Spaces:
Sleeping
Sleeping
import pickle as pkl | |
import shutil | |
from pathlib import Path | |
from time import time | |
from typing import List, Tuple, Union | |
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
from sklearn import metrics, preprocessing | |
from sklearn.ensemble import RandomForestClassifier as SklearnRandomForestClassifier | |
from sklearn.model_selection import train_test_split | |
from concrete.ml.common.serialization.loaders import load, loads | |
from concrete.ml.deployment import FHEModelClient, FHEModelDev, FHEModelServer | |
from concrete.ml.sklearn import XGBClassifier as ConcreteXGBoostClassifier | |
path_to_model = Path("./client_folder").resolve() | |
import subprocess | |
from preprocessing import ( # pylint: disable=wrong-import-position, no-name-in-module | |
map_prediction, | |
pretty_print, | |
) | |
from symptoms_categories import SYMPTOMS_LIST | |
ENCRYPTED_DATA_BROWSER_LIMIT = 500 | |
# This repository's directory | |
REPO_DIR = Path(__file__).parent | |
print(f"{REPO_DIR=}") | |
# subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR) | |
# time.sleep(3) | |
def load_data(): | |
# Load data | |
df_train = pd.read_csv("./data/Training_preprocessed.csv") | |
df_test = pd.read_csv("./data/Testing_preprocessed.csv") | |
# Separate the traget from the training set | |
# df['prognosis] contains the name of the disease | |
# df['y] contains the numeric label of the disease | |
y_train = df_train["y"] | |
X_train = df_train.drop(columns=["y", "prognosis"], axis=1, errors="ignore") | |
y_test = df_train["y"] | |
X_test = df_test.drop(columns=["y", "prognosis"], axis=1, errors="ignore") | |
return (df_train, X_train, X_test), (df_test, y_train, y_test) | |
def load_model(X_train, y_train): | |
concrete_args = {"max_depth": 1, "n_bits": 3, "n_estimators": 3, "n_jobs": -1} | |
classifier = ConcreteXGBoostClassifier(**concrete_args) | |
classifier.fit(X_train, y_train) | |
circuit = classifier.compile(X_train) | |
return classifier, circuit | |
def key_gen(): | |
# Key serialization | |
user_id = np.random.randint(0, 2**32) | |
client = FHEModelClient(path_dir=path_to_model, key_dir=f".fhe_keys/{user_id}") | |
client.load() | |
# The client first need to create the private and evaluation keys. | |
client.generate_private_and_evaluation_keys() | |
# Get the serialized evaluation keys | |
serialized_evaluation_keys = client.get_serialized_evaluation_keys() | |
assert isinstance(serialized_evaluation_keys, bytes) | |
np.save(f".fhe_keys/{user_id}/eval_key.npy", serialized_evaluation_keys) | |
serialized_evaluation_keys_shorten = list(serialized_evaluation_keys)[:200] | |
serialized_evaluation_keys_shorten_hex = "".join( | |
f"{i:02x}" for i in serialized_evaluation_keys_shorten | |
) | |
# Evaluation keys can be quite large files but only have to be shared once with the server. | |
# Check the size of the evaluation keys (in MB) | |
return [ | |
serialized_evaluation_keys_shorten_hex, | |
user_id, | |
f"{len(serialized_evaluation_keys) / (10**6):.2f} MB", | |
] | |
def encode_quantize_encrypt(user_symptoms, user_id): | |
# check if the key has been generated | |
client = FHEModelClient(path_dir=path_to_model, key_dir=f".fhe_keys/{user_id}") | |
client.load() | |
user_symptoms = np.fromstring(user_symptoms[2:-2], dtype=int, sep=".").reshape(1, -1) | |
quant_user_symptoms = client.model.quantize_input(user_symptoms) | |
encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms) | |
# print(client.model.predict(vect_x, fhe="simulate"), client.model.predict(vect_x, fhe="execute")) | |
# pred_s = client.model.fhe_circuit.simulate(quant_vect) | |
# pred_fhe = client.model.fhe_circuit.encrypt_run_decrypt(quant_vect) # | |
# non alpha -> \X1124, base64 ou en exa | |
# Compute size | |
np.save(f".fhe_keys/{user_id}/encrypted_quant_vect.npy", encrypted_quantized_user_symptoms) | |
encrypted_quantized_encoding_shorten = list(encrypted_quantized_user_symptoms)[:200] | |
encrypted_quantized_encoding_shorten_hex = "".join( | |
f"{i:02x}" for i in encrypted_quantized_encoding_shorten | |
) | |
return user_symptoms, quant_user_symptoms, encrypted_quantized_encoding_shorten_hex | |
def decrypt_prediction(encrypted_quantized_vect, user_id): | |
fhe_api = FHEModelClient(path_dir=path_to_model, key_dir=f".fhe_keys/{user_id}") | |
fhe_api.load() | |
fhe_api.generate_private_and_evaluation_keys(force=False) | |
predictions = fhe_api.deserialize_decrypt_dequantize(encrypted_quantized_vect) | |
return predictions | |
def get_user_vect_symptoms_from_checkboxgroup(*user_symptoms) -> np.array: | |
symptoms_vector = {key: 0 for key in valid_columns} | |
for symptom_box in user_symptoms: | |
for pretty_symptom in symptom_box: | |
symptom = "_".join((pretty_symptom.lower().split(" "))) | |
if symptom not in symptoms_vector.keys(): | |
raise KeyError( | |
f"The symptom '{symptom}' you provided is not recognized as a valid " | |
f"symptom.\nHere is the list of valid symptoms: {symptoms_vector}" | |
) | |
symptoms_vector[symptom] = 1.0 | |
user_symptoms_vect = np.fromiter(symptoms_vector.values(), dtype=float)[np.newaxis, :] | |
assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten()) | |
return user_symptoms_vect | |
def get_user_vect_symptoms_from_default_disease(disease): | |
user_symptom_vector = df_test[df_test["prognosis"] == disease].iloc[0].values | |
user_symptoms_vect = np.fromiter(user_symptom_vector[:-2], dtype=float)[np.newaxis, :] | |
assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten()) | |
return user_symptoms_vect | |
def get_user_symptoms_from_default_disease(disease): | |
df_filtred = df_test[df_test["prognosis"] == disease] | |
columns_with_1 = df_filtred.columns[df_filtred.eq(1).any()].to_list() | |
return pretty_print(columns_with_1) | |
def get_user_symptoms_vector(selected_default_disease, *selected_symptoms): | |
if any(lst for lst in selected_symptoms if lst) and ( | |
selected_default_disease is not None and len(selected_default_disease) > 0 | |
): | |
# If the user has already selected a disease and added more symptoms, raise an error | |
if set(pretty_print(selected_symptoms)) - set( | |
get_user_symptoms_from_default_disease(selected_default_disease) | |
): | |
return { | |
user_vector_textbox: gr.update(value="An error occurs"), | |
error_box: gr.update( | |
visible=True, value="Enter a default disease or select your own symptoms" | |
), | |
} | |
# If the user has not selected a default disease or symptoms, an error is raised. | |
if not any(lst for lst in selected_symptoms if lst) and ( | |
selected_default_disease is None | |
or (selected_default_disease is not None and len(selected_default_disease) < 1) | |
): | |
return { | |
user_vector_textbox: gr.update(value="An error occurs"), | |
error_box: gr.update( | |
visible=True, value="Enter a default disease or select your own symptoms" | |
), | |
} | |
# Case 1: The user has checked his own symptoms | |
if any(lst for lst in selected_symptoms if lst): | |
return { | |
user_vector_textbox: get_user_vect_symptoms_from_checkboxgroup(*selected_symptoms), | |
} | |
# Case 2: The user has selected a default disease | |
if selected_default_disease is not None and len(selected_default_disease) > 0: | |
return { | |
user_vector_textbox: get_user_vect_symptoms_from_default_disease( | |
selected_default_disease | |
), | |
error_box: gr.update(visible=False), | |
**{ | |
box: get_user_symptoms_from_default_disease(selected_default_disease) | |
for box in check_boxes | |
}, | |
} | |
def clear_all_buttons(): | |
return { | |
user_id_textbox: None, | |
eval_key_textbox: None, | |
eval_key_len_textbox: None, | |
user_vector_textbox: None, | |
box_default: None, | |
error_box: gr.update(visible=False), | |
**{box: None for box in check_boxes}, | |
} | |
if __name__ == "__main__": | |
print("Starting demo ...") | |
(df_train, X_train, X_test), (df_test, y_train, y_test) = load_data() | |
valid_columns = X_train.columns.to_list() | |
with gr.Blocks() as demo: | |
# Link + images | |
gr.Markdown( | |
""" | |
<p align="center"> | |
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png"> | |
</p> | |
<h2 align="center">Health Prediction On Encrypted Data Using Homomorphic Encryption.</h2> | |
<p align="center"> | |
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a> | |
— | |
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a> | |
— | |
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community</a> | |
— | |
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a> | |
</p> | |
<p align="center"> | |
<img src="https://raw.githubusercontent.com/kcelia/Img/main/demo-img2.png" width="60%" height="60%"> | |
</p> | |
""" | |
) | |
# Gentle introduction | |
gr.Markdown("## Introduction") | |
gr.Markdown("""Blablabla""") | |
# User symptoms | |
gr.Markdown("# Step 1: Provide your symptoms") | |
gr.Markdown("Client side") | |
# Default disease, picked from the dataframe | |
with gr.Row(): | |
default_diseases = list(set(df_test["prognosis"])) | |
box_default = gr.Dropdown(default_diseases, label="Disease") | |
# Box symptoms | |
check_boxes = [] | |
for i, category in enumerate(SYMPTOMS_LIST): | |
check_box = gr.CheckboxGroup( | |
pretty_print(category.values()), | |
label=pretty_print(category.keys()), | |
info=f"Symptoms related to `{pretty_print(category.values())}`", | |
max_batch_size=45, | |
) | |
check_boxes.append(check_box) | |
# User symptom vector | |
with gr.Row(): | |
user_vector_textbox = gr.Textbox( | |
label="User symptoms (vector)", | |
interactive=False, | |
max_lines=100, | |
) | |
error_box = gr.Textbox(label="Error", visible=False) | |
with gr.Row(): | |
# Submit botton | |
with gr.Column(): | |
submit_button = gr.Button("Submit") | |
# Clear botton | |
with gr.Column(): | |
clear_button = gr.Button("Clear", style="background-color: yellow;") | |
# Click submit botton | |
submit_button.click( | |
fn=get_user_symptoms_vector, | |
inputs=[box_default, *check_boxes], | |
outputs=[user_vector_textbox, error_box, *check_boxes], | |
) | |
# Load the model | |
concrete_classifier = load( | |
open("ConcreteXGBoostClassifier.pkl", "r", encoding="utf-8") | |
) | |
gr.Markdown("# Step 2: Generate the keys") | |
gr.Markdown("Client side") | |
gen_key = gr.Button("Generate the keys and send public part to server") | |
with gr.Row(): | |
# User ID | |
with gr.Column(scale=1, min_width=600): | |
user_id_textbox = gr.Textbox( | |
label="User ID:", | |
max_lines=4, | |
interactive=False, | |
) | |
# Evaluation key size | |
with gr.Column(scale=1, min_width=600): | |
eval_key_len_textbox = gr.Textbox( | |
label="Evaluation key size:", max_lines=4, interactive=False | |
) | |
with gr.Row(): | |
# Evaluation key (truncated) | |
with gr.Column(scale=2, min_width=600): | |
eval_key_textbox = gr.Textbox( | |
label="Evaluation key (truncated):", | |
max_lines=4, | |
interactive=False, | |
) | |
gen_key.click(key_gen, outputs=[eval_key_textbox, user_id_textbox, eval_key_len_textbox]) | |
clear_button.click( | |
clear_all_buttons, | |
outputs=[ | |
user_id_textbox, | |
user_vector_textbox, | |
eval_key_textbox, | |
eval_key_len_textbox, | |
box_default, | |
error_box, | |
*check_boxes, | |
], | |
) | |
gr.Markdown("# Step 3: Encode the message with the private key") | |
gr.Markdown("Client side") | |
encode_msg = gr.Button("Generate the keys and send public part to server") | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=600): | |
vect_textbox = gr.Textbox( | |
label="Vector:", | |
max_lines=4, | |
interactive=False, | |
) | |
with gr.Column(scale=1, min_width=600): | |
quant_vect_textbox = gr.Textbox( | |
label="Quant vector:", max_lines=4, interactive=False | |
) | |
with gr.Column(scale=1, min_width=600): | |
encrypted_vect_textbox = gr.Textbox( | |
label="Encrypted vector:", max_lines=4, interactive=False | |
) | |
encode_msg.click( | |
encode_quantize_encrypt, | |
inputs=[user_vector_textbox, user_id_textbox], | |
outputs=[vect_textbox, quant_vect_textbox, encrypted_vect_textbox], | |
) | |
gr.Markdown("# Step 4: Run the FHE evaluation") | |
gr.Markdown("Server side") | |
run_fhe = gr.Button("Run the FHE evaluation") | |
gr.Markdown("# Step 5: Decrypt the sentiment") | |
gr.Markdown("Server side") | |
decrypt_target_botton = gr.Button("Decrypt the sentiment") | |
decrypt_target_textbox = gr.Textbox( | |
label="Encrypted vector:", max_lines=4, interactive=False | |
) | |
decrypt_target_botton.click( | |
decrypt_prediction, | |
inputs=[encrypted_vect_textbox, user_id_textbox], | |
outputs=[decrypt_target_textbox], | |
) | |
demo.launch() | |