chatGPT / modules /llama_func.py
ppsantiago's picture
Duplicate from dearfattiger/chatGPT
c4445de
import os
import logging
from llama_index import GPTSimpleVectorIndex, ServiceContext
from llama_index import download_loader
from llama_index import (
Document,
LLMPredictor,
PromptHelper,
QuestionAnswerPrompt,
RefinePrompt,
)
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
import colorama
import PyPDF2
from tqdm import tqdm
from modules.presets import *
from modules.utils import *
def get_index_name(file_src):
file_paths = [x.name for x in file_src]
file_paths.sort(key=lambda x: os.path.basename(x))
md5_hash = hashlib.md5()
for file_path in file_paths:
with open(file_path, "rb") as f:
while chunk := f.read(8192):
md5_hash.update(chunk)
return md5_hash.hexdigest()
def block_split(text):
blocks = []
while len(text) > 0:
blocks.append(Document(text[:1000]))
text = text[1000:]
return blocks
def get_documents(file_src):
documents = []
logging.debug("Loading documents...")
logging.debug(f"file_src: {file_src}")
for file in file_src:
logging.info(f"loading file: {file.name}")
if os.path.splitext(file.name)[1] == ".pdf":
logging.debug("Loading PDF...")
pdftext = ""
with open(file.name, 'rb') as pdfFileObj:
pdfReader = PyPDF2.PdfReader(pdfFileObj)
for page in tqdm(pdfReader.pages):
pdftext += page.extract_text()
text_raw = pdftext
elif os.path.splitext(file.name)[1] == ".docx":
logging.debug("Loading DOCX...")
DocxReader = download_loader("DocxReader")
loader = DocxReader()
text_raw = loader.load_data(file=file.name)[0].text
elif os.path.splitext(file.name)[1] == ".epub":
logging.debug("Loading EPUB...")
EpubReader = download_loader("EpubReader")
loader = EpubReader()
text_raw = loader.load_data(file=file.name)[0].text
else:
logging.debug("Loading text file...")
with open(file.name, "r", encoding="utf-8") as f:
text_raw = f.read()
text = add_space(text_raw)
# text = block_split(text)
# documents += text
documents += [Document(text)]
logging.debug("Documents loaded.")
return documents
def construct_index(
api_key,
file_src,
max_input_size=4096,
num_outputs=5,
max_chunk_overlap=20,
chunk_size_limit=600,
embedding_limit=None,
separator=" "
):
os.environ["OPENAI_API_KEY"] = api_key
chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit
embedding_limit = None if embedding_limit == 0 else embedding_limit
separator = " " if separator == "" else separator
llm_predictor = LLMPredictor(
llm=ChatOpenAI(model_name="gpt-3.5-turbo-0301", openai_api_key=api_key)
)
prompt_helper = PromptHelper(max_input_size = max_input_size, num_output = num_outputs, max_chunk_overlap = max_chunk_overlap, embedding_limit=embedding_limit, chunk_size_limit=600, separator=separator)
index_name = get_index_name(file_src)
if os.path.exists(f"./index/{index_name}.json"):
logging.info("找到了缓存的索引文件,加载中……")
return GPTSimpleVectorIndex.load_from_disk(f"./index/{index_name}.json")
else:
try:
documents = get_documents(file_src)
logging.info("构建索引中……")
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper, chunk_size_limit=chunk_size_limit)
index = GPTSimpleVectorIndex.from_documents(
documents, service_context=service_context
)
logging.debug("索引构建完成!")
os.makedirs("./index", exist_ok=True)
index.save_to_disk(f"./index/{index_name}.json")
logging.debug("索引已保存至本地!")
return index
except Exception as e:
logging.error("索引构建失败!", e)
print(e)
return None
def chat_ai(
api_key,
index,
question,
context,
chatbot,
reply_language,
):
os.environ["OPENAI_API_KEY"] = api_key
logging.info(f"Question: {question}")
response, chatbot_display, status_text = ask_ai(
api_key,
index,
question,
replace_today(PROMPT_TEMPLATE),
REFINE_TEMPLATE,
SIM_K,
INDEX_QUERY_TEMPRATURE,
context,
reply_language,
)
if response is None:
status_text = "查询失败,请换个问法试试"
return context, chatbot
response = response
context.append({"role": "user", "content": question})
context.append({"role": "assistant", "content": response})
chatbot.append((question, chatbot_display))
os.environ["OPENAI_API_KEY"] = ""
return context, chatbot, status_text
def ask_ai(
api_key,
index,
question,
prompt_tmpl,
refine_tmpl,
sim_k=5,
temprature=0,
prefix_messages=[],
reply_language="中文",
):
os.environ["OPENAI_API_KEY"] = api_key
logging.debug("Index file found")
logging.debug("Querying index...")
llm_predictor = LLMPredictor(
llm=ChatOpenAI(
temperature=temprature,
model_name="gpt-3.5-turbo-0301",
prefix_messages=prefix_messages,
)
)
response = None # Initialize response variable to avoid UnboundLocalError
qa_prompt = QuestionAnswerPrompt(prompt_tmpl.replace("{reply_language}", reply_language))
rf_prompt = RefinePrompt(refine_tmpl.replace("{reply_language}", reply_language))
response = index.query(
question,
similarity_top_k=sim_k,
text_qa_template=qa_prompt,
refine_template=rf_prompt,
response_mode="compact",
)
if response is not None:
logging.info(f"Response: {response}")
ret_text = response.response
nodes = []
for index, node in enumerate(response.source_nodes):
brief = node.source_text[:25].replace("\n", "")
nodes.append(
f"<details><summary>[{index + 1}]\t{brief}...</summary><p>{node.source_text}</p></details>"
)
new_response = ret_text + "\n----------\n" + "\n\n".join(nodes)
logging.info(
f"Response: {colorama.Fore.BLUE}{ret_text}{colorama.Style.RESET_ALL}"
)
os.environ["OPENAI_API_KEY"] = ""
return ret_text, new_response, f"查询消耗了{llm_predictor.last_token_usage} tokens"
else:
logging.warning("No response found, returning None")
os.environ["OPENAI_API_KEY"] = ""
return None
def add_space(text):
punctuations = {",": ", ", "。": "。 ", "?": "? ", "!": "! ", ":": ": ", ";": "; "}
for cn_punc, en_punc in punctuations.items():
text = text.replace(cn_punc, en_punc)
return text