from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import torch import gradio as gr from PIL import Image processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") # Initialize the model with float16 precision and handle fallback to CPU # Simplified model loading function for CPU def load_model(): return Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-2B-Instruct", torch_dtype=torch.float32, # Use float32 for CPU low_cpu_mem_usage=True ) # Load the model vlm = load_model() # OCR function to extract text from an image def ocr_image(image, query="Extract text from the image", keyword=""): messages = [ { "role": "user", "content": [ { "type": "image", "image": image, }, {"type": "text", "text": query}, ], } ] # Prepare inputs for the model text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cpu") # Generate the output text using the model generated_ids = vlm.generate(**inputs, max_new_tokens=512) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] if keyword: keyword_lower = keyword.lower() if keyword_lower in output_text.lower(): highlighted_text = output_text.replace(keyword, f"**{keyword}**") return f"Keyword '{keyword}' found in the text:\n\n{highlighted_text}" else: return f"Keyword '{keyword}' not found in the text:\n\n{output_text}" else: return output_text # Gradio interface def process_image(image, keyword=""): max_size = 1024 if max(image.size) > max_size: image.thumbnail((max_size, max_size)) return ocr_image(image, keyword=keyword) # Update the Gradio interface: interface = gr.Interface( fn=process_image, inputs=[ gr.Image(type="pil"), gr.Textbox(label="Enter keyword to search (optional)") ], outputs="text", title="Hindi & English OCR with Keyword Search", ) # Launch Gradio interface in Colab interface.launch()