Spaces:
Sleeping
Sleeping
"""Server that will listen for GET and POST requests from the client.""" | |
import time | |
from typing import List | |
from fastapi import FastAPI, File, Form, UploadFile | |
from fastapi.responses import JSONResponse, Response | |
from utils import DEPLOYMENT_DIR_MODEL1, DEPLOYMENT_DIR_MODEL2, DEPLOYMENT_DIR_MODEL3, SERVER_DIR # pylint: disable=no-name-in-module | |
from concrete.ml.deployment import FHEModelServer | |
# Load the FHE server | |
FHE_SERVER_MODEL1 = FHEModelServer(DEPLOYMENT_DIR_MODEL1) | |
FHE_SERVER_MODEL2 = FHEModelServer(DEPLOYMENT_DIR_MODEL2) | |
FHE_SERVER_MODEL3 = FHEModelServer(DEPLOYMENT_DIR_MODEL3) | |
# Initialize an instance of FastAPI | |
app = FastAPI() | |
# Define the default route | |
def root(): | |
""" | |
Root endpoint of the health prediction API. | |
Returns: | |
dict: The welcome message. | |
""" | |
return {"message": "Welcome to your disease prediction with FHE made by Dhiria with love!"} | |
def send_input_first_layer( | |
user_id: str = Form(), | |
files: List[UploadFile] = File(), | |
): | |
"""Send the inputs of the first layer of the hierarchical models to the server. | |
Order of the files: | |
files[0]: encrypted input_model1 | |
files[1]: encrypted input_model2 | |
files[2]: evaluation keys | |
""" | |
print('Receiving data for the first layer of models...') | |
# Receive the Client's files (Evaluation key + Encrypted inputs for the models) | |
evaluation_key_path_1 = SERVER_DIR / f"{user_id}_evaluation_key_1" | |
evaluation_key_path_2 = SERVER_DIR / f"{user_id}_evaluation_key_2" | |
encrypted_input_path_model1 = SERVER_DIR / f"{user_id}_encrypted_input_model1" | |
encrypted_input_path_model2 = SERVER_DIR / f"{user_id}_encrypted_input_model2" | |
# Save the files using the above paths | |
with encrypted_input_path_model1.open("wb") as encrypted_input_model1, \ | |
encrypted_input_path_model2.open("wb") as encrypted_input_model2, \ | |
evaluation_key_path_1.open("wb") as evaluation_key_1, \ | |
evaluation_key_path_2.open("wb") as evaluation_key_2: | |
encrypted_input_model1.write(files[0].file.read()) | |
encrypted_input_model2.write(files[1].file.read()) | |
evaluation_key_1.write(files[2].file.read()) | |
evaluation_key_2.write(files[3].file.read()) | |
def send_input_second_layer( | |
user_id: str = Form(), | |
files: List[UploadFile] = File(), | |
): | |
"""Send the input of the second layer of the hierarchical models to the server. | |
Order of the files: | |
files[0]: encrypted input_model1 | |
files[1]: evaluation keys | |
""" | |
print('Receiving data for the second layer of models...') | |
# Receive the Client's files (Evaluation key + Encrypted inputs for the models) | |
evaluation_key_path = SERVER_DIR / f"{user_id}_evaluation_key_second_layer" | |
encrypted_input_path_model3 = SERVER_DIR / f"{user_id}_encrypted_input_model3" | |
# Save the files using the above paths | |
with encrypted_input_path_model3.open("wb") as encrypted_input_model3, \ | |
evaluation_key_path.open("wb") as evaluation_key: | |
encrypted_input_model3.write(files[0].file.read()) | |
evaluation_key.write(files[1].file.read()) | |
def run_fhe_first_layer( | |
user_id: str = Form(), | |
): | |
"""Inference in FHE.""" | |
print("\nRun in FHE in the server ............\n") | |
evaluation_key_path_1 = SERVER_DIR / f"{user_id}_evaluation_key_1" | |
evaluation_key_path_2 = SERVER_DIR / f"{user_id}_evaluation_key_2" | |
encrypted_input_path_model1 = SERVER_DIR / f"{user_id}_encrypted_input_model1" | |
encrypted_input_path_model2 = SERVER_DIR / f"{user_id}_encrypted_input_model2" | |
# Read the files (Evaluation key + Encrypted symptoms) using the above paths | |
with encrypted_input_path_model1.open("rb") as encrypted_output_file_model1, \ | |
encrypted_input_path_model2.open("rb") as encrypted_output_file_model2, \ | |
evaluation_key_path_1.open("rb") as evaluation_key_file_1, \ | |
evaluation_key_path_2.open("rb") as evaluation_key_file_2: | |
encrypted_output_model1 = encrypted_output_file_model1.read() | |
encrypted_output_model2 = encrypted_output_file_model2.read() | |
evaluation_key_1 = evaluation_key_file_1.read() | |
evaluation_key_2 = evaluation_key_file_2.read() | |
# Run the FHE execution of the first layer of models | |
start = time.time() | |
encrypted_output_model1 = FHE_SERVER_MODEL1.run(encrypted_output_model1, evaluation_key_1) | |
encrypted_output_model2 = FHE_SERVER_MODEL2.run(encrypted_output_model2, evaluation_key_2) | |
assert isinstance(encrypted_output_model1, bytes) | |
assert isinstance(encrypted_output_model2, bytes) | |
fhe_execution_time = round(time.time() - start, 2) | |
# Retrieve the encrypted output path | |
encrypted_output_path_model1 = SERVER_DIR / f"{user_id}_encrypted_output_model1" | |
encrypted_output_path_model2 = SERVER_DIR / f"{user_id}_encrypted_output_model2" | |
# Write the file using the above path | |
with encrypted_output_path_model1.open("wb") as f1, \ | |
encrypted_output_path_model2.open("wb") as f2: | |
f1.write(encrypted_output_model1) | |
f2.write(encrypted_output_model2) | |
return JSONResponse(content=fhe_execution_time) | |
def run_fhe_second_layer( | |
user_id: str = Form(), | |
): | |
"""Inference in FHE.""" | |
print("\nRun in FHE in the server ............\n") | |
evaluation_key_path = SERVER_DIR / f"{user_id}_evaluation_key_second_layer" | |
encrypted_input_path = SERVER_DIR / f"{user_id}_encrypted_input_model3" | |
# Read the files (Evaluation key + Encrypted symptoms) using the above paths | |
with encrypted_input_path.open("rb") as encrypted_output_file, \ | |
evaluation_key_path.open("rb") as evaluation_key_file: | |
encrypted_output = encrypted_output_file.read() | |
evaluation_key = evaluation_key_file.read() | |
# Run the FHE execution | |
start = time.time() | |
encrypted_output = FHE_SERVER_MODEL3.run(encrypted_output, evaluation_key) | |
assert isinstance(encrypted_output, bytes) | |
fhe_execution_time = round(time.time() - start, 2) | |
# Retrieve the encrypted output path | |
encrypted_output_path = SERVER_DIR / f"{user_id}_encrypted_output_model3" | |
# Write the file using the above path | |
with encrypted_output_path.open("wb") as f: | |
f.write(encrypted_output) | |
return JSONResponse(content=fhe_execution_time) | |
def get_output_first_layer_1(user_id: str = Form()): | |
"""Retrieve the encrypted outputs of the first layers of models from the server.""" | |
print("\nGet the output from the server ............\n") | |
# Path where the encrypted output is saved | |
encrypted_output_path_model1 = SERVER_DIR / f"{user_id}_encrypted_output_model1" | |
# encrypted_output_path_model2 = SERVER_DIR / f"{user_id}_encrypted_output_model2" | |
# Read the file using the above path | |
with encrypted_output_path_model1.open("rb") as f1: | |
# encrypted_output_path_model2.open("rb") as f2: | |
encrypted_output_1 = f1.read() | |
# encrypted_output_2 = f2.read() | |
time.sleep(1) | |
# Send the encrypted output | |
return Response(encrypted_output_1) | |
def get_output_first_layer_2(user_id: str = Form()): | |
"""Retrieve the encrypted outputs of the first layers of models from the server.""" | |
print("\nGet the output from the server ............\n") | |
# Path where the encrypted output is saved | |
# encrypted_output_path_model1 = SERVER_DIR / f"{user_id}_encrypted_output_model1" | |
encrypted_output_path_model2 = SERVER_DIR / f"{user_id}_encrypted_output_model2" | |
# Read the file using the above path | |
with encrypted_output_path_model2.open("rb") as f2: | |
# encrypted_output_path_model2.open("rb") as f2: | |
# encrypted_output_1 = f1.read() | |
encrypted_output_2 = f2.read() | |
time.sleep(1) | |
# Send the encrypted output | |
return Response(encrypted_output_2) | |
def get_output_second_layer(user_id: str = Form()): | |
"""Retrieve the encrypted outputs of the first layers of models from the server.""" | |
print("\nGet the output from the server ............\n") | |
# Path where the encrypted output is saved | |
encrypted_output_path = SERVER_DIR / f"{user_id}_encrypted_output_model3" | |
# Read the file using the above path | |
with encrypted_output_path.open("rb") as f: | |
encrypted_output = f.read() | |
time.sleep(1) | |
# Send the encrypted output | |
return Response(encrypted_output) | |