team1_Dhiria / app.py
kcelia's picture
chore: update app.py
2f69603 unverified
raw
history blame
14.8 kB
import pickle as pkl
import shutil
from pathlib import Path
from time import time
from typing import List, Tuple, Union
import gradio as gr
import numpy as np
import pandas as pd
from sklearn import metrics, preprocessing
from sklearn.ensemble import RandomForestClassifier as SklearnRandomForestClassifier
from sklearn.model_selection import train_test_split
from concrete.ml.common.serialization.loaders import load, loads
from concrete.ml.deployment import FHEModelClient, FHEModelDev, FHEModelServer
from concrete.ml.sklearn import XGBClassifier as ConcreteXGBoostClassifier
path_to_model = Path("./client_folder").resolve()
import subprocess
from preprocessing import ( # pylint: disable=wrong-import-position, no-name-in-module
map_prediction,
pretty_print,
)
from symptoms_categories import SYMPTOMS_LIST
ENCRYPTED_DATA_BROWSER_LIMIT = 500
# This repository's directory
REPO_DIR = Path(__file__).parent
print(f"{REPO_DIR=}")
# subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
# time.sleep(3)
def load_data():
# Load data
df_train = pd.read_csv("./data/Training_preprocessed.csv")
df_test = pd.read_csv("./data/Testing_preprocessed.csv")
# Separate the traget from the training set
# df['prognosis] contains the name of the disease
# df['y] contains the numeric label of the disease
y_train = df_train["y"]
X_train = df_train.drop(columns=["y", "prognosis"], axis=1, errors="ignore")
y_test = df_train["y"]
X_test = df_test.drop(columns=["y", "prognosis"], axis=1, errors="ignore")
return (df_train, X_train, X_test), (df_test, y_train, y_test)
def load_model(X_train, y_train):
concrete_args = {"max_depth": 1, "n_bits": 3, "n_estimators": 3, "n_jobs": -1}
classifier = ConcreteXGBoostClassifier(**concrete_args)
classifier.fit(X_train, y_train)
circuit = classifier.compile(X_train)
return classifier, circuit
def key_gen():
# Key serialization
user_id = np.random.randint(0, 2**32)
client = FHEModelClient(path_dir=path_to_model, key_dir=f".fhe_keys/{user_id}")
client.load()
# The client first need to create the private and evaluation keys.
client.generate_private_and_evaluation_keys()
# Get the serialized evaluation keys
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
assert isinstance(serialized_evaluation_keys, bytes)
np.save(f".fhe_keys/{user_id}/eval_key.npy", serialized_evaluation_keys)
serialized_evaluation_keys_shorten = list(serialized_evaluation_keys)[:200]
serialized_evaluation_keys_shorten_hex = "".join(
f"{i:02x}" for i in serialized_evaluation_keys_shorten
)
# Evaluation keys can be quite large files but only have to be shared once with the server.
# Check the size of the evaluation keys (in MB)
return [
serialized_evaluation_keys_shorten_hex,
user_id,
f"{len(serialized_evaluation_keys) / (10**6):.2f} MB",
]
def encode_quantize_encrypt(user_symptoms, user_id):
# check if the key has been generated
client = FHEModelClient(path_dir=path_to_model, key_dir=f".fhe_keys/{user_id}")
client.load()
user_symptoms = np.fromstring(user_symptoms[2:-2], dtype=int, sep=".").reshape(1, -1)
quant_user_symptoms = client.model.quantize_input(user_symptoms)
encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms)
# print(client.model.predict(vect_x, fhe="simulate"), client.model.predict(vect_x, fhe="execute"))
# pred_s = client.model.fhe_circuit.simulate(quant_vect)
# pred_fhe = client.model.fhe_circuit.encrypt_run_decrypt(quant_vect) #
# non alpha -> \X1124, base64 ou en exa
# Compute size
np.save(f".fhe_keys/{user_id}/encrypted_quant_vect.npy", encrypted_quantized_user_symptoms)
encrypted_quantized_encoding_shorten = list(encrypted_quantized_user_symptoms)[:200]
encrypted_quantized_encoding_shorten_hex = "".join(
f"{i:02x}" for i in encrypted_quantized_encoding_shorten
)
return user_symptoms, quant_user_symptoms, encrypted_quantized_encoding_shorten_hex
def decrypt_prediction(encrypted_quantized_vect, user_id):
fhe_api = FHEModelClient(path_dir=path_to_model, key_dir=f".fhe_keys/{user_id}")
fhe_api.load()
fhe_api.generate_private_and_evaluation_keys(force=False)
predictions = fhe_api.deserialize_decrypt_dequantize(encrypted_quantized_vect)
return predictions
def get_user_vect_symptoms_from_checkboxgroup(*user_symptoms) -> np.array:
symptoms_vector = {key: 0 for key in valid_columns}
for symptom_box in user_symptoms:
for pretty_symptom in symptom_box:
symptom = "_".join((pretty_symptom.lower().split(" ")))
if symptom not in symptoms_vector.keys():
raise KeyError(
f"The symptom '{symptom}' you provided is not recognized as a valid "
f"symptom.\nHere is the list of valid symptoms: {symptoms_vector}"
)
symptoms_vector[symptom] = 1.0
user_symptoms_vect = np.fromiter(symptoms_vector.values(), dtype=float)[np.newaxis, :]
assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten())
return user_symptoms_vect
def get_user_vect_symptoms_from_default_disease(disease):
user_symptom_vector = df_test[df_test["prognosis"] == disease].iloc[0].values
user_symptoms_vect = np.fromiter(user_symptom_vector[:-2], dtype=float)[np.newaxis, :]
assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten())
return user_symptoms_vect
def get_user_symptoms_from_default_disease(disease):
df_filtred = df_test[df_test["prognosis"] == disease]
columns_with_1 = df_filtred.columns[df_filtred.eq(1).any()].to_list()
return pretty_print(columns_with_1)
def get_user_symptoms_vector(selected_default_disease, *selected_symptoms):
if any(lst for lst in selected_symptoms if lst) and (
selected_default_disease is not None and len(selected_default_disease) > 0
):
# If the user has already selected a disease and added more symptoms, raise an error
if set(pretty_print(selected_symptoms)) - set(
get_user_symptoms_from_default_disease(selected_default_disease)
):
return {
user_vector_textbox: gr.update(value="An error occurs"),
error_box: gr.update(
visible=True, value="Enter a default disease or select your own symptoms"
),
}
# If the user has not selected a default disease or symptoms, an error is raised.
if not any(lst for lst in selected_symptoms if lst) and (
selected_default_disease is None
or (selected_default_disease is not None and len(selected_default_disease) < 1)
):
return {
user_vector_textbox: gr.update(value="An error occurs"),
error_box: gr.update(
visible=True, value="Enter a default disease or select your own symptoms"
),
}
# Case 1: The user has checked his own symptoms
if any(lst for lst in selected_symptoms if lst):
return {
user_vector_textbox: get_user_vect_symptoms_from_checkboxgroup(*selected_symptoms),
}
# Case 2: The user has selected a default disease
if selected_default_disease is not None and len(selected_default_disease) > 0:
return {
user_vector_textbox: get_user_vect_symptoms_from_default_disease(
selected_default_disease
),
error_box: gr.update(visible=False),
**{
box: get_user_symptoms_from_default_disease(selected_default_disease)
for box in check_boxes
},
}
def clear_all_buttons():
return {
user_id_textbox: None,
eval_key_textbox: None,
eval_key_len_textbox: None,
user_vector_textbox: None,
box_default: None,
error_box: gr.update(visible=False),
**{box: None for box in check_boxes},
}
if __name__ == "__main__":
print("Starting demo ...")
(df_train, X_train, X_test), (df_test, y_train, y_test) = load_data()
valid_columns = X_train.columns.to_list()
with gr.Blocks() as demo:
# Link + images
gr.Markdown(
"""
<p align="center">
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
</p>
<h2 align="center">Health Prediction On Encrypted Data Using Homomorphic Encryption.</h2>
<p align="center">
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a>
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a>
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community</a>
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a>
</p>
<p align="center">
<img src="https://raw.githubusercontent.com/kcelia/Img/main/demo-img2.png" width="60%" height="60%">
</p>
"""
)
# Gentle introduction
gr.Markdown("## Introduction")
gr.Markdown("""Blablabla""")
# User symptoms
gr.Markdown("# Step 1: Provide your symptoms")
gr.Markdown("Client side")
# Default disease, picked from the dataframe
with gr.Row():
default_diseases = list(set(df_test["prognosis"]))
box_default = gr.Dropdown(default_diseases, label="Disease")
# Box symptoms
check_boxes = []
for i, category in enumerate(SYMPTOMS_LIST):
check_box = gr.CheckboxGroup(
pretty_print(category.values()),
label=pretty_print(category.keys()),
info=f"Symptoms related to `{pretty_print(category.values())}`",
max_batch_size=45,
)
check_boxes.append(check_box)
# User symptom vector
with gr.Row():
user_vector_textbox = gr.Textbox(
label="User symptoms (vector)",
interactive=False,
max_lines=100,
)
error_box = gr.Textbox(label="Error", visible=False)
with gr.Row():
# Submit botton
with gr.Column():
submit_button = gr.Button("Submit")
# Clear botton
with gr.Column():
clear_button = gr.Button("Clear", style="background-color: yellow;")
# Click submit botton
submit_button.click(
fn=get_user_symptoms_vector,
inputs=[box_default, *check_boxes],
outputs=[user_vector_textbox, error_box, *check_boxes],
)
# Load the model
concrete_classifier = load(
open("ConcreteXGBoostClassifier.pkl", "r", encoding="utf-8")
)
gr.Markdown("# Step 2: Generate the keys")
gr.Markdown("Client side")
gen_key = gr.Button("Generate the keys and send public part to server")
with gr.Row():
# User ID
with gr.Column(scale=1, min_width=600):
user_id_textbox = gr.Textbox(
label="User ID:",
max_lines=4,
interactive=False,
)
# Evaluation key size
with gr.Column(scale=1, min_width=600):
eval_key_len_textbox = gr.Textbox(
label="Evaluation key size:", max_lines=4, interactive=False
)
with gr.Row():
# Evaluation key (truncated)
with gr.Column(scale=2, min_width=600):
eval_key_textbox = gr.Textbox(
label="Evaluation key (truncated):",
max_lines=4,
interactive=False,
)
gen_key.click(key_gen, outputs=[eval_key_textbox, user_id_textbox, eval_key_len_textbox])
clear_button.click(
clear_all_buttons,
outputs=[
user_id_textbox,
user_vector_textbox,
eval_key_textbox,
eval_key_len_textbox,
box_default,
error_box,
*check_boxes,
],
)
gr.Markdown("# Step 3: Encode the message with the private key")
gr.Markdown("Client side")
encode_msg = gr.Button("Generate the keys and send public part to server")
with gr.Row():
with gr.Column(scale=1, min_width=600):
vect_textbox = gr.Textbox(
label="Vector:",
max_lines=4,
interactive=False,
)
with gr.Column(scale=1, min_width=600):
quant_vect_textbox = gr.Textbox(
label="Quant vector:", max_lines=4, interactive=False
)
with gr.Column(scale=1, min_width=600):
encrypted_vect_textbox = gr.Textbox(
label="Encrypted vector:", max_lines=4, interactive=False
)
encode_msg.click(
encode_quantize_encrypt,
inputs=[user_vector_textbox, user_id_textbox],
outputs=[vect_textbox, quant_vect_textbox, encrypted_vect_textbox],
)
gr.Markdown("# Step 4: Run the FHE evaluation")
gr.Markdown("Server side")
run_fhe = gr.Button("Run the FHE evaluation")
gr.Markdown("# Step 5: Decrypt the sentiment")
gr.Markdown("Server side")
decrypt_target_botton = gr.Button("Decrypt the sentiment")
decrypt_target_textbox = gr.Textbox(
label="Encrypted vector:", max_lines=4, interactive=False
)
decrypt_target_botton.click(
decrypt_prediction,
inputs=[encrypted_vect_textbox, user_id_textbox],
outputs=[decrypt_target_textbox],
)
demo.launch()