import os save_dir= os.path.join(os.getcwd(),'docs') if not os.path.exists(save_dir): os.mkdir(save_dir) transcription_model_id = "openai/whisper-large" llm_model_id = "tiiuae/falcon-7b-instruct" HF_TOKEN = os.environ.get("HF_TOKEN", None) from youtube_transcript_api import YouTubeTranscriptApi import pytube # get the transcript from YouTube def get_yt_transcript(url): text = '' vid_id = pytube.extract.video_id(url) temp = YouTubeTranscriptApi.get_transcript(vid_id) for t in temp: text+=t['text']+' ' return text from pytube import YouTube import transformers import torch # transcribes the video def transcribe_yt_vid(url): # download YouTube video's audio yt = YouTube(str(url)) audio = yt.streams.filter(only_audio = True).first() out_file = audio.download(filename="audio.mp3", output_path = save_dir) # defining an automatic-speech-recognition pipeline asr = transformers.pipeline( "automatic-speech-recognition", model=transcription_model_id, device_map= 'auto', ) # setting model config parameters asr.model.config.forced_decoder_ids = ( asr.tokenizer.get_decoder_prompt_ids( language="en", task="transcribe" ) ) # invoking the Whisper model temp = asr(out_file,chunk_length_s=20) text = temp['text'] # we can do this at the end to release GPU memory del(asr) torch.cuda.empty_cache() return text from pytube import YouTube from huggingface_hub import InferenceClient # transcribes the video using the Hugging Face Hub API def transcribe_yt_vid_api(url,api_token): # download YouTube video's audio yt = YouTube(str(url)) audio = yt.streams.filter(only_audio = True).first() out_file = audio.download(filename="audio.wav", output_path = save_dir) # Initialize client for the Whisper model client = InferenceClient(model=transcription_model_id, token=api_token) import librosa import soundfile as sf text = '' t=25 # audio chunk length in seconds x, sr = librosa.load(out_file, sr=None) # This gives x as audio file in numpy array and sr as original sampling rate # The audio needs to be split in 20 second chunks since the API call truncates the response for _,i in enumerate(range(0, (len(x)//(t * sr)) +1)): y = x[t * sr * i: t * sr *(i+1)] split_path = os.path.join(save_dir,"audio_split.wav") sf.write(split_path, y, sr) text += client.automatic_speech_recognition(split_path) return text def transcribe_youtube_video(url, force_transcribe=False,use_api=False,api_token=None): yt = YouTube(str(url)) text = '' # get the transcript from YouTube if available try: text = get_yt_transcript(url) except: pass # transcribes the video if YouTube did not provide a transcription # or if you want to force_transcribe anyway if text == '' or force_transcribe: if use_api: text = transcribe_yt_vid_api(url,api_token=api_token) transcript_source = 'The transcript was generated using {} via the Hugging Face Hub API.'.format(transcription_model_id) else: text = transcribe_yt_vid(url) transcript_source = 'The transcript was generated using {} hosted locally.'.format(transcription_model_id) else: transcript_source = 'The transcript was downloaded from YouTube.' return yt.title, text, transcript_source def summarize_text(title,text,temperature,words,use_api=False,api_token=None,do_sample=False): from langchain.chains.llm import LLMChain from langchain.prompts import PromptTemplate from langchain.chains import ReduceDocumentsChain, MapReduceDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain import torch import transformers from transformers import BitsAndBytesConfig from transformers import AutoTokenizer, AutoModelForCausalLM from langchain import HuggingFacePipeline import torch model_kwargs1 = {"temperature":temperature , "do_sample":do_sample, "min_new_tokens":200-25, "max_new_tokens":200+25, 'repetition_penalty':20.0 } model_kwargs2 = {"temperature":temperature , "do_sample":do_sample, "min_new_tokens":words, "max_new_tokens":words+100, 'repetition_penalty':20.0 } if not do_sample: del model_kwargs1["temperature"] del model_kwargs2["temperature"] if use_api: from langchain import HuggingFaceHub # os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_token llm=HuggingFaceHub( repo_id=llm_model_id, model_kwargs=model_kwargs1, huggingfacehub_api_token=api_token ) llm2=HuggingFaceHub( repo_id=llm_model_id, model_kwargs=model_kwargs2, huggingfacehub_api_token=api_token ) summary_source = 'The summary was generated using {} via Hugging Face API.'.format(llm_model_id) else: quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, ) tokenizer = AutoTokenizer.from_pretrained(llm_model_id) model = AutoModelForCausalLM.from_pretrained(llm_model_id, # quantization_config=quantization_config ) model.to_bettertransformer() pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto", pad_token_id=tokenizer.eos_token_id, **model_kwargs1, ) pipeline2 = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto", pad_token_id=tokenizer.eos_token_id, **model_kwargs2, ) llm = HuggingFacePipeline(pipeline=pipeline) llm2 = HuggingFacePipeline(pipeline=pipeline2) summary_source = 'The summary was generated using {} hosted locally.'.format(llm_model_id) # Map map_template = """ You are an intelligent AI assistant that is tasked to review the content of a video and provide a concise and accurate summary.\n You do not provide information that is not mentioned in the video. You only provide information that you are absolutely sure about.\n Summarize the following text in a clear and concise way:\n ----------------------- \n TITLE: `{title}`\n TEXT:\n `{docs}`\n ----------------------- \n BRIEF SUMMARY:\n """ map_prompt = PromptTemplate( template = map_template, input_variables = ['title','docs'] ) map_chain = LLMChain(llm=llm, prompt=map_prompt) # Reduce - Collapse collapse_template = """ You are an intelligent AI assistant that is tasked to review the content of a video and provide a concise and accurate summary.\n You do not provide information that is not mentioned in the video. You only provide information that you are absolutely sure about.\n The following is set of partial summaries of a video:\n ----------------------- \n TITLE: `{title}`\n PARTIAL SUMMARIES:\n `{doc_summaries}`\n ----------------------- \n Take these and distill them into a consolidated summary.\n SUMMARY:\n """ collapse_prompt = PromptTemplate( template = collapse_template, input_variables = ['title','doc_summaries'] ) collapse_chain = LLMChain(llm=llm, prompt=collapse_prompt) # Takes a list of documents, combines them into a single string, and passes this to an LLMChain collapse_documents_chain = StuffDocumentsChain( llm_chain=collapse_chain, document_variable_name="doc_summaries" ) # Final Reduce - Combine combine_template = """\n You are an intelligent AI assistant that is tasked to review the content of a video and provide a concise and accurate summary.\n You do not provide information that is not mentioned in the video. You only provide information that you are absolutely sure about.\n The following is a set of partial summaries of a video:\n ----------------------- \n TITLE: `{title}`\n PARTIAL SUMMARIES:\n `{doc_summaries}`\n ----------------------- \n Generate an executive summary of the whole text in maximum {words} words that contains the main messages, points, and arguments presented in the video as bullet points. Avoid duplications or redundant information. \n EXECUTIVE SUMMARY:\n """ combine_prompt = PromptTemplate( template = combine_template, input_variables = ['title','doc_summaries','words'] ) combine_chain = LLMChain(llm=llm2, prompt=combine_prompt) # Takes a list of documents, combines them into a single string, and passes this to an LLMChain combine_documents_chain = StuffDocumentsChain( llm_chain=combine_chain, document_variable_name="doc_summaries" ) # Combines and iteratively reduces the mapped documents reduce_documents_chain = ReduceDocumentsChain( # This is final chain that is called. combine_documents_chain=combine_documents_chain, # If documents exceed context for `StuffDocumentsChain` collapse_documents_chain=collapse_documents_chain, # The maximum number of tokens to group documents into. token_max=800, ) # Combining documents by mapping a chain over them, then combining results map_reduce_chain = MapReduceDocumentsChain( # Map chain llm_chain=map_chain, # Reduce chain reduce_documents_chain=reduce_documents_chain, # The variable name in the llm_chain to put the documents in document_variable_name="docs", # Return the results of the map steps in the output return_intermediate_steps=False, ) from langchain.document_loaders import TextLoader from langchain.text_splitter import TokenTextSplitter with open(save_dir+'/transcript.txt','w') as f: f.write(text) loader = TextLoader(save_dir+"/transcript.txt") doc = loader.load() text_splitter = TokenTextSplitter(chunk_size=800, chunk_overlap=100) docs = text_splitter.split_documents(doc) summary = map_reduce_chain.run({'input_documents':docs, 'title':title, 'words':words}) try: del(map_reduce_chain,reduce_documents_chain,combine_chain,collapse_documents_chain,map_chain,collapse_chain,llm,llm2,pipeline,pipeline2,model,tokenizer) except: pass torch.cuda.empty_cache() return summary, summary_source import gradio as gr import pytube from pytube import YouTube def get_youtube_title(url): yt = YouTube(str(url)) return yt.title def get_video(url): vid_id = pytube.extract.video_id(url) embed_html = ''.format(vid_id) return embed_html def summarize_youtube_video(url,force_transcribe,api_token="", temperature=1.0,words=150,do_sample=True): print("URL:",url) if api_token == "": api_token = HF_TOKEN title,text,transcript_source = transcribe_youtube_video(url,force_transcribe,True,api_token) print("Transcript:",text[:500]) summary, summary_source = summarize_text(title,text,temperature,words,True,api_token,do_sample) print("Summary:",summary) return summary, text, transcript_source, summary_source html = '' # def change_transcribe_api(vis): # return gr.Checkbox(value=False, visible=vis) # def change_api_token(vis): # return gr.Textbox(visible=vis) def update_source(source): return gr.Textbox(info=source) def show_temp(vis): return gr.Slider(visible=vis) # Defining the structure of the UI with gr.Blocks() as demo: with gr.Row(): gr.Markdown("# Summarize a YouTube Video") with gr.Row(): with gr.Column(scale=4): url = gr.Textbox(label="Enter YouTube video URL here:",placeholder="https://www.youtube.com/watch?v=",info="The video must not be age-restricted. Otherwise, the transcription will fail. The demo supports videos in English language only.") with gr.Column(scale=1): api_token = gr.Textbox(label="Paste your Hugging Face API token here (Optional):",placeholder="hf_...",visible=True,show_label=True,info='The API token passed via this field is not stored. It is only passed through the Hugging Face Hub API for inference.') with gr.Column(scale=1): sum_btn = gr.Button("Summarize!") gr.Markdown("Please like the repo if you find this helpful. Detailed instructions for recreating this tool are provided [here](https://pub.towardsai.net/a-complete-guide-for-creating-an-ai-assistant-for-summarizing-youtube-videos-part-1-32fbadabc2cc?sk=34269402931178039c4c3589df4a6ec5) and [here](https://pub.towardsai.net/a-complete-guide-for-creating-an-ai-assistant-for-summarizing-youtube-videos-part-2-a008ee18f341?sk=d59046b36a52c74dfa8befa99183e5b6).") with gr.Accordion("Transcription Settings",open=False): with gr.Row(): force_transcribe = gr.Checkbox(label="Transcribe even if transcription is available.", info='If unchecked, the app attempts to download the transcript from YouTube first. Check this if the transcript does not seem accurate.') # use_transcribe_api = gr.Checkbox(label="Transcribe using the HuggingFaceHub API.",visible=False) with gr.Accordion("Summarization Settings",open=False): with gr.Row(): # use_llm_api = gr.Checkbox(label="Summarize using the HuggingFaceHub API.",visible=True) do_sample = gr.Checkbox(label="Set the Temperature",value=False,visible=True) temperature = gr.Slider(minimum=0.01,maximum=1.0,value=0.25,label="Generation temperature",visible=False) words = gr.Slider(minimum=100,maximum=500,value=200,label="Length of the summary") gr.Markdown("# Results") title = gr.Textbox(label="Video Title",placeholder="title...") with gr.Row(): video = gr.HTML(html,scale=1) summary_source = gr.Textbox(visible=False,scale=0) summary = gr.Textbox(label="Summary",placeholder="summary...",scale=1) with gr.Row(): with gr.Group(): transcript = gr.Textbox(label="Full Transcript",placeholder="transcript...",show_label=True) transcript_source = gr.Textbox(visible=False) with gr.Accordion("Notes",open=False): gr.Markdown(""" 1. This app attempts to download the transcript from Youtube first. If the transcript is not available, or the prompts require, the video will be transcribed.\n 2. The app performs best on videos in which the number of speakers is limited or when the YouTube transcript includes annotations of the speakers.\n 3. The trascription does not annotate the speakers which may downgrade the quality of the summary if there are more than one speaker.\n """) # Defining the interactivity of the UI elements # force_transcribe.change(fn=change_transcribe_api,inputs=force_transcribe,outputs=use_transcribe_api) # use_transcribe_api.change(fn=change_api_token,inputs=use_transcribe_api,outputs=api_token) # use_llm_api.change(fn=change_api_token,inputs=use_llm_api,outputs=api_token) transcript_source.change(fn=update_source,inputs=transcript_source,outputs=transcript) summary_source.change(fn=update_source,inputs=summary_source,outputs=summary) do_sample.change(fn=show_temp,inputs=do_sample,outputs=temperature) # Defining the functions to call on clicking the button sum_btn.click(fn=get_youtube_title, inputs=url, outputs=title, api_name="get_youtube_title", queue=False) sum_btn.click(fn=summarize_youtube_video, inputs=[url,force_transcribe,api_token,temperature,words,do_sample], outputs=[summary,transcript, transcript_source, summary_source], api_name="summarize_youtube_video", queue=True) sum_btn.click(fn=get_video, inputs=url, outputs=video, api_name="get_youtube_video", queue=False) demo.queue() demo.launch(share=False)