File size: 22,877 Bytes
3d845fb
f5aa6c7
13fb76e
be82820
13fb76e
 
 
 
f5aa6c7
3d845fb
58df7f1
 
be82820
 
58df7f1
 
 
 
 
 
 
 
 
 
 
 
 
 
f5aa6c7
13fb76e
58df7f1
 
 
13fb76e
 
58df7f1
13fb76e
58df7f1
13fb76e
58df7f1
 
 
 
 
 
 
 
13fb76e
 
 
 
 
 
 
 
58df7f1
13fb76e
58df7f1
 
 
13fb76e
58df7f1
 
 
13fb76e
58df7f1
13fb76e
3d845fb
58df7f1
 
13fb76e
58df7f1
13fb76e
 
 
 
58df7f1
 
 
 
 
 
 
 
 
13fb76e
58df7f1
 
13fb76e
58df7f1
 
3d845fb
58df7f1
3d845fb
 
58df7f1
 
3d845fb
58df7f1
3d845fb
 
58df7f1
3d845fb
58df7f1
3d845fb
58df7f1
3d845fb
 
58df7f1
3d845fb
 
 
 
 
 
58df7f1
 
f5aa6c7
 
3d845fb
 
 
 
58df7f1
 
 
 
3d845fb
 
 
 
 
58df7f1
 
3d845fb
58df7f1
 
3d845fb
 
 
 
58df7f1
3d845fb
 
 
 
58df7f1
3d845fb
f5aa6c7
58df7f1
3d845fb
 
 
 
 
 
 
 
 
58df7f1
 
 
 
3d845fb
 
 
f5aa6c7
58df7f1
f5aa6c7
 
58df7f1
 
f5aa6c7
 
 
 
58df7f1
f5aa6c7
 
 
 
 
3d845fb
58df7f1
 
3d845fb
f5aa6c7
58df7f1
 
 
 
3d845fb
58df7f1
3d845fb
f5aa6c7
58df7f1
 
 
 
f5aa6c7
58df7f1
f5aa6c7
58df7f1
 
f5aa6c7
3d845fb
f5aa6c7
 
 
 
 
3d845fb
f5aa6c7
 
 
 
3d845fb
f5aa6c7
 
 
 
 
 
 
58df7f1
 
3d845fb
 
58df7f1
 
3d845fb
58df7f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be82820
58df7f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d845fb
 
f5aa6c7
58df7f1
3d845fb
f5aa6c7
3d845fb
13fb76e
58df7f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fb76e
 
 
 
58df7f1
 
 
 
 
 
 
 
 
13fb76e
 
58df7f1
13fb76e
58df7f1
13fb76e
58df7f1
e0195cb
58df7f1
13fb76e
 
 
 
58df7f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fb76e
 
58df7f1
 
 
 
 
 
 
 
 
13fb76e
58df7f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fb76e
58df7f1
 
 
13fb76e
58df7f1
 
 
3d845fb
58df7f1
 
 
13fb76e
58df7f1
 
 
 
13fb76e
58df7f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fb76e
 
58df7f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fb76e
 
58df7f1
 
 
 
13fb76e
58df7f1
13fb76e
58df7f1
 
 
 
 
 
 
3d845fb
58df7f1
 
 
 
 
13fb76e
58df7f1
 
 
13fb76e
58df7f1
 
 
 
13fb76e
 
58df7f1
 
 
 
13fb76e
 
58df7f1
 
13fb76e
 
58df7f1
f5aa6c7
58df7f1
 
 
 
 
 
 
13fb76e
58df7f1
 
 
 
 
13fb76e
58df7f1
 
 
13fb76e
58df7f1
 
 
13fb76e
58df7f1
 
 
 
 
3d845fb
 
 
 
58df7f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d845fb
 
13fb76e
 
58df7f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import subprocess
import time
from pathlib import Path
from typing import Dict, List, Tuple, Union

import gradio as gr
import numpy as np
import pandas as pd
import requests
from symptoms_categories import SYMPTOMS_LIST
from utils import (  # pylint: disable=no-name-in-module
    CLIENT_DIR,
    CURRENT_DIR,
    DEPLOYMENT_DIR,
    INPUT_BROWSER_LIMIT,
    KEYS_DIR,
    SERVER_URL,
    TARGET_COLUMNS,
    TRAINING_FILENAME,
    clean_directory,
    get_disease_name,
    load_data,
    pretty_print,
)

from concrete.ml.deployment import FHEModelClient

subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
time.sleep(3)

# pylint: disable=c-extension-no-member
def is_nan(inputs):
    return inputs is None or (inputs is not None and len(inputs) < 1)


def get_user_symptoms_from_checkboxgroup(checkbox_symptoms) -> np.array:

    symptoms_vector = {key: 0 for key in valid_columns}

    for pretty_symptom in checkbox_symptoms:
        original_symptom = "_".join((pretty_symptom.lower().split(" ")))
        if original_symptom not in symptoms_vector.keys():
            raise KeyError(
                f"The symptom '{original_symptom}' you provided is not recognized as a valid "
                f"symptom.\nHere is the list of valid symptoms: {symptoms_vector}"
            )
        symptoms_vector[original_symptom] = 1

    user_symptoms_vect = np.fromiter(symptoms_vector.values(), dtype=float)[np.newaxis, :]

    assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten())

    return user_symptoms_vect


def fill_in_fn(default_disease, *checkbox_symptoms):

    df = pd.read_csv(TRAINING_FILENAME)
    df_filtred = df[df[TARGET_COLUMNS[1]] == default_disease]
    symptoms = pretty_print(df_filtred.columns[df_filtred.eq(1).any()].to_list())

    if any(lst for lst in checkbox_symptoms if lst):
        for sublist in checkbox_symptoms:
            symptoms.extend(sublist)

    return {box: symptoms for box in check_boxes}


def get_features(*checked_symptoms):
    if not any(lst for lst in checked_symptoms if lst):
        return {
            error_box1: gr.update(
                visible=True, value="Enter a default disease or select your own symptoms"
            ),
        }

    return {
        error_box1: gr.update(visible=False),
        user_vect_box1: get_user_symptoms_from_checkboxgroup(pretty_print(checked_symptoms)),
    }


def key_gen_fn(user_symptoms: List[str]) -> Dict:
    """
    Generate keys for a given user.

    Args:
        user_symptoms (List[str]): The vector symptoms provided by the user.

    Returns:
        dict: A dictionary containing the generated keys and related information.

    """
    clean_directory()

    if is_nan(user_symptoms):
        print("Error: Please submit your symptoms or select a default disease.")
        return {
            error_box2: gr.update(visible=True, value="Please submit your symptoms first"),
        }

    # Generate a random user ID
    user_id = np.random.randint(0, 2**32)
    print(f"Your user ID is: {user_id}....")

    client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
    client.load()

    # Creates the private and evaluation keys on the client side
    client.generate_private_and_evaluation_keys()

    # Get the serialized evaluation keys
    serialized_evaluation_keys = client.get_serialized_evaluation_keys()
    assert isinstance(serialized_evaluation_keys, bytes)

    # Save the evaluation key
    evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key"
    with evaluation_key_path.open("wb") as f:
        f.write(serialized_evaluation_keys)

    serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[:INPUT_BROWSER_LIMIT]

    return {
        error_box2: gr.update(visible=False),
        key_box: serialized_evaluation_keys_shorten_hex,
        user_id_box: user_id,
        key_len_box: f"{len(serialized_evaluation_keys) / (10**6):.2f} MB",
    }


def encrypt_fn(user_symptoms, user_id):

    if is_nan(user_id) or is_nan(user_symptoms):
        print("Error in encryption step: Provide your symptoms and generate the evaluation keys.")
        return {
            error_box3: gr.update(
                visible=True, value="Please provide your symptoms and generate the evaluation keys."
            )
        }

    # Retrieve the client API
    client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
    client.load()

    user_symptoms = np.fromstring(user_symptoms[2:-2], dtype=int, sep=".").reshape(1, -1)
    quant_user_symptoms = client.model.quantize_input(user_symptoms)

    encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms)
    assert isinstance(encrypted_quantized_user_symptoms, bytes)
    encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_symptoms"

    with encrypted_input_path.open("wb") as f:
        f.write(encrypted_quantized_user_symptoms)

    encrypted_quantized_user_symptoms_shorten_hex = encrypted_quantized_user_symptoms.hex()[
        :INPUT_BROWSER_LIMIT
    ]

    return {
        error_box3: gr.update(visible=False),
        user_vect_box2: user_symptoms,
        quant_vect_box: quant_user_symptoms,
        enc_vect_box: encrypted_quantized_user_symptoms_shorten_hex,
    }


def send_input_fn(user_id, user_symptoms):
    """Send the encrypted data and the evaluation key to the server.

    Args:
        user_id (int): The current user's ID
        user_symptoms (numpy.ndarray): The user symptoms
    """

    if is_nan(user_id) or is_nan(user_symptoms):
        return {
            error_box4: gr.update(
                visible=True,
                value="Please ensure that the evaluation key has been generated "
                "and the symptoms have been submitted before sending the data to the server",
            )
        }

    evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key"
    encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_symptoms"

    if not evaluation_key_path.is_file():
        print(
            "Error Encountered While Sending Data to the Server: "
            f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
        )

        return {error_box4: gr.update(visible=True, value="Please generate the private key first.")}

    if not encrypted_input_path.is_file():
        print(
            "Error Encountered While Sending Data to the Server: The data has not been encrypted "
            f"correctly on the client side - {encrypted_input_path.is_file()=}"
        )
        return {
            error_box4: gr.update(
                visible=True,
                value="Please encrypt the data with the private key first.",
            ),
        }

    # Define the data and files to post
    data = {
        "user_id": user_id,
        "filter": user_symptoms,
    }

    files = [
        ("files", open(encrypted_input_path, "rb")),
        ("files", open(evaluation_key_path, "rb")),
    ]

    # Send the encrypted input image and evaluation key to the server
    url = SERVER_URL + "send_input"
    with requests.post(
        url=url,
        data=data,
        files=files,
    ) as response:
        print(f"Sending Data: {response.ok=}")
    return {error_box4: gr.update(visible=False), srv_resp_send_data_box: "Data sent"}


def run_fhe_fn(user_id):
    """Send the encrypted input image as well as the evaluation key to the server.

    Args:
        user_id (int): The current user's ID.
        filter_name (str): The current filter to consider.
    """
    if is_nan(user_id):  # or is_nan(user_symptoms):
        return {
            error_box5: gr.update(
                visible=True,
                value="Please ensure that the evaluation key has been generated "
                "and the symptoms have been submitted before sending the data to the server",
            )
        }

    data = {
        "user_id": user_id,
    }

    # Trigger the FHE execution on the encrypted image previously sent

    url = SERVER_URL + "run_fhe"

    with requests.post(
        url=url,
        data=data,
    ) as response:
        if not response.ok:
            return {
                error_box5: gr.update(visible=True, value="Please wait."),
                fhe_execution_time_box: gr.update(visible=True),
            }
        else:
            print(f"response.ok: {response.ok}, {response.json()} - Computed")

    return {
        error_box5: gr.update(visible=False),
        fhe_execution_time_box: gr.update(value=f"{response.json()} seconds"),
    }


def get_output_fn(user_id, user_symptoms):
    if is_nan(user_id) or is_nan(user_symptoms):
        return {
            error_box6: gr.update(
                visible=True,
                value="Please ensure that the evaluation key has been generated "
                "and the symptoms have been submitted before sending the data to the server",
            )
        }

    data = {
        "user_id": user_id,
    }

    # Retrieve the encrypted output image
    url = SERVER_URL + "get_output"
    with requests.post(
        url=url,
        data=data,
    ) as response:
        if response.ok:
            print(f"Receive Data: {response.ok=}")

            encrypted_output = response.content

            # Save the encrypted output to bytes in a file as it is too large to pass through
            # regular Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877)
            encrypted_output_path = CLIENT_DIR / f"{user_id}_encrypted_output"

            with encrypted_output_path.open("wb") as f:
                f.write(encrypted_output)
    return {error_box6: gr.update(visible=False), srv_resp_retrieve_data_box: "Data received"}


def decrypt_fn(user_id, user_symptoms):
    if is_nan(user_id) or is_nan(user_symptoms):
        return {
            error_box7: gr.update(
                visible=True,
                value="Please ensure that the symptoms have been submitted and the evaluation "
                "key has been generated",
            )
        }

    # Get the encrypted output path

    encrypted_output_path = CLIENT_DIR / f"{user_id}_encrypted_output"

    if not encrypted_output_path.is_file():
        print("Error in decryption step: Please run the FHE execution, first.")
        return {
            error_box7: gr.update(
                visible=True,
                value="Please ensure that the symptoms have been submitted, the evaluation "
                "key has been generated and step 5 and 6 have been performed on the Server "
                "side before decrypting the prediction",
            )
        }

    # Load the encrypted output as bytes
    with encrypted_output_path.open("rb") as f:
        encrypted_output = f.read()

    # Retrieve the client API
    client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
    client.load()
    # Deserialize, decrypt and post-process the encrypted output
    output = client.deserialize_decrypt_dequantize(encrypted_output)

    return {
        error_box7: gr.update(visible=False),
        decrypt_target_box: get_disease_name(output.argmax()),
    }


def clear_all_btn():
    """Clear all the box outputs."""

    clean_directory()

    return {
        disease_box: None,
        user_id_box: None,
        user_vect_box1: None,
        user_vect_box2: None,
        quant_vect_box: None,
        enc_vect_box: None,
        key_box: None,
        key_len_box: None,
        fhe_execution_time_box: None,
        decrypt_target_box: None,
        error_box7: gr.update(visible=False),
        error_box1: gr.update(visible=False),
        error_box2: gr.update(visible=False),
        error_box3: gr.update(visible=False),
        error_box4: gr.update(visible=False),
        error_box5: gr.update(visible=False),
        error_box6: gr.update(visible=False),
        srv_resp_send_data_box: None,
        srv_resp_retrieve_data_box: None,
        **{box: None for box in check_boxes},
    }


CSS = """
#them {color: orange} 
#them {font-size: 25px} 
#them {font-weight: bold} 
.gradio-container {background-color: white}
.feedback {font-size: 3px !important}
/* #them {text-align: center} */
"""

if __name__ == "__main__":
    print("Starting demo ...")
    clean_directory()

    (_, X_train, X_test), (df_test, y_train, y_test) = load_data()

    valid_columns = X_train.columns.to_list()

    with gr.Blocks(css=CSS) as demo:

        # Link + images
        gr.Markdown(
            """
            <p align="center">
                <img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
            </p>

            <h2 align="center">Health Prediction On Encrypted Data Using Fully Homomorphic Encryption.</h2>

            <p align="center">
                <a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a>

                <a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a>

                <a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community</a>

                <a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a>
            </p>

            <p align="center">
            <img width="100%" height="30%" src="https://raw.githubusercontent.com/kcelia/Img/main/HEALTHCARE PREDICTION USING MACHINE LEARNING WITH FULLY HOMOMORPHIC ENCRYPTION.png">
            </p>
            """
        )

        with gr.Tabs(elem_id="them"):
            with gr.TabItem("1. Symptoms Selection") as feature:
                gr.Markdown("<span style='color:orange'>Client Side</span>")
                gr.Markdown("## Step 1: Provide your symptoms")
                gr.Markdown(
                    "You can provide your health condition either by checking "
                    "the symptoms available in the boxes or by selecting a known disease with "
                    "its predefined set of symptoms."
                )

                # Box symptoms
                check_boxes = []
                for i, category in enumerate(SYMPTOMS_LIST):
                    with gr.Accordion(
                        pretty_print(category.keys()), open=True, elem_classes="feedback"
                    ):
                        check_box = gr.CheckboxGroup(
                            pretty_print(category.values()),
                            label=pretty_print(category.keys()),
                            info=f"Symptoms related to `{pretty_print(category.values())}`",
                        )
                        check_boxes.append(check_box)

                error_box1 = gr.Textbox(label="Error", visible=False)

                # Default disease, picked from the dataframe
                disease_box = gr.Dropdown(list(sorted(set(df_test["prognosis"]))), label="Disease:")

                disease_box.change(
                    fn=fill_in_fn,
                    inputs=[disease_box, *check_boxes],
                    outputs=[*check_boxes],
                )

                # User symptom vector
                with gr.Row():
                    user_vect_box1 = gr.Textbox(label="User Symptoms Vector:", interactive=False)

                with gr.Row():
                    # Submit botton
                    submit_button = gr.Button("Submit")

                with gr.Row():
                    # Clear botton
                    clear_button = gr.Button("Reset")

                submit_button.click(
                    fn=get_features,
                    inputs=[*check_boxes],
                    outputs=[user_vect_box1, error_box1],
                )
            with gr.TabItem("2. Data Encryption") as encryption_tab:
                gr.Markdown("<span style='color:orange'>Client Side</span>")
                gr.Markdown("## Step 2: Generate the keys")

                gen_key_btn = gr.Button("Generate the keys")
                error_box2 = gr.Textbox(label="Error", visible=False)

                with gr.Row():
                    # User ID
                    with gr.Column(scale=1, min_width=600):
                        user_id_box = gr.Textbox(label="User ID:", interactive=False)
                    # Evaluation key size
                    with gr.Column(scale=1, min_width=600):
                        key_len_box = gr.Textbox(label="Evaluation Key Size:", interactive=False)

                with gr.Row():
                    # Evaluation key (truncated)
                    with gr.Column(scale=2, min_width=600):
                        key_box = gr.Textbox(
                            label="Evaluation key (truncated):",
                            max_lines=2,
                            interactive=False,
                        )

                gen_key_btn.click(
                    key_gen_fn,
                    inputs=user_vect_box1,
                    outputs=[
                        key_box,
                        user_id_box,
                        key_len_box,
                        error_box2,
                    ],
                )

                gr.Markdown("## Step 3: Encrypt the symptoms")

                encrypt_btn = gr.Button("Encrypt the symptoms with the private key")
                error_box3 = gr.Textbox(label="Error", visible=False)

                with gr.Row():
                    with gr.Column(scale=1, min_width=600):
                        user_vect_box2 = gr.Textbox(
                            label="User Symptoms Vector:", interactive=False
                        )

                    with gr.Column(scale=1, min_width=600):
                        quant_vect_box = gr.Textbox(label="Quantized Vector:", interactive=False)

                    with gr.Column(scale=1, min_width=600):
                        enc_vect_box = gr.Textbox(
                            label="Encrypted Vector:", max_lines=3, interactive=False
                        )

                encrypt_btn.click(
                    encrypt_fn,
                    inputs=[user_vect_box1, user_id_box],
                    outputs=[
                        user_vect_box2,
                        quant_vect_box,
                        enc_vect_box,
                        error_box3,
                    ],
                )

                gr.Markdown(
                    "## Step 4: Send the encrypted data to the "
                    "<span style='color:orange'>Server Side</span>"
                )

                error_box4 = gr.Textbox(label="Error", visible=False)

                with gr.Row().style(equal_height=False):
                    with gr.Column(scale=4):
                        send_input_btn = gr.Button("Send the encrypted data")
                    with gr.Column(scale=1):
                        srv_resp_send_data_box = gr.Checkbox(
                            label="Data Sent", show_label=False, interactive=False
                        )

                send_input_btn.click(
                    send_input_fn,
                    inputs=[user_id_box, user_vect_box1],
                    outputs=[error_box4, srv_resp_send_data_box],
                )

            with gr.TabItem("3. Processing Data") as fhe_tab:
                gr.Markdown("<span style='color:orange'>Client Side</span>")
                gr.Markdown("## Step 5: Run the FHE evaluation")

                run_fhe_btn = gr.Button("Run the FHE evaluation")
                error_box5 = gr.Textbox(label="Error", visible=False)
                fhe_execution_time_box = gr.Textbox(
                    label="Total FHE Execution Time:", interactive=False
                )

                run_fhe_btn.click(
                    run_fhe_fn,
                    inputs=[user_id_box],
                    outputs=[fhe_execution_time_box, error_box5],
                )

                gr.Markdown(
                    "## Step 6: Get the data from the <span style='color:orange'>Server</span>"
                )

                error_box6 = gr.Textbox(label="Error", visible=False)

                with gr.Row().style(equal_height=True):
                    with gr.Column(scale=4):
                        get_output_btn = gr.Button("Get data")
                    with gr.Column(scale=1):
                        srv_resp_retrieve_data_box = gr.Checkbox(
                            label="Data Received", show_label=False, interactive=False
                        )

                get_output_btn.click(
                    get_output_fn,
                    inputs=[user_id_box, user_vect_box1],
                    outputs=[srv_resp_retrieve_data_box, error_box6],
                )

            with gr.TabItem("4. Data Decryption") as decryption_tab:
                gr.Markdown("<span style='color:orange'>Client Side</span>")
                gr.Markdown("## Step 7: Decrypt the output")

                decrypt_target_btn = gr.Button("Decrypt the output")
                error_box7 = gr.Textbox(label="Error", visible=False)
                decrypt_target_box = gr.Textbox(abel="Decrypted Output:", interactive=False)

                decrypt_target_btn.click(
                    decrypt_fn,
                    inputs=[user_id_box, user_vect_box1],
                    outputs=[decrypt_target_box, error_box7],
                )

        clear_button.click(
            clear_all_btn,
            outputs=[
                user_vect_box1,
                user_vect_box2,
                disease_box,
                error_box1,
                error_box2,
                error_box3,
                error_box4,
                error_box5,
                error_box6,
                error_box7,
                user_id_box,
                key_len_box,
                key_box,
                quant_vect_box,
                enc_vect_box,
                srv_resp_send_data_box,
                srv_resp_retrieve_data_box,
                fhe_execution_time_box,
                decrypt_target_box,
                *check_boxes,
            ],
        )

        demo.launch()