local gradio app that
|
|
|
2 |
from PIL import Image
|
3 |
import os
|
4 |
import shutil
|
@@ -10,11 +11,14 @@ import requests
|
|
10 |
from itertools import chain
|
11 |
|
12 |
from common import (
|
13 |
-
|
14 |
CLIENT_TMP_PATH,
|
|
|
|
|
|
|
15 |
SERVER_TMP_PATH,
|
16 |
EXAMPLES,
|
17 |
-
|
18 |
INPUT_SHAPE,
|
19 |
KEYS_PATH,
|
20 |
REPO_DIR,
|
@@ -27,31 +31,34 @@ subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
|
|
27 |
time.sleep(3)
|
28 |
|
29 |
|
30 |
-
def decrypt_output_with_wrong_key(encrypted_image,
|
31 |
-
"""Decrypt the encrypted output using a different private key.
|
32 |
-
|
33 |
-
|
34 |
-
filter_path = FILTERS_PATH / f"{filter_name}/deployment"
|
35 |
|
36 |
# Instantiate the client interface and generate a new private key
|
37 |
-
wrong_client = FHEClient(
|
38 |
wrong_client.generate_private_and_evaluation_keys(force=True)
|
39 |
|
40 |
# Deserialize, decrypt and post-process the encrypted output using the new private key
|
41 |
-
|
42 |
|
43 |
-
# For
|
44 |
-
# channels for better display
|
45 |
-
if
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
53 |
|
54 |
-
return
|
55 |
|
56 |
|
57 |
def shorten_bytes_object(bytes_object, limit=500):
|
@@ -65,7 +72,7 @@ def shorten_bytes_object(bytes_object, limit=500):
|
|
65 |
limit (int): The length to consider. Default to 500.
|
66 |
|
67 |
Returns:
|
68 |
-
str: Hexadecimal string shorten representation of the input byte object.
|
69 |
|
70 |
"""
|
71 |
# Define a shift for better display
|
@@ -73,41 +80,41 @@ def shorten_bytes_object(bytes_object, limit=500):
|
|
73 |
return bytes_object[shift : limit + shift].hex()
|
74 |
|
75 |
|
76 |
-
def get_client(user_id,
|
77 |
"""Get the client API.
|
78 |
|
79 |
Args:
|
80 |
user_id (int): The current user's ID.
|
81 |
-
|
82 |
|
83 |
Returns:
|
84 |
FHEClient: The client API.
|
85 |
"""
|
86 |
return FHEClient(
|
87 |
-
|
88 |
-
|
89 |
-
key_dir=KEYS_PATH / f"{
|
90 |
)
|
91 |
|
92 |
|
93 |
-
def get_client_file_path(name, user_id,
|
94 |
"""Get the correct temporary file path for the client.
|
95 |
|
96 |
Args:
|
97 |
name (str): The desired file name.
|
98 |
user_id (int): The current user's ID.
|
99 |
-
|
100 |
|
101 |
Returns:
|
102 |
pathlib.Path: The file path.
|
103 |
"""
|
104 |
-
return CLIENT_TMP_PATH / f"{name}_{
|
105 |
|
106 |
|
107 |
def clean_temporary_files(n_keys=20):
|
108 |
"""Clean keys and encrypted images.
|
109 |
|
110 |
-
A maximum of n_keys keys and associated temporary files are allowed to be stored. Once this
|
111 |
limit is reached, the oldest files are deleted.
|
112 |
|
113 |
Args:
|
@@ -136,11 +143,11 @@ def clean_temporary_files(n_keys=20):
|
|
136 |
file.unlink()
|
137 |
|
138 |
|
139 |
-
def keygen(
|
140 |
-
"""Generate the private key associated to a
|
141 |
|
142 |
Args:
|
143 |
-
|
144 |
|
145 |
Returns:
|
146 |
(user_id, True) (Tuple[int, bool]): The current user's ID and a boolean used for visual display.
|
@@ -153,7 +160,7 @@ def keygen(filter_name):
|
|
153 |
user_id = numpy.random.randint(0, 2**32)
|
154 |
|
155 |
# Retrieve the client API
|
156 |
-
client = get_client(user_id,
|
157 |
|
158 |
# Generate a private key
|
159 |
client.generate_private_and_evaluation_keys(force=True)
|
@@ -165,7 +172,7 @@ def keygen(filter_name):
|
|
165 |
|
166 |
# Save evaluation_key as bytes in a file as it is too large to pass through regular Gradio
|
167 |
# buttons (see https://github.com/gradio-app/gradio/issues/1877)
|
168 |
-
evaluation_key_path = get_client_file_path("evaluation_key", user_id,
|
169 |
|
170 |
with evaluation_key_path.open("wb") as evaluation_key_file:
|
171 |
evaluation_key_file.write(evaluation_key)
|
@@ -173,13 +180,18 @@ def keygen(filter_name):
|
|
173 |
return (user_id, True)
|
174 |
|
175 |
|
176 |
-
def encrypt(
|
177 |
-
|
|
|
|
|
178 |
|
179 |
Args:
|
180 |
user_id (int): The current user's ID.
|
181 |
input_image (numpy.ndarray): The image to encrypt.
|
182 |
-
|
|
|
|
|
|
|
183 |
|
184 |
Returns:
|
185 |
(input_image, encrypted_image_short) (Tuple[bytes]): The encrypted image and one of its
|
@@ -191,25 +203,34 @@ def encrypt(user_id, input_image, filter_name):
|
|
191 |
|
192 |
if input_image is None:
|
193 |
raise gr.Error("Please choose an image first.")
|
194 |
-
|
195 |
-
if input_image.shape[-1]
|
196 |
-
raise ValueError(
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
input_image_pil = Image.fromarray(input_image)
|
201 |
-
input_image_pil = input_image_pil.resize((
|
202 |
input_image = numpy.array(input_image_pil)
|
203 |
|
204 |
# Retrieve the client API
|
205 |
-
client = get_client(user_id,
|
206 |
|
207 |
# Pre-process, encrypt and serialize the image
|
208 |
encrypted_image = client.encrypt_serialize(input_image)
|
209 |
|
210 |
# Save encrypted_image to bytes in a file, since too large to pass through regular Gradio
|
211 |
# buttons, https://github.com/gradio-app/gradio/issues/1877
|
212 |
-
encrypted_image_path = get_client_file_path(
|
|
|
|
|
213 |
|
214 |
with encrypted_image_path.open("wb") as encrypted_image_file:
|
215 |
encrypted_image_file.write(encrypted_image)
|
@@ -220,32 +241,45 @@ def encrypt(user_id, input_image, filter_name):
|
|
220 |
return (resize_img(input_image), encrypted_image_short)
|
221 |
|
222 |
|
223 |
-
def send_input(user_id,
|
224 |
-
"""Send the encrypted input
|
225 |
|
226 |
Args:
|
227 |
user_id (int): The current user's ID.
|
228 |
-
|
229 |
"""
|
230 |
# Get the evaluation key path
|
231 |
-
evaluation_key_path = get_client_file_path("evaluation_key", user_id,
|
232 |
|
233 |
if user_id == "" or not evaluation_key_path.is_file():
|
234 |
raise gr.Error("Please generate the private key first.")
|
235 |
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
# Define the data and files to post
|
242 |
data = {
|
243 |
"user_id": user_id,
|
244 |
-
"
|
245 |
}
|
246 |
|
247 |
files = [
|
248 |
-
("files", open(
|
|
|
249 |
("files", open(evaluation_key_path, "rb")),
|
250 |
]
|
251 |
|
@@ -259,16 +293,16 @@ def send_input(user_id, filter_name):
|
|
259 |
return response.ok
|
260 |
|
261 |
|
262 |
-
def run_fhe(user_id,
|
263 |
-
"""Apply the
|
264 |
|
265 |
Args:
|
266 |
user_id (int): The current user's ID.
|
267 |
-
|
268 |
"""
|
269 |
data = {
|
270 |
"user_id": user_id,
|
271 |
-
"
|
272 |
}
|
273 |
|
274 |
# Trigger the FHE execution on the encrypted image previously sent
|
@@ -280,23 +314,25 @@ def run_fhe(user_id, filter_name):
|
|
280 |
if response.ok:
|
281 |
return response.json()
|
282 |
else:
|
283 |
-
|
|
|
|
|
284 |
|
285 |
|
286 |
-
def get_output(user_id,
|
287 |
-
"""Retrieve the encrypted output
|
288 |
|
289 |
Args:
|
290 |
user_id (int): The current user's ID.
|
291 |
-
|
292 |
|
293 |
Returns:
|
294 |
-
|
295 |
|
296 |
"""
|
297 |
data = {
|
298 |
"user_id": user_id,
|
299 |
-
"
|
300 |
}
|
301 |
|
302 |
# Retrieve the encrypted output image
|
@@ -310,26 +346,35 @@ def get_output(user_id, filter_name):
|
|
310 |
|
311 |
# Save the encrypted output to bytes in a file as it is too large to pass through regular
|
312 |
# Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877)
|
313 |
-
encrypted_output_path = get_client_file_path(
|
|
|
|
|
314 |
|
315 |
with encrypted_output_path.open("wb") as encrypted_output_file:
|
316 |
encrypted_output_file.write(encrypted_output)
|
317 |
|
318 |
-
# Decrypt the
|
319 |
-
|
|
|
|
|
320 |
|
321 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
else:
|
324 |
raise gr.Error("Please wait for the FHE execution to be completed.")
|
325 |
|
326 |
|
327 |
-
def decrypt_output(user_id,
|
328 |
"""Decrypt the result.
|
329 |
|
330 |
Args:
|
331 |
user_id (int): The current user's ID.
|
332 |
-
|
333 |
|
334 |
Returns:
|
335 |
(output_image, False, False) ((Tuple[numpy.ndarray, bool, bool]): The decrypted output, as
|
@@ -340,24 +385,26 @@ def decrypt_output(user_id, filter_name):
|
|
340 |
raise gr.Error("Please generate the private key first.")
|
341 |
|
342 |
# Get the encrypted output path
|
343 |
-
encrypted_output_path = get_client_file_path(
|
|
|
|
|
344 |
|
345 |
if not encrypted_output_path.is_file():
|
346 |
raise gr.Error("Please run the FHE execution first.")
|
347 |
|
348 |
# Load the encrypted output as bytes
|
349 |
with encrypted_output_path.open("rb") as encrypted_output_file:
|
350 |
-
|
351 |
|
352 |
# Retrieve the client API
|
353 |
-
client = get_client(user_id,
|
354 |
|
355 |
# Deserialize, decrypt and post-process the encrypted output
|
356 |
-
decrypted_ouput = client.deserialize_decrypt_post_process(
|
357 |
|
358 |
print(f"Decrypted output: {decrypted_ouput.shape=}")
|
359 |
-
|
360 |
-
return {
|
361 |
|
362 |
|
363 |
def resize_img(img, width=256, height=256):
|
@@ -370,6 +417,7 @@ def resize_img(img, width=256, height=256):
|
|
370 |
# Convert back to a NumPy array
|
371 |
return numpy.array(resized_img_pil)
|
372 |
|
|
|
373 |
demo = gr.Blocks()
|
374 |
|
375 |
|
@@ -377,10 +425,11 @@ print("Starting the demo...")
|
|
377 |
with demo:
|
378 |
gr.Markdown(
|
379 |
"""
|
380 |
-
|
381 |
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
|
382 |
-
</p
|
383 |
-
<h1 align="center">
|
|
|
384 |
<p align="center">
|
385 |
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a>
|
386 |
—
|
@@ -390,48 +439,70 @@ with demo:
|
|
390 |
—
|
391 |
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a>
|
392 |
</p>
|
393 |
-
|
394 |
<img src="https://user-images.githubusercontent.com/56846628/219605302-5baafac4-cf6f-4f06-9a96-91cef2b84a63.png" width="70%" height="70%">
|
395 |
-
</p
|
396 |
-
<p align="center">
|
397 |
-
Test the app below, review
|
398 |
-
<a href="https://zama.ai/post/encrypted-image-filtering-using-homomorphic-encryption"> our tutorial</a>
|
399 |
-
, and try the build for yourself!
|
400 |
-
</p>
|
401 |
"""
|
402 |
)
|
403 |
|
404 |
gr.Markdown("## Client side")
|
405 |
-
gr.Markdown("### Step 1: Upload
|
406 |
gr.Markdown(
|
407 |
f"The image will automatically be resized to shape ({INPUT_SHAPE[0]}x{INPUT_SHAPE[1]}). "
|
408 |
"The image here, however, is displayed in its original resolution. The true image used "
|
409 |
"in this demo can be seen in Step 8."
|
410 |
)
|
|
|
411 |
with gr.Row():
|
412 |
-
|
413 |
-
value=None,
|
414 |
-
|
|
|
|
|
|
|
|
|
415 |
)
|
416 |
|
417 |
examples = gr.Examples(
|
418 |
-
examples=EXAMPLES,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
)
|
420 |
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
-
gr.Markdown("### Step 2: Choose your
|
423 |
-
|
424 |
-
choices=
|
|
|
|
|
|
|
425 |
)
|
426 |
|
427 |
gr.Markdown("#### Notes")
|
428 |
gr.Markdown(
|
429 |
"""
|
430 |
- The private key is used to encrypt and decrypt the data and will never be shared.
|
431 |
-
- No public key is required for these
|
432 |
"""
|
433 |
)
|
434 |
-
|
435 |
gr.Markdown("### Step 3: Generate the private key.")
|
436 |
keygen_button = gr.Button("Generate the private key.")
|
437 |
|
@@ -439,25 +510,49 @@ with demo:
|
|
439 |
keygen_checkbox = gr.Checkbox(label="Private key generated:", interactive=False)
|
440 |
|
441 |
user_id = gr.Textbox(label="", max_lines=2, interactive=False, visible=False)
|
442 |
-
|
443 |
-
|
444 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
446 |
with gr.Row():
|
447 |
-
|
448 |
-
label="Encrypted input representation:",
|
|
|
|
|
449 |
)
|
450 |
|
451 |
gr.Markdown("## Server side")
|
452 |
gr.Markdown(
|
453 |
-
"The encrypted value is received by the server. The server can then compute the
|
454 |
"directly over encrypted values. Once the computation is finished, the server returns "
|
455 |
"the encrypted results to the client."
|
456 |
)
|
457 |
|
458 |
-
gr.Markdown("### Step 5: Send the encrypted
|
459 |
-
send_input_button = gr.Button("Send the encrypted
|
460 |
-
send_input_checkbox = gr.Checkbox(label="Encrypted
|
461 |
|
462 |
gr.Markdown("### Step 6: Run FHE execution.")
|
463 |
execute_fhe_button = gr.Button("Run FHE execution.")
|
@@ -465,86 +560,105 @@ with demo:
|
|
465 |
label="Total FHE execution time (in seconds):", max_lines=1, interactive=False
|
466 |
)
|
467 |
|
468 |
-
gr.Markdown("### Step 7: Receive the encrypted output
|
469 |
gr.Markdown(
|
470 |
-
"The
|
471 |
"decrypted using a different private key. This is only used to visually represent an "
|
472 |
-
"encrypted
|
|
|
|
|
|
|
473 |
)
|
474 |
-
get_output_button = gr.Button("Receive the encrypted output image from the server.")
|
475 |
|
476 |
with gr.Row():
|
477 |
-
encrypted_output_representation = gr.
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
|
|
483 |
|
484 |
gr.Markdown("## Client side")
|
485 |
gr.Markdown(
|
486 |
"The encrypted output is sent back to the client, who can finally decrypt it with the "
|
487 |
-
"private key. Only the client is aware of the original
|
488 |
)
|
489 |
|
490 |
gr.Markdown("### Step 8: Decrypt the output.")
|
491 |
gr.Markdown(
|
492 |
-
"The
|
493 |
"can be seen on the right."
|
494 |
-
)
|
495 |
decrypt_button = gr.Button("Decrypt the output")
|
496 |
|
497 |
# Final input vs output display
|
498 |
with gr.Row():
|
499 |
-
|
500 |
-
|
501 |
-
label=f"Input image ({INPUT_SHAPE[0]}x{INPUT_SHAPE[1]}):",
|
502 |
interactive=False,
|
503 |
height=256,
|
504 |
-
width=256,
|
505 |
)
|
506 |
-
|
507 |
-
|
508 |
-
label=f"
|
509 |
interactive=False,
|
510 |
height=256,
|
511 |
width=256,
|
512 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
513 |
|
514 |
# Button to generate the private key
|
515 |
keygen_button.click(
|
516 |
keygen,
|
517 |
-
inputs=[
|
518 |
outputs=[user_id, keygen_checkbox],
|
519 |
)
|
520 |
|
521 |
-
# Button to encrypt
|
522 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
523 |
encrypt,
|
524 |
-
inputs=[user_id,
|
525 |
-
outputs=[
|
526 |
)
|
527 |
|
528 |
# Button to send the encodings to the server using post method
|
529 |
send_input_button.click(
|
530 |
-
send_input, inputs=[user_id,
|
531 |
)
|
532 |
|
533 |
# Button to send the encodings to the server using post method
|
534 |
-
execute_fhe_button.click(
|
|
|
|
|
535 |
|
536 |
# Button to send the encodings to the server using post method
|
537 |
get_output_button.click(
|
538 |
-
get_output,
|
539 |
-
inputs=[user_id,
|
540 |
-
outputs=[encrypted_output_representation]
|
541 |
)
|
542 |
|
543 |
# Button to decrypt the output on the client side
|
544 |
decrypt_button.click(
|
545 |
decrypt_output,
|
546 |
-
inputs=[user_id,
|
547 |
-
outputs=[
|
548 |
)
|
549 |
|
550 |
gr.Markdown(
|
|
|
1 |
+
"""A local gradio app that detect matching images using FHE."""
|
2 |
+
|
3 |
from PIL import Image
|
4 |
import os
|
5 |
import shutil
|
|
|
11 |
from itertools import chain
|
12 |
|
13 |
from common import (
|
14 |
+
AVAILABLE_MATCHERS,
|
15 |
CLIENT_TMP_PATH,
|
16 |
+
ENCRYPTED_OUTPUT_NAME,
|
17 |
+
ENCRYPTED_QUERY_NAME,
|
18 |
+
ENCRYPTED_REFERENCE_NAME,
|
19 |
SERVER_TMP_PATH,
|
20 |
EXAMPLES,
|
21 |
+
MATCHERS_PATH,
|
22 |
INPUT_SHAPE,
|
23 |
KEYS_PATH,
|
24 |
REPO_DIR,
|
|
|
31 |
time.sleep(3)
|
32 |
|
33 |
|
34 |
+
def decrypt_output_with_wrong_key(encrypted_image, matcher_name):
|
35 |
+
"""Decrypt the encrypted output using a different private key."""
|
36 |
+
# Retrieve the matcher's deployment path
|
37 |
+
matcher_path = MATCHERS_PATH / f"{matcher_name}/deployment"
|
|
|
38 |
|
39 |
# Instantiate the client interface and generate a new private key
|
40 |
+
wrong_client = FHEClient(matcher_path, matcher_name)
|
41 |
wrong_client.generate_private_and_evaluation_keys(force=True)
|
42 |
|
43 |
# Deserialize, decrypt and post-process the encrypted output using the new private key
|
44 |
+
output_result = wrong_client.deserialize_decrypt_post_process(encrypted_image)
|
45 |
|
46 |
+
# # For matchers that are expected to output black and white images, generate two other random
|
47 |
+
# # channels for better display
|
48 |
+
# if matcher_name in ["black and white", "ridge detection"]:
|
49 |
+
# # Green channel
|
50 |
+
# wrong_client.generate_private_and_evaluation_keys(force=True)
|
51 |
+
# output_result[:, :, 1] = wrong_client.deserialize_decrypt_post_process(
|
52 |
+
# encrypted_image
|
53 |
+
# )[:, :, 0]
|
54 |
|
55 |
+
# # Blue channel
|
56 |
+
# wrong_client.generate_private_and_evaluation_keys(force=True)
|
57 |
+
# output_result[:, :, 2] = wrong_client.deserialize_decrypt_post_process(
|
58 |
+
# encrypted_image
|
59 |
+
# )[:, :, 0]
|
60 |
|
61 |
+
return output_result
|
62 |
|
63 |
|
64 |
def shorten_bytes_object(bytes_object, limit=500):
|
|
|
72 |
limit (int): The length to consider. Default to 500.
|
73 |
|
74 |
Returns:
|
75 |
+
str: Hexadecimal string shorten representation of the input byte object.
|
76 |
|
77 |
"""
|
78 |
# Define a shift for better display
|
|
|
80 |
return bytes_object[shift : limit + shift].hex()
|
81 |
|
82 |
|
83 |
+
def get_client(user_id, matcher_name):
|
84 |
"""Get the client API.
|
85 |
|
86 |
Args:
|
87 |
user_id (int): The current user's ID.
|
88 |
+
matcher_name (str): The matcher chosen by the user
|
89 |
|
90 |
Returns:
|
91 |
FHEClient: The client API.
|
92 |
"""
|
93 |
return FHEClient(
|
94 |
+
MATCHERS_PATH / f"{matcher_name}/deployment",
|
95 |
+
matcher_name,
|
96 |
+
key_dir=KEYS_PATH / f"{matcher_name}_{user_id}",
|
97 |
)
|
98 |
|
99 |
|
100 |
+
def get_client_file_path(name, user_id, matcher_name):
|
101 |
"""Get the correct temporary file path for the client.
|
102 |
|
103 |
Args:
|
104 |
name (str): The desired file name.
|
105 |
user_id (int): The current user's ID.
|
106 |
+
matcher_name (str): The matcher chosen by the user
|
107 |
|
108 |
Returns:
|
109 |
pathlib.Path: The file path.
|
110 |
"""
|
111 |
+
return CLIENT_TMP_PATH / f"{name}_{matcher_name}_{user_id}"
|
112 |
|
113 |
|
114 |
def clean_temporary_files(n_keys=20):
|
115 |
"""Clean keys and encrypted images.
|
116 |
|
117 |
+
A maximum of n_keys keys and associated temporary files are allowed to be stored. Once this
|
118 |
limit is reached, the oldest files are deleted.
|
119 |
|
120 |
Args:
|
|
|
143 |
file.unlink()
|
144 |
|
145 |
|
146 |
+
def keygen(matcher_name):
|
147 |
+
"""Generate the private key associated to a matcher.
|
148 |
|
149 |
Args:
|
150 |
+
matcher_name (str): The current matcher to consider.
|
151 |
|
152 |
Returns:
|
153 |
(user_id, True) (Tuple[int, bool]): The current user's ID and a boolean used for visual display.
|
|
|
160 |
user_id = numpy.random.randint(0, 2**32)
|
161 |
|
162 |
# Retrieve the client API
|
163 |
+
client = get_client(user_id, matcher_name)
|
164 |
|
165 |
# Generate a private key
|
166 |
client.generate_private_and_evaluation_keys(force=True)
|
|
|
172 |
|
173 |
# Save evaluation_key as bytes in a file as it is too large to pass through regular Gradio
|
174 |
# buttons (see https://github.com/gradio-app/gradio/issues/1877)
|
175 |
+
evaluation_key_path = get_client_file_path("evaluation_key", user_id, matcher_name)
|
176 |
|
177 |
with evaluation_key_path.open("wb") as evaluation_key_file:
|
178 |
evaluation_key_file.write(evaluation_key)
|
|
|
180 |
return (user_id, True)
|
181 |
|
182 |
|
183 |
+
def encrypt(
|
184 |
+
user_id, input_image, matcher_name, encrypted_image_name: str = "encrypted_image"
|
185 |
+
):
|
186 |
+
"""Encrypt the given image for a specific user and matcher.
|
187 |
|
188 |
Args:
|
189 |
user_id (int): The current user's ID.
|
190 |
input_image (numpy.ndarray): The image to encrypt.
|
191 |
+
matcher_name (str): The current matcher to consider.
|
192 |
+
encrypted_image_name (str): how to name the encrypted image
|
193 |
+
to distinguish between the query and the reference images.
|
194 |
+
Defaults to "encrypted_image"
|
195 |
|
196 |
Returns:
|
197 |
(input_image, encrypted_image_short) (Tuple[bytes]): The encrypted image and one of its
|
|
|
203 |
|
204 |
if input_image is None:
|
205 |
raise gr.Error("Please choose an image first.")
|
206 |
+
|
207 |
+
if input_image.shape[-1] not in {3, 4}:
|
208 |
+
raise ValueError(
|
209 |
+
f"Input image must have 3 channels (RGB) or 4 channels. Current shape: {input_image.shape}"
|
210 |
+
)
|
211 |
+
|
212 |
+
if input_image.shape[-1] == 4:
|
213 |
+
# Discarding alpha channel from images stored as Numpy arrays
|
214 |
+
# (reference https://stackoverflow.com/questions/35902302/discarding-alpha-channel-from-images-stored-as-numpy-arrays)
|
215 |
+
input_image = input_image[:, :, :3]
|
216 |
+
|
217 |
+
# Resize the image if it hasn't the shape (INPUT_SHAPE[0], INPUT_SHAPE[1], 3)
|
218 |
+
if input_image.shape != (INPUT_SHAPE[0], INPUT_SHAPE[1], 3):
|
219 |
input_image_pil = Image.fromarray(input_image)
|
220 |
+
input_image_pil = input_image_pil.resize((INPUT_SHAPE[0], INPUT_SHAPE[1]))
|
221 |
input_image = numpy.array(input_image_pil)
|
222 |
|
223 |
# Retrieve the client API
|
224 |
+
client = get_client(user_id, matcher_name)
|
225 |
|
226 |
# Pre-process, encrypt and serialize the image
|
227 |
encrypted_image = client.encrypt_serialize(input_image)
|
228 |
|
229 |
# Save encrypted_image to bytes in a file, since too large to pass through regular Gradio
|
230 |
# buttons, https://github.com/gradio-app/gradio/issues/1877
|
231 |
+
encrypted_image_path = get_client_file_path(
|
232 |
+
encrypted_image_name, user_id, matcher_name
|
233 |
+
)
|
234 |
|
235 |
with encrypted_image_path.open("wb") as encrypted_image_file:
|
236 |
encrypted_image_file.write(encrypted_image)
|
|
|
241 |
return (resize_img(input_image), encrypted_image_short)
|
242 |
|
243 |
|
244 |
+
def send_input(user_id, matcher_name):
|
245 |
+
"""Send the encrypted input images as well as the evaluation key to the server.
|
246 |
|
247 |
Args:
|
248 |
user_id (int): The current user's ID.
|
249 |
+
matcher_name (str): The current matcher to consider.
|
250 |
"""
|
251 |
# Get the evaluation key path
|
252 |
+
evaluation_key_path = get_client_file_path("evaluation_key", user_id, matcher_name)
|
253 |
|
254 |
if user_id == "" or not evaluation_key_path.is_file():
|
255 |
raise gr.Error("Please generate the private key first.")
|
256 |
|
257 |
+
encrypted_query_image_path = get_client_file_path(
|
258 |
+
ENCRYPTED_QUERY_NAME, user_id, matcher_name
|
259 |
+
)
|
260 |
+
|
261 |
+
encrypted_reference_image_path = get_client_file_path(
|
262 |
+
ENCRYPTED_REFERENCE_NAME, user_id, matcher_name
|
263 |
+
)
|
264 |
|
265 |
+
for encrypted_input_path in {
|
266 |
+
encrypted_query_image_path,
|
267 |
+
encrypted_reference_image_path,
|
268 |
+
}:
|
269 |
+
if not encrypted_input_path.is_file():
|
270 |
+
raise gr.Error(
|
271 |
+
f"Please generate the private key and then encrypt an image first: {encrypted_input_path}"
|
272 |
+
)
|
273 |
|
274 |
# Define the data and files to post
|
275 |
data = {
|
276 |
"user_id": user_id,
|
277 |
+
"matcher": matcher_name,
|
278 |
}
|
279 |
|
280 |
files = [
|
281 |
+
("files", open(encrypted_query_image_path, "rb")),
|
282 |
+
("files", open(encrypted_reference_image_path, "rb")),
|
283 |
("files", open(evaluation_key_path, "rb")),
|
284 |
]
|
285 |
|
|
|
293 |
return response.ok
|
294 |
|
295 |
|
296 |
+
def run_fhe(user_id, matcher_name):
|
297 |
+
"""Apply the matcher on the encrypted image previously sent using FHE.
|
298 |
|
299 |
Args:
|
300 |
user_id (int): The current user's ID.
|
301 |
+
matcher_name (str): The current matcher to consider.
|
302 |
"""
|
303 |
data = {
|
304 |
"user_id": user_id,
|
305 |
+
"matcher": matcher_name,
|
306 |
}
|
307 |
|
308 |
# Trigger the FHE execution on the encrypted image previously sent
|
|
|
314 |
if response.ok:
|
315 |
return response.json()
|
316 |
else:
|
317 |
+
print(f"ERROR run_fhe: {response}")
|
318 |
+
|
319 |
+
raise gr.Error("Please wait for the input images to be sent to the server.")
|
320 |
|
321 |
|
322 |
+
def get_output(user_id, matcher_name):
|
323 |
+
"""Retrieve the encrypted output.
|
324 |
|
325 |
Args:
|
326 |
user_id (int): The current user's ID.
|
327 |
+
matcher_name (str): The current filter to consider.
|
328 |
|
329 |
Returns:
|
330 |
+
encrypted_output_short (bytes): A representation of the encrypted result.
|
331 |
|
332 |
"""
|
333 |
data = {
|
334 |
"user_id": user_id,
|
335 |
+
"matcher": matcher_name,
|
336 |
}
|
337 |
|
338 |
# Retrieve the encrypted output image
|
|
|
346 |
|
347 |
# Save the encrypted output to bytes in a file as it is too large to pass through regular
|
348 |
# Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877)
|
349 |
+
encrypted_output_path = get_client_file_path(
|
350 |
+
ENCRYPTED_OUTPUT_NAME, user_id, matcher_name
|
351 |
+
)
|
352 |
|
353 |
with encrypted_output_path.open("wb") as encrypted_output_file:
|
354 |
encrypted_output_file.write(encrypted_output)
|
355 |
|
356 |
+
# Decrypt the output using a different (wrong) key for display
|
357 |
+
output_representation = decrypt_output_with_wrong_key(
|
358 |
+
encrypted_output, matcher_name
|
359 |
+
)
|
360 |
|
361 |
+
return {
|
362 |
+
encrypted_output_representation: gr.update(
|
363 |
+
value=output_representation
|
364 |
+
# value=resize_img(output_image_representation)
|
365 |
+
)
|
366 |
+
}
|
367 |
|
368 |
else:
|
369 |
raise gr.Error("Please wait for the FHE execution to be completed.")
|
370 |
|
371 |
|
372 |
+
def decrypt_output(user_id, matcher_name):
|
373 |
"""Decrypt the result.
|
374 |
|
375 |
Args:
|
376 |
user_id (int): The current user's ID.
|
377 |
+
matcher_name (str): The current matcher to consider.
|
378 |
|
379 |
Returns:
|
380 |
(output_image, False, False) ((Tuple[numpy.ndarray, bool, bool]): The decrypted output, as
|
|
|
385 |
raise gr.Error("Please generate the private key first.")
|
386 |
|
387 |
# Get the encrypted output path
|
388 |
+
encrypted_output_path = get_client_file_path(
|
389 |
+
ENCRYPTED_OUTPUT_NAME, user_id, matcher_name
|
390 |
+
)
|
391 |
|
392 |
if not encrypted_output_path.is_file():
|
393 |
raise gr.Error("Please run the FHE execution first.")
|
394 |
|
395 |
# Load the encrypted output as bytes
|
396 |
with encrypted_output_path.open("rb") as encrypted_output_file:
|
397 |
+
encrypted_output = encrypted_output_file.read()
|
398 |
|
399 |
# Retrieve the client API
|
400 |
+
client = get_client(user_id, matcher_name)
|
401 |
|
402 |
# Deserialize, decrypt and post-process the encrypted output
|
403 |
+
decrypted_ouput = client.deserialize_decrypt_post_process(encrypted_output)
|
404 |
|
405 |
print(f"Decrypted output: {decrypted_ouput.shape=}")
|
406 |
+
|
407 |
+
return {output_result: gr.update(value=decrypted_ouput)}
|
408 |
|
409 |
|
410 |
def resize_img(img, width=256, height=256):
|
|
|
417 |
# Convert back to a NumPy array
|
418 |
return numpy.array(resized_img_pil)
|
419 |
|
420 |
+
|
421 |
demo = gr.Blocks()
|
422 |
|
423 |
|
|
|
425 |
with demo:
|
426 |
gr.Markdown(
|
427 |
"""
|
428 |
+
<!--p align="center">
|
429 |
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
|
430 |
+
</p-->
|
431 |
+
<h1 align="center"> #ppaihackteam14 </h1>
|
432 |
+
<h1 align="center">Biometric image matching Using Fully Homomorphic Encryption</h1>
|
433 |
<p align="center">
|
434 |
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a>
|
435 |
—
|
|
|
439 |
—
|
440 |
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a>
|
441 |
</p>
|
442 |
+
<!--p align="center">
|
443 |
<img src="https://user-images.githubusercontent.com/56846628/219605302-5baafac4-cf6f-4f06-9a96-91cef2b84a63.png" width="70%" height="70%">
|
444 |
+
</p-->
|
|
|
|
|
|
|
|
|
|
|
445 |
"""
|
446 |
)
|
447 |
|
448 |
gr.Markdown("## Client side")
|
449 |
+
gr.Markdown("### Step 1: Upload input images. ")
|
450 |
gr.Markdown(
|
451 |
f"The image will automatically be resized to shape ({INPUT_SHAPE[0]}x{INPUT_SHAPE[1]}). "
|
452 |
"The image here, however, is displayed in its original resolution. The true image used "
|
453 |
"in this demo can be seen in Step 8."
|
454 |
)
|
455 |
+
gr.Markdown("The query image to certify.")
|
456 |
with gr.Row():
|
457 |
+
input_query_img = gr.Image(
|
458 |
+
value=None,
|
459 |
+
label="Upload an image here.",
|
460 |
+
height=256,
|
461 |
+
width=256,
|
462 |
+
source="upload",
|
463 |
+
interactive=True,
|
464 |
)
|
465 |
|
466 |
examples = gr.Examples(
|
467 |
+
examples=EXAMPLES,
|
468 |
+
inputs=[input_query_img],
|
469 |
+
examples_per_page=5,
|
470 |
+
label="Examples to use.",
|
471 |
+
)
|
472 |
+
gr.Markdown("The reference image.")
|
473 |
+
with gr.Row():
|
474 |
+
input_reference_img = gr.Image(
|
475 |
+
value=None,
|
476 |
+
label="Upload an image here.",
|
477 |
+
height=256,
|
478 |
+
width=256,
|
479 |
+
source="upload",
|
480 |
+
interactive=True,
|
481 |
)
|
482 |
|
483 |
+
examples = gr.Examples(
|
484 |
+
examples=EXAMPLES,
|
485 |
+
inputs=[input_reference_img],
|
486 |
+
examples_per_page=5,
|
487 |
+
label="Examples to use.",
|
488 |
+
)
|
489 |
|
490 |
+
gr.Markdown("### Step 2: Choose your matcher.")
|
491 |
+
matcher_name = gr.Dropdown(
|
492 |
+
choices=AVAILABLE_MATCHERS,
|
493 |
+
value="random guessing",
|
494 |
+
label="Choose your matcher",
|
495 |
+
interactive=True,
|
496 |
)
|
497 |
|
498 |
gr.Markdown("#### Notes")
|
499 |
gr.Markdown(
|
500 |
"""
|
501 |
- The private key is used to encrypt and decrypt the data and will never be shared.
|
502 |
+
- No public key is required for these matcher operators.
|
503 |
"""
|
504 |
)
|
505 |
+
|
506 |
gr.Markdown("### Step 3: Generate the private key.")
|
507 |
keygen_button = gr.Button("Generate the private key.")
|
508 |
|
|
|
510 |
keygen_checkbox = gr.Checkbox(label="Private key generated:", interactive=False)
|
511 |
|
512 |
user_id = gr.Textbox(label="", max_lines=2, interactive=False, visible=False)
|
513 |
+
encrypted_query_image = gr.Textbox(
|
514 |
+
value=ENCRYPTED_QUERY_NAME,
|
515 |
+
label="",
|
516 |
+
max_lines=2,
|
517 |
+
interactive=False,
|
518 |
+
visible=False,
|
519 |
+
)
|
520 |
+
encrypted_reference_image = gr.Textbox(
|
521 |
+
value=ENCRYPTED_REFERENCE_NAME,
|
522 |
+
label="",
|
523 |
+
max_lines=2,
|
524 |
+
interactive=False,
|
525 |
+
visible=False,
|
526 |
+
)
|
527 |
|
528 |
+
gr.Markdown("### Step 4: Encrypt the images using FHE.")
|
529 |
+
encrypt_query_button = gr.Button("Encrypt the query image using FHE.")
|
530 |
+
|
531 |
+
with gr.Row():
|
532 |
+
encrypted_input_query = gr.Textbox(
|
533 |
+
label="Encrypted input query representation:",
|
534 |
+
max_lines=2,
|
535 |
+
interactive=False,
|
536 |
+
)
|
537 |
+
|
538 |
+
encrypt_reference_button = gr.Button("Encrypt the reference image using FHE.")
|
539 |
with gr.Row():
|
540 |
+
encrypted_input_reference = gr.Textbox(
|
541 |
+
label="Encrypted input reference representation:",
|
542 |
+
max_lines=2,
|
543 |
+
interactive=False,
|
544 |
)
|
545 |
|
546 |
gr.Markdown("## Server side")
|
547 |
gr.Markdown(
|
548 |
+
"The encrypted value is received by the server. The server can then compute the matcher "
|
549 |
"directly over encrypted values. Once the computation is finished, the server returns "
|
550 |
"the encrypted results to the client."
|
551 |
)
|
552 |
|
553 |
+
gr.Markdown("### Step 5: Send the encrypted images to the server.")
|
554 |
+
send_input_button = gr.Button("Send the encrypted images to the server.")
|
555 |
+
send_input_checkbox = gr.Checkbox(label="Encrypted images sent.", interactive=False)
|
556 |
|
557 |
gr.Markdown("### Step 6: Run FHE execution.")
|
558 |
execute_fhe_button = gr.Button("Run FHE execution.")
|
|
|
560 |
label="Total FHE execution time (in seconds):", max_lines=1, interactive=False
|
561 |
)
|
562 |
|
563 |
+
gr.Markdown("### Step 7: Receive the encrypted output from the server.")
|
564 |
gr.Markdown(
|
565 |
+
"The result displayed here is the encrypted result sent by the server, which has been "
|
566 |
"decrypted using a different private key. This is only used to visually represent an "
|
567 |
+
"encrypted result."
|
568 |
+
)
|
569 |
+
get_output_button = gr.Button(
|
570 |
+
"Receive the encrypted output result from the server."
|
571 |
)
|
|
|
572 |
|
573 |
with gr.Row():
|
574 |
+
encrypted_output_representation = gr.Label()
|
575 |
+
# encrypted_output_representation = gr.Image(
|
576 |
+
# label=f"Encrypted output representation ({INPUT_SHAPE[0]}x{INPUT_SHAPE[1]}):",
|
577 |
+
# interactive=False,
|
578 |
+
# height=256,
|
579 |
+
# width=256,
|
580 |
+
# )
|
581 |
|
582 |
gr.Markdown("## Client side")
|
583 |
gr.Markdown(
|
584 |
"The encrypted output is sent back to the client, who can finally decrypt it with the "
|
585 |
+
"private key. Only the client is aware of the original input images and the result of the matching."
|
586 |
)
|
587 |
|
588 |
gr.Markdown("### Step 8: Decrypt the output.")
|
589 |
gr.Markdown(
|
590 |
+
"The images displayed on the left are the input images used during the demo. The output result "
|
591 |
"can be seen on the right."
|
592 |
+
)
|
593 |
decrypt_button = gr.Button("Decrypt the output")
|
594 |
|
595 |
# Final input vs output display
|
596 |
with gr.Row():
|
597 |
+
original_query_image = gr.Image(
|
598 |
+
input_query_img.value,
|
599 |
+
label=f"Input query image ({INPUT_SHAPE[0]}x{INPUT_SHAPE[1]}):",
|
600 |
interactive=False,
|
601 |
height=256,
|
602 |
+
width=256,
|
603 |
)
|
604 |
+
original_reference_image = gr.Image(
|
605 |
+
input_reference_img.value,
|
606 |
+
label=f"Input reference image ({INPUT_SHAPE[0]}x{INPUT_SHAPE[1]}):",
|
607 |
interactive=False,
|
608 |
height=256,
|
609 |
width=256,
|
610 |
)
|
611 |
+
output_result = gr.Label()
|
612 |
+
# output_image = gr.Image(
|
613 |
+
# label=f"Output image ({INPUT_SHAPE[0]}x{INPUT_SHAPE[1]}):",
|
614 |
+
# interactive=False,
|
615 |
+
# height=256,
|
616 |
+
# width=256,
|
617 |
+
# )
|
618 |
|
619 |
# Button to generate the private key
|
620 |
keygen_button.click(
|
621 |
keygen,
|
622 |
+
inputs=[matcher_name],
|
623 |
outputs=[user_id, keygen_checkbox],
|
624 |
)
|
625 |
|
626 |
+
# Button to encrypt input query on the client side
|
627 |
+
encrypt_query_button.click(
|
628 |
+
encrypt,
|
629 |
+
inputs=[user_id, input_query_img, matcher_name, encrypted_query_image],
|
630 |
+
outputs=[original_query_image, encrypted_input_query],
|
631 |
+
)
|
632 |
+
|
633 |
+
# Button to encrypt input reference on the client side
|
634 |
+
encrypt_reference_button.click(
|
635 |
encrypt,
|
636 |
+
inputs=[user_id, input_reference_img, matcher_name, encrypted_reference_image],
|
637 |
+
outputs=[original_reference_image, encrypted_input_reference],
|
638 |
)
|
639 |
|
640 |
# Button to send the encodings to the server using post method
|
641 |
send_input_button.click(
|
642 |
+
send_input, inputs=[user_id, matcher_name], outputs=[send_input_checkbox]
|
643 |
)
|
644 |
|
645 |
# Button to send the encodings to the server using post method
|
646 |
+
execute_fhe_button.click(
|
647 |
+
run_fhe, inputs=[user_id, matcher_name], outputs=[fhe_execution_time]
|
648 |
+
)
|
649 |
|
650 |
# Button to send the encodings to the server using post method
|
651 |
get_output_button.click(
|
652 |
+
get_output,
|
653 |
+
inputs=[user_id, matcher_name],
|
654 |
+
outputs=[encrypted_output_representation],
|
655 |
)
|
656 |
|
657 |
# Button to decrypt the output on the client side
|
658 |
decrypt_button.click(
|
659 |
decrypt_output,
|
660 |
+
inputs=[user_id, matcher_name],
|
661 |
+
outputs=[output_result, keygen_checkbox, send_input_checkbox],
|
662 |
)
|
663 |
|
664 |
gr.Markdown(
|
client_server_interface.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
-
"Client-server interface custom implementation for
|
2 |
|
3 |
from concrete import fhe
|
4 |
|
5 |
-
from
|
6 |
|
7 |
|
8 |
class FHEServer:
|
@@ -19,22 +19,35 @@ class FHEServer:
|
|
19 |
# Load the FHE circuit
|
20 |
self.server = fhe.Server.load(self.path_dir / "server.zip")
|
21 |
|
22 |
-
def run(
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
Args:
|
26 |
-
|
|
|
27 |
serialized_evaluation_keys (bytes): The serialized evaluation keys.
|
28 |
|
29 |
Returns:
|
30 |
-
bytes: The
|
31 |
"""
|
32 |
# Deserialize the encrypted input image and the evaluation keys
|
33 |
-
|
|
|
|
|
|
|
34 |
evaluation_keys = fhe.EvaluationKeys.deserialize(serialized_evaluation_keys)
|
35 |
|
36 |
-
# Execute the
|
37 |
-
encrypted_output = self.server.run(
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Serialize the encrypted output image
|
40 |
serialized_encrypted_output = encrypted_output.serialize()
|
@@ -43,60 +56,62 @@ class FHEServer:
|
|
43 |
|
44 |
|
45 |
class FHEDev:
|
46 |
-
"""Development interface to save and load the
|
47 |
|
48 |
-
def __init__(self,
|
49 |
"""Initialize the FHE interface.
|
50 |
|
51 |
Args:
|
52 |
-
|
53 |
path_dir (str): The path to the directory where the circuit is saved.
|
54 |
"""
|
55 |
|
56 |
-
self.
|
57 |
self.path_dir = path_dir
|
58 |
|
59 |
self.path_dir.mkdir(parents=True, exist_ok=True)
|
60 |
|
61 |
def save(self):
|
62 |
"""Export all needed artifacts for the client and server interfaces."""
|
63 |
-
|
64 |
-
assert
|
65 |
-
|
66 |
-
)
|
67 |
|
68 |
# Save the circuit for the server, using the via_mlir in order to handle cross-platform
|
69 |
# execution
|
70 |
path_circuit_server = self.path_dir / "server.zip"
|
71 |
-
self.
|
72 |
|
73 |
# Save the circuit for the client
|
74 |
path_circuit_client = self.path_dir / "client.zip"
|
75 |
-
self.
|
76 |
|
77 |
|
78 |
class FHEClient:
|
79 |
-
"""Client interface to encrypt and decrypt FHE data associated to a
|
80 |
|
81 |
-
def __init__(self, path_dir,
|
82 |
"""Initialize the FHE interface.
|
83 |
|
84 |
Args:
|
85 |
path_dir (Path): The path to the directory where the circuit is saved.
|
86 |
-
|
87 |
key_dir (Path): The path to the directory where the keys are stored. Default to None.
|
88 |
"""
|
89 |
self.path_dir = path_dir
|
90 |
self.key_dir = key_dir
|
91 |
|
92 |
# If path_dir does not exist raise
|
93 |
-
assert
|
|
|
|
|
94 |
|
95 |
# Load the client
|
96 |
self.client = fhe.Client.load(self.path_dir / "client.zip", self.key_dir)
|
97 |
|
98 |
-
# Instantiate the
|
99 |
-
self.
|
100 |
|
101 |
def generate_private_and_evaluation_keys(self, force=False):
|
102 |
"""Generate the private and evaluation keys.
|
@@ -131,7 +146,7 @@ class FHEClient:
|
|
131 |
return serialized_encrypted_image
|
132 |
|
133 |
def deserialize_decrypt_post_process(self, serialized_encrypted_output_image):
|
134 |
-
"""Deserialize, decrypt and post-process the output
|
135 |
|
136 |
Args:
|
137 |
serialized_encrypted_output_image (bytes): The serialized and encrypted output image.
|
@@ -140,14 +155,12 @@ class FHEClient:
|
|
140 |
numpy.ndarray: The decrypted, deserialized and post-processed image.
|
141 |
"""
|
142 |
# Deserialize the encrypted image
|
143 |
-
|
144 |
-
serialized_encrypted_output_image
|
145 |
-
)
|
146 |
|
147 |
-
# Decrypt the
|
148 |
-
|
149 |
|
150 |
-
# Post-process the
|
151 |
-
|
152 |
|
153 |
-
return
|
|
|
1 |
+
"Client-server interface custom implementation for matcher models."
|
2 |
|
3 |
from concrete import fhe
|
4 |
|
5 |
+
from matchers import Matcher
|
6 |
|
7 |
|
8 |
class FHEServer:
|
|
|
19 |
# Load the FHE circuit
|
20 |
self.server = fhe.Server.load(self.path_dir / "server.zip")
|
21 |
|
22 |
+
def run(
|
23 |
+
self,
|
24 |
+
serialized_encrypted_query_image,
|
25 |
+
serialized_encrypted_reference_image,
|
26 |
+
serialized_evaluation_keys,
|
27 |
+
):
|
28 |
+
"""Run the matcher on the server over an encrypted image.
|
29 |
|
30 |
Args:
|
31 |
+
serialized_encrypted_query_image (bytes): The encrypted and serialized query image.
|
32 |
+
serialized_encrypted_reference_image (bytes): The encrypted and serialized referenceimage.
|
33 |
serialized_evaluation_keys (bytes): The serialized evaluation keys.
|
34 |
|
35 |
Returns:
|
36 |
+
bytes: The matcher's output.
|
37 |
"""
|
38 |
# Deserialize the encrypted input image and the evaluation keys
|
39 |
+
encrypted_query_image = fhe.Value.deserialize(serialized_encrypted_query_image)
|
40 |
+
encrypted_reference_image = fhe.Value.deserialize(
|
41 |
+
serialized_encrypted_reference_image
|
42 |
+
)
|
43 |
evaluation_keys = fhe.EvaluationKeys.deserialize(serialized_evaluation_keys)
|
44 |
|
45 |
+
# Execute the matcher in FHE
|
46 |
+
encrypted_output = self.server.run(
|
47 |
+
encrypted_query_image,
|
48 |
+
encrypted_reference_image,
|
49 |
+
evaluation_keys=evaluation_keys,
|
50 |
+
)
|
51 |
|
52 |
# Serialize the encrypted output image
|
53 |
serialized_encrypted_output = encrypted_output.serialize()
|
|
|
56 |
|
57 |
|
58 |
class FHEDev:
|
59 |
+
"""Development interface to save and load the matcher."""
|
60 |
|
61 |
+
def __init__(self, matcher, path_dir):
|
62 |
"""Initialize the FHE interface.
|
63 |
|
64 |
Args:
|
65 |
+
matcher (Matcher): The matcher to use in the FHE interface.
|
66 |
path_dir (str): The path to the directory where the circuit is saved.
|
67 |
"""
|
68 |
|
69 |
+
self.matcher = matcher
|
70 |
self.path_dir = path_dir
|
71 |
|
72 |
self.path_dir.mkdir(parents=True, exist_ok=True)
|
73 |
|
74 |
def save(self):
|
75 |
"""Export all needed artifacts for the client and server interfaces."""
|
76 |
+
|
77 |
+
assert (
|
78 |
+
self.matcher.fhe_circuit is not None
|
79 |
+
), "The model must be compiled before saving it."
|
80 |
|
81 |
# Save the circuit for the server, using the via_mlir in order to handle cross-platform
|
82 |
# execution
|
83 |
path_circuit_server = self.path_dir / "server.zip"
|
84 |
+
self.matcher.fhe_circuit.server.save(path_circuit_server, via_mlir=True)
|
85 |
|
86 |
# Save the circuit for the client
|
87 |
path_circuit_client = self.path_dir / "client.zip"
|
88 |
+
self.matcher.fhe_circuit.client.save(path_circuit_client)
|
89 |
|
90 |
|
91 |
class FHEClient:
|
92 |
+
"""Client interface to encrypt and decrypt FHE data associated to a matcher."""
|
93 |
|
94 |
+
def __init__(self, path_dir, matcher_name, key_dir=None):
|
95 |
"""Initialize the FHE interface.
|
96 |
|
97 |
Args:
|
98 |
path_dir (Path): The path to the directory where the circuit is saved.
|
99 |
+
matcher_name (str): The matcher's name to consider.
|
100 |
key_dir (Path): The path to the directory where the keys are stored. Default to None.
|
101 |
"""
|
102 |
self.path_dir = path_dir
|
103 |
self.key_dir = key_dir
|
104 |
|
105 |
# If path_dir does not exist raise
|
106 |
+
assert (
|
107 |
+
path_dir.exists()
|
108 |
+
), f"{path_dir} does not exist. Please specify a valid path."
|
109 |
|
110 |
# Load the client
|
111 |
self.client = fhe.Client.load(self.path_dir / "client.zip", self.key_dir)
|
112 |
|
113 |
+
# Instantiate the matcher
|
114 |
+
self.matcher = Matcher(matcher_name)
|
115 |
|
116 |
def generate_private_and_evaluation_keys(self, force=False):
|
117 |
"""Generate the private and evaluation keys.
|
|
|
146 |
return serialized_encrypted_image
|
147 |
|
148 |
def deserialize_decrypt_post_process(self, serialized_encrypted_output_image):
|
149 |
+
"""Deserialize, decrypt and post-process the output result in the clear.
|
150 |
|
151 |
Args:
|
152 |
serialized_encrypted_output_image (bytes): The serialized and encrypted output image.
|
|
|
155 |
numpy.ndarray: The decrypted, deserialized and post-processed image.
|
156 |
"""
|
157 |
# Deserialize the encrypted image
|
158 |
+
encrypted_output = fhe.Value.deserialize(serialized_encrypted_output_image)
|
|
|
|
|
159 |
|
160 |
+
# Decrypt the result
|
161 |
+
output_result = self.client.decrypt(encrypted_output)
|
162 |
|
163 |
+
# Post-process the result
|
164 |
+
post_processed_output = self.matcher.post_processing(output_result)
|
165 |
|
166 |
+
return post_processed_output
|
common.py
CHANGED
@@ -6,7 +6,7 @@ from pathlib import Path
|
|
6 |
REPO_DIR = Path(__file__).parent
|
7 |
|
8 |
# This repository's main necessary folders
|
9 |
-
|
10 |
KEYS_PATH = REPO_DIR / ".fhe_keys"
|
11 |
CLIENT_TMP_PATH = REPO_DIR / "client_tmp"
|
12 |
SERVER_TMP_PATH = REPO_DIR / "server_tmp"
|
@@ -17,14 +17,13 @@ CLIENT_TMP_PATH.mkdir(exist_ok=True)
|
|
17 |
SERVER_TMP_PATH.mkdir(exist_ok=True)
|
18 |
|
19 |
# All the filters currently available in the demo
|
20 |
-
|
21 |
-
"
|
22 |
-
"
|
23 |
-
"
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"
|
27 |
-
"ridge detection",
|
28 |
]
|
29 |
|
30 |
# The input images' shape. Images with different input shapes will be cropped and resized by Gradio
|
@@ -36,5 +35,10 @@ INPUT_EXAMPLES_DIR = REPO_DIR / "input_examples"
|
|
36 |
# List of all image examples suggested in the demo
|
37 |
EXAMPLES = [str(image) for image in INPUT_EXAMPLES_DIR.glob("**/*")]
|
38 |
|
|
|
|
|
|
|
|
|
|
|
39 |
# Store the server's URL
|
40 |
SERVER_URL = "http://localhost:8000/"
|
|
|
6 |
REPO_DIR = Path(__file__).parent
|
7 |
|
8 |
# This repository's main necessary folders
|
9 |
+
MATCHERS_PATH = REPO_DIR / "matchers"
|
10 |
KEYS_PATH = REPO_DIR / ".fhe_keys"
|
11 |
CLIENT_TMP_PATH = REPO_DIR / "client_tmp"
|
12 |
SERVER_TMP_PATH = REPO_DIR / "server_tmp"
|
|
|
17 |
SERVER_TMP_PATH.mkdir(exist_ok=True)
|
18 |
|
19 |
# All the filters currently available in the demo
|
20 |
+
AVAILABLE_MATCHERS = [
|
21 |
+
"random guessing",
|
22 |
+
# "random guessing concrete 1.1.0",
|
23 |
+
# "random guessing concrete 1.1.0",
|
24 |
+
# "static distance",
|
25 |
+
# "MLP-based learned distance",
|
26 |
+
# "CNN-based learned distance",
|
|
|
27 |
]
|
28 |
|
29 |
# The input images' shape. Images with different input shapes will be cropped and resized by Gradio
|
|
|
35 |
# List of all image examples suggested in the demo
|
36 |
EXAMPLES = [str(image) for image in INPUT_EXAMPLES_DIR.glob("**/*")]
|
37 |
|
38 |
+
# Encrypted image and output names
|
39 |
+
ENCRYPTED_QUERY_NAME = "encrypted_query_image"
|
40 |
+
ENCRYPTED_REFERENCE_NAME = "encrypted_reference_image"
|
41 |
+
ENCRYPTED_OUTPUT_NAME = "encrypted_output"
|
42 |
+
|
43 |
# Store the server's URL
|
44 |
SERVER_URL = "http://localhost:8000/"
|
data/old_code/client_server_interface.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"Client-server interface custom implementation for filter models."
|
2 |
+
|
3 |
+
from concrete import fhe
|
4 |
+
|
5 |
+
from filters import Filter
|
6 |
+
|
7 |
+
|
8 |
+
class FHEServer:
|
9 |
+
"""Server interface run a FHE circuit."""
|
10 |
+
|
11 |
+
def __init__(self, path_dir):
|
12 |
+
"""Initialize the FHE interface.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
path_dir (Path): The path to the directory where the circuit is saved.
|
16 |
+
"""
|
17 |
+
self.path_dir = path_dir
|
18 |
+
|
19 |
+
# Load the FHE circuit
|
20 |
+
self.server = fhe.Server.load(self.path_dir / "server.zip")
|
21 |
+
|
22 |
+
def run(self, serialized_encrypted_image, serialized_evaluation_keys):
|
23 |
+
"""Run the filter on the server over an encrypted image.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
serialized_encrypted_image (bytes): The encrypted and serialized image.
|
27 |
+
serialized_evaluation_keys (bytes): The serialized evaluation keys.
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
bytes: The filter's output.
|
31 |
+
"""
|
32 |
+
# Deserialize the encrypted input image and the evaluation keys
|
33 |
+
encrypted_image = fhe.Value.deserialize(serialized_encrypted_image)
|
34 |
+
evaluation_keys = fhe.EvaluationKeys.deserialize(serialized_evaluation_keys)
|
35 |
+
|
36 |
+
# Execute the filter in FHE
|
37 |
+
encrypted_output = self.server.run(encrypted_image, evaluation_keys=evaluation_keys)
|
38 |
+
|
39 |
+
# Serialize the encrypted output image
|
40 |
+
serialized_encrypted_output = encrypted_output.serialize()
|
41 |
+
|
42 |
+
return serialized_encrypted_output
|
43 |
+
|
44 |
+
|
45 |
+
class FHEDev:
|
46 |
+
"""Development interface to save and load the filter."""
|
47 |
+
|
48 |
+
def __init__(self, filter, path_dir):
|
49 |
+
"""Initialize the FHE interface.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
filter (Filter): The filter to use in the FHE interface.
|
53 |
+
path_dir (str): The path to the directory where the circuit is saved.
|
54 |
+
"""
|
55 |
+
|
56 |
+
self.filter = filter
|
57 |
+
self.path_dir = path_dir
|
58 |
+
|
59 |
+
self.path_dir.mkdir(parents=True, exist_ok=True)
|
60 |
+
|
61 |
+
def save(self):
|
62 |
+
"""Export all needed artifacts for the client and server interfaces."""
|
63 |
+
|
64 |
+
assert self.filter.fhe_circuit is not None, (
|
65 |
+
"The model must be compiled before saving it."
|
66 |
+
)
|
67 |
+
|
68 |
+
# Save the circuit for the server, using the via_mlir in order to handle cross-platform
|
69 |
+
# execution
|
70 |
+
path_circuit_server = self.path_dir / "server.zip"
|
71 |
+
self.filter.fhe_circuit.server.save(path_circuit_server, via_mlir=True)
|
72 |
+
|
73 |
+
# Save the circuit for the client
|
74 |
+
path_circuit_client = self.path_dir / "client.zip"
|
75 |
+
self.filter.fhe_circuit.client.save(path_circuit_client)
|
76 |
+
|
77 |
+
|
78 |
+
class FHEClient:
|
79 |
+
"""Client interface to encrypt and decrypt FHE data associated to a Filter."""
|
80 |
+
|
81 |
+
def __init__(self, path_dir, filter_name, key_dir=None):
|
82 |
+
"""Initialize the FHE interface.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
path_dir (Path): The path to the directory where the circuit is saved.
|
86 |
+
filter_name (str): The filter's name to consider.
|
87 |
+
key_dir (Path): The path to the directory where the keys are stored. Default to None.
|
88 |
+
"""
|
89 |
+
self.path_dir = path_dir
|
90 |
+
self.key_dir = key_dir
|
91 |
+
|
92 |
+
# If path_dir does not exist raise
|
93 |
+
assert path_dir.exists(), f"{path_dir} does not exist. Please specify a valid path."
|
94 |
+
|
95 |
+
# Load the client
|
96 |
+
self.client = fhe.Client.load(self.path_dir / "client.zip", self.key_dir)
|
97 |
+
|
98 |
+
# Instantiate the filter
|
99 |
+
self.filter = Filter(filter_name)
|
100 |
+
|
101 |
+
def generate_private_and_evaluation_keys(self, force=False):
|
102 |
+
"""Generate the private and evaluation keys.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
force (bool): If True, regenerate the keys even if they already exist.
|
106 |
+
"""
|
107 |
+
self.client.keygen(force)
|
108 |
+
|
109 |
+
def get_serialized_evaluation_keys(self):
|
110 |
+
"""Get the serialized evaluation keys.
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
bytes: The evaluation keys.
|
114 |
+
"""
|
115 |
+
return self.client.evaluation_keys.serialize()
|
116 |
+
|
117 |
+
def encrypt_serialize(self, input_image):
|
118 |
+
"""Encrypt and serialize the input image in the clear.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
input_image (numpy.ndarray): The image to encrypt and serialize.
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
bytes: The pre-processed, encrypted and serialized image.
|
125 |
+
"""
|
126 |
+
# Encrypt the image
|
127 |
+
encrypted_image = self.client.encrypt(input_image)
|
128 |
+
|
129 |
+
# Serialize the encrypted image to be sent to the server
|
130 |
+
serialized_encrypted_image = encrypted_image.serialize()
|
131 |
+
return serialized_encrypted_image
|
132 |
+
|
133 |
+
def deserialize_decrypt_post_process(self, serialized_encrypted_output_image):
|
134 |
+
"""Deserialize, decrypt and post-process the output image in the clear.
|
135 |
+
|
136 |
+
Args:
|
137 |
+
serialized_encrypted_output_image (bytes): The serialized and encrypted output image.
|
138 |
+
|
139 |
+
Returns:
|
140 |
+
numpy.ndarray: The decrypted, deserialized and post-processed image.
|
141 |
+
"""
|
142 |
+
# Deserialize the encrypted image
|
143 |
+
encrypted_output_image = fhe.Value.deserialize(
|
144 |
+
serialized_encrypted_output_image
|
145 |
+
)
|
146 |
+
|
147 |
+
# Decrypt the image
|
148 |
+
output_image = self.client.decrypt(encrypted_output_image)
|
149 |
+
|
150 |
+
# Post-process the image
|
151 |
+
post_processed_output_image = self.filter.post_processing(output_image)
|
152 |
+
|
153 |
+
return post_processed_output_image
|
filters.py → data/old_code/filters.py
RENAMED
@@ -3,7 +3,7 @@
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
from torch import nn
|
6 |
-
from common import
|
7 |
|
8 |
from concrete.fhe.compilation.compiler import Compiler
|
9 |
from concrete.ml.common.utils import generate_proxy_function
|
@@ -58,7 +58,9 @@ class TorchRotate(nn.Module):
|
|
58 |
class TorchConv(nn.Module):
|
59 |
"""Torch model with a single convolution operator."""
|
60 |
|
61 |
-
def __init__(
|
|
|
|
|
62 |
"""Initialize the filter.
|
63 |
|
64 |
Args:
|
@@ -104,16 +106,15 @@ class TorchConv(nn.Module):
|
|
104 |
kernel_shape[1],
|
105 |
)
|
106 |
|
107 |
-
|
108 |
else:
|
109 |
raise ValueError(
|
110 |
"Wrong kernel shape, only 1D or 2D kernels are accepted. Got kernel of shape "
|
111 |
f"{kernel_shape}"
|
112 |
)
|
113 |
|
114 |
-
# Reshape the image. This is done because Torch convolutions and Numpy arrays (for PIL
|
115 |
-
# display) don't follow the same shape conventions. More precisely, x is of shape
|
116 |
-
# (Width, Height, Channels) while the conv2d operator requires an input of shape
|
117 |
# (Batch, Channels, Height, Width)
|
118 |
x = x.transpose(2, 0).unsqueeze(axis=0)
|
119 |
|
@@ -142,18 +143,18 @@ class Filter:
|
|
142 |
filter_name (str): The filter to consider.
|
143 |
"""
|
144 |
|
145 |
-
assert filter_name in
|
146 |
-
f"Unsupported image filter or transformation. Expected one of {*
|
147 |
f"but got {filter_name}",
|
148 |
)
|
149 |
|
150 |
-
# Define attributes associated to the filter
|
151 |
self.filter_name = filter_name
|
152 |
self.onnx_model = None
|
153 |
self.fhe_circuit = None
|
154 |
self.divide = None
|
155 |
|
156 |
-
# Instantiate the torch module associated to the given filter name
|
157 |
if filter_name == "identity":
|
158 |
self.torch_model = TorchIdentity()
|
159 |
|
@@ -179,7 +180,6 @@ class Filter:
|
|
179 |
# Define the value used when for dividing the output values in post-processing
|
180 |
self.divide = 1000
|
181 |
|
182 |
-
|
183 |
elif filter_name == "blur":
|
184 |
kernel = np.ones((3, 3))
|
185 |
|
@@ -208,16 +208,16 @@ class Filter:
|
|
208 |
# value to the result in order to better display the ridges
|
209 |
self.torch_model = TorchConv(kernel, threshold=900)
|
210 |
|
211 |
-
|
212 |
def compile(self):
|
213 |
"""Compile the filter on a representative inputset."""
|
214 |
-
# Generate a random representative set of images used for compilation, following shape
|
215 |
# PIL's shape RGB format for Numpy arrays (image_width, image_height, 3)
|
216 |
-
# Additionally, this version's compiler only handles tuples of 1-batch array as inputset,
|
217 |
-
# meaning we need to define the inputset as a Tuple[np.ndarray[shape=(H, W, 3)]]
|
218 |
np.random.seed(42)
|
219 |
inputset = tuple(
|
220 |
-
np.random.randint(0, 256, size=(INPUT_SHAPE + (3,
|
|
|
221 |
)
|
222 |
|
223 |
# Convert the Torch module to a Numpy module
|
@@ -227,11 +227,10 @@ class Filter:
|
|
227 |
)
|
228 |
|
229 |
# Get the proxy function and parameter mappings used for initializing the compiler
|
230 |
-
# This is done in order to be able to provide any modules with arbitrary numbers of
|
231 |
# encrypted arguments to Concrete Numpy's compiler
|
232 |
numpy_filter_proxy, parameters_mapping = generate_proxy_function(
|
233 |
-
numpy_module.numpy_forward,
|
234 |
-
["inputs"]
|
235 |
)
|
236 |
|
237 |
# Compile the filter and retrieve its FHE circuit
|
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
from torch import nn
|
6 |
+
from common import AVAILABLE_MATCHERS, INPUT_SHAPE
|
7 |
|
8 |
from concrete.fhe.compilation.compiler import Compiler
|
9 |
from concrete.ml.common.utils import generate_proxy_function
|
|
|
58 |
class TorchConv(nn.Module):
|
59 |
"""Torch model with a single convolution operator."""
|
60 |
|
61 |
+
def __init__(
|
62 |
+
self, kernel, n_in_channels=3, n_out_channels=3, groups=1, threshold=None
|
63 |
+
):
|
64 |
"""Initialize the filter.
|
65 |
|
66 |
Args:
|
|
|
106 |
kernel_shape[1],
|
107 |
)
|
108 |
|
|
|
109 |
else:
|
110 |
raise ValueError(
|
111 |
"Wrong kernel shape, only 1D or 2D kernels are accepted. Got kernel of shape "
|
112 |
f"{kernel_shape}"
|
113 |
)
|
114 |
|
115 |
+
# Reshape the image. This is done because Torch convolutions and Numpy arrays (for PIL
|
116 |
+
# display) don't follow the same shape conventions. More precisely, x is of shape
|
117 |
+
# (Width, Height, Channels) while the conv2d operator requires an input of shape
|
118 |
# (Batch, Channels, Height, Width)
|
119 |
x = x.transpose(2, 0).unsqueeze(axis=0)
|
120 |
|
|
|
143 |
filter_name (str): The filter to consider.
|
144 |
"""
|
145 |
|
146 |
+
assert filter_name in AVAILABLE_MATCHERS, (
|
147 |
+
f"Unsupported image filter or transformation. Expected one of {*AVAILABLE_MATCHERS,}, "
|
148 |
f"but got {filter_name}",
|
149 |
)
|
150 |
|
151 |
+
# Define attributes associated to the filter
|
152 |
self.filter_name = filter_name
|
153 |
self.onnx_model = None
|
154 |
self.fhe_circuit = None
|
155 |
self.divide = None
|
156 |
|
157 |
+
# Instantiate the torch module associated to the given filter name
|
158 |
if filter_name == "identity":
|
159 |
self.torch_model = TorchIdentity()
|
160 |
|
|
|
180 |
# Define the value used when for dividing the output values in post-processing
|
181 |
self.divide = 1000
|
182 |
|
|
|
183 |
elif filter_name == "blur":
|
184 |
kernel = np.ones((3, 3))
|
185 |
|
|
|
208 |
# value to the result in order to better display the ridges
|
209 |
self.torch_model = TorchConv(kernel, threshold=900)
|
210 |
|
|
|
211 |
def compile(self):
|
212 |
"""Compile the filter on a representative inputset."""
|
213 |
+
# Generate a random representative set of images used for compilation, following shape
|
214 |
# PIL's shape RGB format for Numpy arrays (image_width, image_height, 3)
|
215 |
+
# Additionally, this version's compiler only handles tuples of 1-batch array as inputset,
|
216 |
+
# meaning we need to define the inputset as a Tuple[np.ndarray[shape=(H, W, 3)]]
|
217 |
np.random.seed(42)
|
218 |
inputset = tuple(
|
219 |
+
np.random.randint(0, 256, size=(INPUT_SHAPE + (3,)), dtype=np.int64)
|
220 |
+
for _ in range(100)
|
221 |
)
|
222 |
|
223 |
# Convert the Torch module to a Numpy module
|
|
|
227 |
)
|
228 |
|
229 |
# Get the proxy function and parameter mappings used for initializing the compiler
|
230 |
+
# This is done in order to be able to provide any modules with arbitrary numbers of
|
231 |
# encrypted arguments to Concrete Numpy's compiler
|
232 |
numpy_filter_proxy, parameters_mapping = generate_proxy_function(
|
233 |
+
numpy_module.numpy_forward, ["inputs"]
|
|
|
234 |
)
|
235 |
|
236 |
# Compile the filter and retrieve its FHE circuit
|
generate_dev_files.py → data/old_code/generate_dev_files.py
RENAMED
@@ -1,13 +1,13 @@
|
|
1 |
"A script to generate all development files necessary for the image filtering demo."
|
2 |
|
3 |
import shutil
|
4 |
-
from common import
|
5 |
from filters import Filter
|
6 |
from client_server_interface import FHEDev
|
7 |
|
8 |
print("Generating deployment files for all available filters")
|
9 |
|
10 |
-
for filter_name in
|
11 |
print("Filter:", filter_name, "\n")
|
12 |
|
13 |
# Create the filter instance
|
@@ -17,7 +17,7 @@ for filter_name in AVAILABLE_FILTERS:
|
|
17 |
filter.compile()
|
18 |
|
19 |
# Define the directory path associated to this filter's deployment files
|
20 |
-
deployment_path =
|
21 |
|
22 |
# Delete the deployment folder and its content if it already exists
|
23 |
if deployment_path.is_dir():
|
|
|
1 |
"A script to generate all development files necessary for the image filtering demo."
|
2 |
|
3 |
import shutil
|
4 |
+
from common import AVAILABLE_MATCHERS, MATCHERS_PATH
|
5 |
from filters import Filter
|
6 |
from client_server_interface import FHEDev
|
7 |
|
8 |
print("Generating deployment files for all available filters")
|
9 |
|
10 |
+
for filter_name in AVAILABLE_MATCHERS:
|
11 |
print("Filter:", filter_name, "\n")
|
12 |
|
13 |
# Create the filter instance
|
|
|
17 |
filter.compile()
|
18 |
|
19 |
# Define the directory path associated to this filter's deployment files
|
20 |
+
deployment_path = MATCHERS_PATH / (filter_name + "/deployment")
|
21 |
|
22 |
# Delete the deployment folder and its content if it already exists
|
23 |
if deployment_path.is_dir():
|
generate_deployment_files.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import shutil
|
3 |
+
from client_server_interface import FHEDev
|
4 |
+
from matchers import AVAILABLE_MATCHERS, Matcher
|
5 |
+
|
6 |
+
|
7 |
+
print("Generating deployment files for all available filters")
|
8 |
+
# This repository's directory
|
9 |
+
REPO_DIR = Path(__file__).parent
|
10 |
+
# This repository's main necessary folders
|
11 |
+
MATCHERS_PATH = REPO_DIR / "data/compiled_models"
|
12 |
+
for matcher_name in AVAILABLE_MATCHERS:
|
13 |
+
print("Matcher:", matcher_name, "\n")
|
14 |
+
|
15 |
+
# Create the filter instance
|
16 |
+
matcher = Matcher(matcher_name)
|
17 |
+
|
18 |
+
# Compile the model on a representative inputset
|
19 |
+
matcher.compile()
|
20 |
+
|
21 |
+
# Define the directory path associated to this filter's deployment files
|
22 |
+
deployment_path = MATCHERS_PATH / (matcher_name + "/deployment")
|
23 |
+
|
24 |
+
# Delete the deployment folder and its content if it already exists
|
25 |
+
if deployment_path.is_dir():
|
26 |
+
print("Delete the deployment folder and its content ...")
|
27 |
+
shutil.rmtree(deployment_path)
|
28 |
+
|
29 |
+
# Save the files needed for deployment
|
30 |
+
print(f"Saving the files at {deployment_path} ...")
|
31 |
+
fhe_dev_filter = FHEDev(matcher, deployment_path)
|
32 |
+
fhe_dev_filter.save()
|
33 |
+
|
34 |
+
print("Done !")
|
image_filtering_banner.png
DELETED
Binary file (275 kB)
|
|
matchers.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import numpy as np
|
3 |
+
from torch import nn
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from concrete.fhe.compilation.compiler import Compiler
|
7 |
+
from concrete.ml.common.utils import generate_proxy_function
|
8 |
+
from concrete.ml.torch.numpy_module import NumpyModule
|
9 |
+
|
10 |
+
from common import AVAILABLE_MATCHERS
|
11 |
+
|
12 |
+
|
13 |
+
class TorchRandomGuessing(nn.Module):
|
14 |
+
"""Torch identity model."""
|
15 |
+
|
16 |
+
def __init__(self, classes_=[0, 1]):
|
17 |
+
super().__init__()
|
18 |
+
self.classes_ = classes_
|
19 |
+
|
20 |
+
def forward(self, q, r):
|
21 |
+
"""Random guessing forward pass.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
q (torch.Tensor): The input query.
|
25 |
+
r (torch.Tensor): The input reference.
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
(torch.Tensor): .
|
29 |
+
"""
|
30 |
+
q = q.sum()
|
31 |
+
r = r.sum()
|
32 |
+
return torch.tensor([random.choice([0, 1])]) + q - q + r - r
|
33 |
+
|
34 |
+
|
35 |
+
class Matcher:
|
36 |
+
def __init__(self, matcher_name):
|
37 |
+
assert matcher_name in AVAILABLE_MATCHERS, (
|
38 |
+
f"Unsupported image matcher. Expected one of {*AVAILABLE_MATCHERS,}, "
|
39 |
+
f"but got {matcher_name}",
|
40 |
+
)
|
41 |
+
self.fhe_circuit = None
|
42 |
+
self.matcher_name = matcher_name
|
43 |
+
|
44 |
+
if self.matcher_name == "random guessing":
|
45 |
+
self.torch_model = TorchRandomGuessing()
|
46 |
+
|
47 |
+
def compile(self):
|
48 |
+
|
49 |
+
inputset = [(np.array([10]), np.array([5]))]
|
50 |
+
|
51 |
+
print("torch module > numpy module ...")
|
52 |
+
numpy_module = NumpyModule(
|
53 |
+
# torch_model, dummy_input=torch.from_numpy(np.array([10], dtype=np.int64))
|
54 |
+
self.torch_model,
|
55 |
+
# dummy_input=(torch.tensor([10]), torch.tensor([5])),
|
56 |
+
dummy_input=(
|
57 |
+
torch.from_numpy(inputset[0][1]),
|
58 |
+
torch.from_numpy(inputset[0][1]),
|
59 |
+
),
|
60 |
+
)
|
61 |
+
|
62 |
+
print("get proxy function ...")
|
63 |
+
# Get the proxy function and parameter mappings used for initializing the compiler
|
64 |
+
# This is done in order to be able to provide any modules with arbitrary numbers of
|
65 |
+
# encrypted arguments to Concrete Numpy's compiler
|
66 |
+
numpy_filter_proxy, parameters_mapping = generate_proxy_function(
|
67 |
+
numpy_module.numpy_forward, ["query", "reference"]
|
68 |
+
)
|
69 |
+
|
70 |
+
print("Compile the filter and retrieve its FHE circuit ...")
|
71 |
+
compiler = Compiler(
|
72 |
+
numpy_filter_proxy,
|
73 |
+
{
|
74 |
+
parameters_mapping["query"]: "encrypted",
|
75 |
+
parameters_mapping["reference"]: "encrypted",
|
76 |
+
},
|
77 |
+
)
|
78 |
+
self.fhe_circuit = compiler.compile(inputset)
|
79 |
+
return self.fhe_circuit
|
80 |
+
|
81 |
+
def post_processing(self, output_result):
|
82 |
+
"""Apply post-processing to the decrypted output result.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
output_result (np.ndarray): The decrypted result to post-process.
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
output_result (np.ndarray): The post-processed result.
|
89 |
+
"""
|
90 |
+
print(f"{output_result=}")
|
91 |
+
|
92 |
+
return "PASS" if output_result[0] == 1 else "FAIL"
|
93 |
+
|
94 |
+
|
95 |
+
# matcher = Matcher(matcher_name=AVAILABLE_MATCHERS[0])
|
96 |
+
# fhe_circuit = matcher.compile()
|
matchers/filter blur/deployment/circuit.mlir
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
module {
|
2 |
+
func.func @main(%arg0: tensor<100x100x3x!FHE.eint<12>>) -> tensor<98x98x3x!FHE.eint<12>> {
|
3 |
+
%0 = "FHELinalg.transpose"(%arg0) {axes = [2, 1, 0]} : (tensor<100x100x3x!FHE.eint<12>>) -> tensor<3x100x100x!FHE.eint<12>>
|
4 |
+
%expanded = tensor.expand_shape %0 [[0, 1], [2], [3]] : tensor<3x100x100x!FHE.eint<12>> into tensor<1x3x100x100x!FHE.eint<12>>
|
5 |
+
%cst = arith.constant dense<1> : tensor<3x1x3x3xi13>
|
6 |
+
%1 = "FHELinalg.conv2d"(%expanded, %cst) {dilations = dense<1> : tensor<2xi64>, group = 3 : i64, padding = dense<0> : tensor<4xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<1x3x100x100x!FHE.eint<12>>, tensor<3x1x3x3xi13>) -> tensor<1x3x98x98x!FHE.eint<12>>
|
7 |
+
%2 = "FHELinalg.transpose"(%1) {axes = [0, 3, 2, 1]} : (tensor<1x3x98x98x!FHE.eint<12>>) -> tensor<1x98x98x3x!FHE.eint<12>>
|
8 |
+
%collapsed = tensor.collapse_shape %2 [[0, 1], [2], [3]] : tensor<1x98x98x3x!FHE.eint<12>> into tensor<98x98x3x!FHE.eint<12>>
|
9 |
+
return %collapsed : tensor<98x98x3x!FHE.eint<12>>
|
10 |
+
}
|
11 |
+
}
|
matchers/filter blur/deployment/client.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6b45511096f6da9aa73601b1372ffc42ec9272b40348d92f90427fbddff0571
|
3 |
+
size 360
|
matchers/filter blur/deployment/configuration.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"verbose": false,
|
3 |
+
"show_graph": null,
|
4 |
+
"show_mlir": null,
|
5 |
+
"show_optimizer": null,
|
6 |
+
"dump_artifacts_on_unexpected_failures": true,
|
7 |
+
"enable_unsafe_features": false,
|
8 |
+
"use_insecure_key_cache": false,
|
9 |
+
"insecure_key_cache_location": null,
|
10 |
+
"loop_parallelize": true,
|
11 |
+
"dataflow_parallelize": false,
|
12 |
+
"auto_parallelize": false,
|
13 |
+
"jit": false,
|
14 |
+
"p_error": null,
|
15 |
+
"global_p_error": null,
|
16 |
+
"auto_adjust_rounders": false,
|
17 |
+
"single_precision": true,
|
18 |
+
"parameter_selection_strategy": "mono",
|
19 |
+
"show_progress": false,
|
20 |
+
"progress_title": "",
|
21 |
+
"progress_tag": false
|
22 |
+
}
|
matchers/filter blur/deployment/server.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cc44c02ca9ee6523a35dcb1a034b7852e59a3a587dcbf2af71ca4109fc1e138
|
3 |
+
size 824
|
matchers/random guessing concrete 1.1.0/deployment/client.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4acd2ea04c038bf590d6b6ad5b0534f864a49168cde20bd39e5712401a22551
|
3 |
+
size 465
|
matchers/random guessing concrete 1.1.0/deployment/server.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b89a5baf4d7d1d73184f020a58531169f1945dc03f17ff688d8dc4f9988ae89c
|
3 |
+
size 1517
|
matchers/random guessing/deployment/client.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4acd2ea04c038bf590d6b6ad5b0534f864a49168cde20bd39e5712401a22551
|
3 |
+
size 465
|
matchers/random guessing/deployment/server.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b89a5baf4d7d1d73184f020a58531169f1945dc03f17ff688d8dc4f9988ae89c
|
3 |
+
size 1517
|
matchers/random guessing_1.6.1/deployment/circuit.mlir
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
module {
|
2 |
+
func.func @main(%arg0: tensor<1x!FHE.eint<4>>, %arg1: tensor<1x!FHE.eint<4>>) -> tensor<1x!FHE.eint<4>> {
|
3 |
+
%0 = "FHELinalg.sum"(%arg0) {axes = [], keep_dims = false} : (tensor<1x!FHE.eint<4>>) -> !FHE.eint<4>
|
4 |
+
%1 = "FHELinalg.sum"(%arg1) {axes = [], keep_dims = false} : (tensor<1x!FHE.eint<4>>) -> !FHE.eint<4>
|
5 |
+
%cst = arith.constant dense<1> : tensor<1xi2>
|
6 |
+
%from_elements = tensor.from_elements %0 : tensor<1x!FHE.eint<4>>
|
7 |
+
%2 = "FHELinalg.add_eint_int"(%from_elements, %cst) : (tensor<1x!FHE.eint<4>>, tensor<1xi2>) -> tensor<1x!FHE.eint<4>>
|
8 |
+
%3 = "FHELinalg.sub_eint"(%2, %from_elements) : (tensor<1x!FHE.eint<4>>, tensor<1x!FHE.eint<4>>) -> tensor<1x!FHE.eint<4>>
|
9 |
+
%from_elements_0 = tensor.from_elements %1 : tensor<1x!FHE.eint<4>>
|
10 |
+
%4 = "FHELinalg.add_eint"(%3, %from_elements_0) : (tensor<1x!FHE.eint<4>>, tensor<1x!FHE.eint<4>>) -> tensor<1x!FHE.eint<4>>
|
11 |
+
%5 = "FHELinalg.sub_eint"(%4, %from_elements_0) : (tensor<1x!FHE.eint<4>>, tensor<1x!FHE.eint<4>>) -> tensor<1x!FHE.eint<4>>
|
12 |
+
return %5 : tensor<1x!FHE.eint<4>>
|
13 |
+
}
|
14 |
+
}
|
matchers/random guessing_1.6.1/deployment/client.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4acd2ea04c038bf590d6b6ad5b0534f864a49168cde20bd39e5712401a22551
|
3 |
+
size 465
|
matchers/random guessing_1.6.1/deployment/composition_rules.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
null
|
matchers/random guessing_1.6.1/deployment/configuration.json
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"verbose": false,
|
3 |
+
"compiler_debug_mode": false,
|
4 |
+
"compiler_verbose_mode": false,
|
5 |
+
"show_graph": null,
|
6 |
+
"show_bit_width_constraints": null,
|
7 |
+
"show_bit_width_assignments": null,
|
8 |
+
"show_assigned_graph": null,
|
9 |
+
"show_mlir": null,
|
10 |
+
"show_optimizer": null,
|
11 |
+
"show_statistics": null,
|
12 |
+
"dump_artifacts_on_unexpected_failures": true,
|
13 |
+
"enable_unsafe_features": false,
|
14 |
+
"use_insecure_key_cache": false,
|
15 |
+
"insecure_key_cache_location": null,
|
16 |
+
"loop_parallelize": true,
|
17 |
+
"dataflow_parallelize": false,
|
18 |
+
"auto_parallelize": false,
|
19 |
+
"compress_evaluation_keys": false,
|
20 |
+
"compress_input_ciphertexts": false,
|
21 |
+
"p_error": null,
|
22 |
+
"global_p_error": null,
|
23 |
+
"auto_adjust_rounders": false,
|
24 |
+
"auto_adjust_truncators": false,
|
25 |
+
"single_precision": false,
|
26 |
+
"parameter_selection_strategy": {
|
27 |
+
"py/reduce": [
|
28 |
+
{
|
29 |
+
"py/type": "concrete.fhe.compilation.configuration.ParameterSelectionStrategy"
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"py/tuple": [
|
33 |
+
"multi"
|
34 |
+
]
|
35 |
+
}
|
36 |
+
]
|
37 |
+
},
|
38 |
+
"multi_parameter_strategy": {
|
39 |
+
"py/reduce": [
|
40 |
+
{
|
41 |
+
"py/type": "concrete.fhe.compilation.configuration.MultiParameterStrategy"
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"py/tuple": [
|
45 |
+
"precision"
|
46 |
+
]
|
47 |
+
}
|
48 |
+
]
|
49 |
+
},
|
50 |
+
"show_progress": false,
|
51 |
+
"progress_title": "",
|
52 |
+
"progress_tag": false,
|
53 |
+
"fhe_simulation": false,
|
54 |
+
"fhe_execution": true,
|
55 |
+
"comparison_strategy_preference": [],
|
56 |
+
"bitwise_strategy_preference": [],
|
57 |
+
"shifts_with_promotion": true,
|
58 |
+
"multivariate_strategy_preference": [],
|
59 |
+
"min_max_strategy_preference": [],
|
60 |
+
"composable": false,
|
61 |
+
"use_gpu": false,
|
62 |
+
"relu_on_bits_threshold": 7,
|
63 |
+
"relu_on_bits_chunk_size": 3,
|
64 |
+
"if_then_else_chunk_size": 3,
|
65 |
+
"additional_pre_processors": [],
|
66 |
+
"additional_post_processors": [],
|
67 |
+
"rounding_exactness": {
|
68 |
+
"py/reduce": [
|
69 |
+
{
|
70 |
+
"py/type": "concrete.fhe.compilation.configuration.Exactness"
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"py/tuple": [
|
74 |
+
"exact"
|
75 |
+
]
|
76 |
+
}
|
77 |
+
]
|
78 |
+
},
|
79 |
+
"approximate_rounding_config": {
|
80 |
+
"py/object": "concrete.fhe.compilation.configuration.ApproximateRoundingConfig",
|
81 |
+
"logical_clipping": true,
|
82 |
+
"approximate_clipping_start_precision": 5,
|
83 |
+
"reduce_precision_after_approximate_clipping": true,
|
84 |
+
"symetrize_deltas": true
|
85 |
+
},
|
86 |
+
"optimize_tlu_based_on_measured_bounds": false,
|
87 |
+
"enable_tlu_fusing": true,
|
88 |
+
"print_tlu_fusing": false,
|
89 |
+
"optimize_tlu_based_on_original_bit_width": 8,
|
90 |
+
"detect_overflow_in_simulation": false,
|
91 |
+
"dynamic_indexing_check_out_of_bounds": true,
|
92 |
+
"dynamic_assignment_check_out_of_bounds": true,
|
93 |
+
"simulate_encrypt_run_decrypt": false
|
94 |
+
}
|
matchers/random guessing_1.6.1/deployment/is_simulated
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
0
|
matchers/random guessing_1.6.1/deployment/server.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b89a5baf4d7d1d73184f020a58531169f1945dc03f17ff688d8dc4f9988ae89c
|
3 |
+
size 1517
|
requirements.txt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
-
concrete-ml==1.1
|
2 |
gradio
|
3 |
more_itertools
|
|
|
1 |
+
concrete-ml==1.6.1
|
2 |
gradio
|
3 |
more_itertools
|
server.py
CHANGED
@@ -5,28 +5,35 @@ from typing import List
|
|
5 |
from fastapi import FastAPI, File, Form, UploadFile
|
6 |
from fastapi.responses import JSONResponse, Response
|
7 |
|
8 |
-
from common import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from client_server_interface import FHEServer
|
10 |
|
11 |
-
# Load the server objects related to all currently available
|
12 |
FHE_SERVERS = {
|
13 |
-
|
14 |
-
for
|
15 |
}
|
16 |
|
17 |
|
18 |
-
def get_server_file_path(name, user_id,
|
19 |
"""Get the correct temporary file path for the server.
|
20 |
|
21 |
Args:
|
22 |
name (str): The desired file name.
|
23 |
user_id (int): The current user's ID.
|
24 |
-
|
25 |
|
26 |
Returns:
|
27 |
pathlib.Path: The file path.
|
28 |
"""
|
29 |
-
return SERVER_TMP_PATH / f"{name}_{
|
30 |
|
31 |
|
32 |
# Initialize an instance of FastAPI
|
@@ -42,53 +49,77 @@ def root():
|
|
42 |
@app.post("/send_input")
|
43 |
def send_input(
|
44 |
user_id: str = Form(),
|
45 |
-
|
46 |
files: List[UploadFile] = File(),
|
47 |
):
|
48 |
"""Send the inputs to the server."""
|
49 |
# Retrieve the encrypted input image and the evaluation key paths
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Write the files using the above paths
|
54 |
-
with
|
|
|
|
|
|
|
|
|
55 |
"wb"
|
56 |
) as evaluation_key:
|
57 |
-
|
58 |
-
|
|
|
59 |
|
60 |
|
61 |
@app.post("/run_fhe")
|
62 |
def run_fhe(
|
63 |
user_id: str = Form(),
|
64 |
-
|
65 |
):
|
66 |
-
"""Execute the
|
67 |
# Retrieve the encrypted input image and the evaluation key paths
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
# Read the files using the above paths
|
72 |
-
with
|
|
|
|
|
|
|
|
|
73 |
"rb"
|
74 |
-
) as
|
75 |
-
|
|
|
76 |
evaluation_key = evaluation_key_file.read()
|
77 |
|
78 |
-
# Load the FHE server related to the chosen
|
79 |
-
fhe_server = FHE_SERVERS[
|
80 |
|
81 |
# Run the FHE execution
|
82 |
start = time.time()
|
83 |
-
|
|
|
|
|
84 |
fhe_execution_time = round(time.time() - start, 2)
|
85 |
|
86 |
-
# Retrieve the encrypted output
|
87 |
-
encrypted_output_path = get_server_file_path(
|
|
|
|
|
88 |
|
89 |
# Write the file using the above path
|
90 |
with encrypted_output_path.open("wb") as encrypted_output:
|
91 |
-
encrypted_output.write(
|
92 |
|
93 |
return JSONResponse(content=fhe_execution_time)
|
94 |
|
@@ -96,11 +127,13 @@ def run_fhe(
|
|
96 |
@app.post("/get_output")
|
97 |
def get_output(
|
98 |
user_id: str = Form(),
|
99 |
-
|
100 |
):
|
101 |
-
"""Retrieve the encrypted output
|
102 |
-
# Retrieve the encrypted output
|
103 |
-
encrypted_output_path = get_server_file_path(
|
|
|
|
|
104 |
|
105 |
# Read the file using the above path
|
106 |
with encrypted_output_path.open("rb") as encrypted_output_file:
|
|
|
5 |
from fastapi import FastAPI, File, Form, UploadFile
|
6 |
from fastapi.responses import JSONResponse, Response
|
7 |
|
8 |
+
from common import (
|
9 |
+
ENCRYPTED_OUTPUT_NAME,
|
10 |
+
ENCRYPTED_QUERY_NAME,
|
11 |
+
ENCRYPTED_REFERENCE_NAME,
|
12 |
+
MATCHERS_PATH,
|
13 |
+
SERVER_TMP_PATH,
|
14 |
+
AVAILABLE_MATCHERS,
|
15 |
+
)
|
16 |
from client_server_interface import FHEServer
|
17 |
|
18 |
+
# Load the server objects related to all currently available matchers once and for all
|
19 |
FHE_SERVERS = {
|
20 |
+
matcher: FHEServer(MATCHERS_PATH / f"{matcher}/deployment")
|
21 |
+
for matcher in AVAILABLE_MATCHERS
|
22 |
}
|
23 |
|
24 |
|
25 |
+
def get_server_file_path(name, user_id, matcher_name):
|
26 |
"""Get the correct temporary file path for the server.
|
27 |
|
28 |
Args:
|
29 |
name (str): The desired file name.
|
30 |
user_id (int): The current user's ID.
|
31 |
+
matcher_name (str): The matcher chosen by the user
|
32 |
|
33 |
Returns:
|
34 |
pathlib.Path: The file path.
|
35 |
"""
|
36 |
+
return SERVER_TMP_PATH / f"{name}_{matcher_name}_{user_id}"
|
37 |
|
38 |
|
39 |
# Initialize an instance of FastAPI
|
|
|
49 |
@app.post("/send_input")
|
50 |
def send_input(
|
51 |
user_id: str = Form(),
|
52 |
+
matcher: str = Form(),
|
53 |
files: List[UploadFile] = File(),
|
54 |
):
|
55 |
"""Send the inputs to the server."""
|
56 |
# Retrieve the encrypted input image and the evaluation key paths
|
57 |
+
encrypted_query_image_path = get_server_file_path(
|
58 |
+
ENCRYPTED_QUERY_NAME, user_id, matcher
|
59 |
+
)
|
60 |
+
encrypted_reference_image_path = get_server_file_path(
|
61 |
+
ENCRYPTED_REFERENCE_NAME, user_id, matcher
|
62 |
+
)
|
63 |
+
evaluation_key_path = get_server_file_path("evaluation_key", user_id, matcher)
|
64 |
|
65 |
# Write the files using the above paths
|
66 |
+
with encrypted_query_image_path.open(
|
67 |
+
"wb"
|
68 |
+
) as encrypted_query_image_file, encrypted_reference_image_path.open(
|
69 |
+
"wb"
|
70 |
+
) as encrypted_reference_image_file, evaluation_key_path.open(
|
71 |
"wb"
|
72 |
) as evaluation_key:
|
73 |
+
encrypted_query_image_file.write(files[0].file.read())
|
74 |
+
encrypted_reference_image_file.write(files[1].file.read())
|
75 |
+
evaluation_key.write(files[2].file.read())
|
76 |
|
77 |
|
78 |
@app.post("/run_fhe")
|
79 |
def run_fhe(
|
80 |
user_id: str = Form(),
|
81 |
+
matcher: str = Form(),
|
82 |
):
|
83 |
+
"""Execute the matcher on the encrypted input images using FHE."""
|
84 |
# Retrieve the encrypted input image and the evaluation key paths
|
85 |
+
encrypted_query_image_path = get_server_file_path(
|
86 |
+
"encrypted_query_image", user_id, matcher
|
87 |
+
)
|
88 |
+
encrypted_reference_image_path = get_server_file_path(
|
89 |
+
"encrypted_reference_image", user_id, matcher
|
90 |
+
)
|
91 |
+
evaluation_key_path = get_server_file_path("evaluation_key", user_id, matcher)
|
92 |
|
93 |
# Read the files using the above paths
|
94 |
+
with encrypted_query_image_path.open(
|
95 |
+
"rb"
|
96 |
+
) as encrypted_query_image_file, encrypted_reference_image_path.open(
|
97 |
+
"rb"
|
98 |
+
) as encrypted_reference_image_file, evaluation_key_path.open(
|
99 |
"rb"
|
100 |
+
) as evaluation_key_file:
|
101 |
+
encrypted_query_image = encrypted_query_image_file.read()
|
102 |
+
encrypted_reference_image = encrypted_reference_image_file.read()
|
103 |
evaluation_key = evaluation_key_file.read()
|
104 |
|
105 |
+
# Load the FHE server related to the chosen matcher
|
106 |
+
fhe_server = FHE_SERVERS[matcher]
|
107 |
|
108 |
# Run the FHE execution
|
109 |
start = time.time()
|
110 |
+
encrypted_output = fhe_server.run(
|
111 |
+
encrypted_query_image, encrypted_reference_image, evaluation_key
|
112 |
+
)
|
113 |
fhe_execution_time = round(time.time() - start, 2)
|
114 |
|
115 |
+
# Retrieve the encrypted output path
|
116 |
+
encrypted_output_path = get_server_file_path(
|
117 |
+
ENCRYPTED_OUTPUT_NAME, user_id, matcher
|
118 |
+
)
|
119 |
|
120 |
# Write the file using the above path
|
121 |
with encrypted_output_path.open("wb") as encrypted_output:
|
122 |
+
encrypted_output.write(encrypted_output)
|
123 |
|
124 |
return JSONResponse(content=fhe_execution_time)
|
125 |
|
|
|
127 |
@app.post("/get_output")
|
128 |
def get_output(
|
129 |
user_id: str = Form(),
|
130 |
+
matcher: str = Form(),
|
131 |
):
|
132 |
+
"""Retrieve the encrypted output."""
|
133 |
+
# Retrieve the encrypted output path
|
134 |
+
encrypted_output_path = get_server_file_path(
|
135 |
+
ENCRYPTED_OUTPUT_NAME, user_id, matcher
|
136 |
+
)
|
137 |
|
138 |
# Read the file using the above path
|
139 |
with encrypted_output_path.open("rb") as encrypted_output_file:
|