Spaces:
Runtime error
Runtime error
prasanth345
commited on
Commit
•
4cda4fc
1
Parent(s):
b1cc82c
Delete app.py
Browse files
app.py
DELETED
@@ -1,198 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import requests
|
3 |
-
import os
|
4 |
-
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
5 |
-
|
6 |
-
# API keys for other features (optional)
|
7 |
-
Image_Token = os.getenv('Image_generation')
|
8 |
-
Content_Token = os.getenv('ContentGeneration')
|
9 |
-
Image_prompt_token = os.getenv('Prompt_generation')
|
10 |
-
|
11 |
-
# API Headers for external services (optional)
|
12 |
-
Image_generation = {"Authorization": f"Bearer {Image_Token}"}
|
13 |
-
Content_generation = {
|
14 |
-
"Authorization": f"Bearer {Content_Token}",
|
15 |
-
"Content-Type": "application/json"
|
16 |
-
}
|
17 |
-
Image_Prompt = {
|
18 |
-
"Authorization": f"Bearer {Image_prompt_token}",
|
19 |
-
"Content-Type": "application/json"
|
20 |
-
}
|
21 |
-
|
22 |
-
# Text-to-Image Model API URLs
|
23 |
-
image_generation_urls = {
|
24 |
-
"black-forest-labs/FLUX.1-schnell": "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell",
|
25 |
-
"CompVis/stable-diffusion-v1-4": "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4",
|
26 |
-
"black-forest-labs/FLUX.1-dev": "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
27 |
-
}
|
28 |
-
|
29 |
-
# Default content generation model
|
30 |
-
content_models = {
|
31 |
-
"llama-3.1-70b-versatile": "llama-3.1-70b-versatile",
|
32 |
-
"llama3-8b-8192": "llama3-8b-8192",
|
33 |
-
"gemma2-9b-it": "gemma2-9b-it",
|
34 |
-
"mixtral-8x7b-32768": "mixtral-8x7b-32768"
|
35 |
-
}
|
36 |
-
|
37 |
-
# Load the translation model and tokenizer locally
|
38 |
-
@st.cache_resource
|
39 |
-
def load_translation_model():
|
40 |
-
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
|
41 |
-
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
|
42 |
-
return model, tokenizer
|
43 |
-
|
44 |
-
# Function to perform translation locally
|
45 |
-
def translate_text_local(text):
|
46 |
-
model, tokenizer = load_translation_model()
|
47 |
-
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
|
48 |
-
translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
|
49 |
-
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
50 |
-
return translated_text
|
51 |
-
|
52 |
-
# Function to query Groq content generation model (optional)
|
53 |
-
def generate_content(english_text, max_tokens, temperature, model):
|
54 |
-
url = "https://api.groq.com/openai/v1/chat/completions"
|
55 |
-
payload = {
|
56 |
-
"model": model,
|
57 |
-
"messages": [
|
58 |
-
{"role": "system", "content": "You are a creative and insightful writer."},
|
59 |
-
{"role": "user", "content": f"Write educational content about {english_text} within {max_tokens} tokens."}
|
60 |
-
],
|
61 |
-
"max_tokens": max_tokens,
|
62 |
-
"temperature": temperature
|
63 |
-
}
|
64 |
-
response = requests.post(url, json=payload, headers=Content_generation)
|
65 |
-
if response.status_code == 200:
|
66 |
-
result = response.json()
|
67 |
-
return result['choices'][0]['message']['content']
|
68 |
-
else:
|
69 |
-
st.error(f"Content Generation Error: {response.status_code}")
|
70 |
-
return None
|
71 |
-
|
72 |
-
# Function to generate image prompt (optional)
|
73 |
-
def generate_image_prompt(english_text):
|
74 |
-
payload = {
|
75 |
-
"model": "mixtral-8x7b-32768",
|
76 |
-
"messages": [
|
77 |
-
{"role": "system", "content": "You are a professional Text to image prompt generator."},
|
78 |
-
{"role": "user", "content": f"Create a text to image generation prompt about {english_text} within 30 tokens."}
|
79 |
-
],
|
80 |
-
"max_tokens": 30
|
81 |
-
}
|
82 |
-
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=payload, headers=Image_Prompt)
|
83 |
-
if response.status_code == 200:
|
84 |
-
result = response.json()
|
85 |
-
return result['choices'][0]['message']['content']
|
86 |
-
else:
|
87 |
-
st.error(f"Prompt Generation Error: {response.status_code}")
|
88 |
-
return None
|
89 |
-
|
90 |
-
# Function to generate an image from the prompt (optional)
|
91 |
-
def generate_image(image_prompt, model_url):
|
92 |
-
data = {"inputs": image_prompt}
|
93 |
-
response = requests.post(model_url, headers=Image_generation, json=data)
|
94 |
-
if response.status_code == 200:
|
95 |
-
return response.content
|
96 |
-
else:
|
97 |
-
st.error(f"Image Generation Error {response.status_code}: {response.text}")
|
98 |
-
return None
|
99 |
-
|
100 |
-
# User Guide Section
|
101 |
-
def show_user_guide():
|
102 |
-
st.title("FusionMind User Guide")
|
103 |
-
st.write("""
|
104 |
-
### Welcome to the FusionMind User Guide!
|
105 |
-
|
106 |
-
### How to use this app:
|
107 |
-
|
108 |
-
1. **Input Tamil Text**:
|
109 |
-
- You can either select one of the suggested Tamil phrases or input your own text. The app primarily focuses on Tamil inputs, but it supports a wide range of other languages as well (see the list below).
|
110 |
-
|
111 |
-
2. **Generate Translations**:
|
112 |
-
- Once you've input your text, the app will automatically translate it to English. The translation model is a **many-to-one model**, meaning it can take input from various languages and translate it into English.
|
113 |
-
|
114 |
-
3. **Generate Educational Content**:
|
115 |
-
- After translating the text into English, the app will generate **educational content** based on the translated input. You can adjust the creativity of the content generation using the temperature slider, and control the length of the output with the token limit setting.
|
116 |
-
|
117 |
-
4. **Generate Images**:
|
118 |
-
- In addition to generating content, the app can also generate an **image** related to the translated content. You don’t need to worry about creating complex image prompts—FusionMind includes an automatic **image prompt generator** that will convert your input into a well-defined image prompt, ensuring better image generation results.
|
119 |
-
|
120 |
-
---
|
121 |
-
|
122 |
-
### Features:
|
123 |
-
|
124 |
-
- **Multilingual Translation**:
|
125 |
-
- FusionMind supports a **many-to-one translation model**, so you can input text in a wide variety of languages, not just Tamil. Below are the supported languages:
|
126 |
-
|
127 |
-
- **Arabic (ar_AR)**, **Czech (cs_CZ)**, **German (de_DE)**, **English (en_XX)**, **Spanish (es_XX)**, **Estonian (et_EE)**, **Finnish (fi_FI)**, **French (fr_XX)**, **Gujarati (gu_IN)**, **Hindi (hi_IN)**, **Italian (it_IT)**, **Japanese (ja_XX)**, **Kazakh (kk_KZ)**, **Korean (ko_KR)**, **Lithuanian (lt_LT)**, **Latvian (lv_LV)**, **Burmese (my_MM)**, **Nepali (ne_NP)**, **Dutch (nl_XX)**, **Romanian (ro_RO)**, **Russian (ru_RU)**, **Sinhala (si_LK)**, **Turkish (tr_TR)**, **Vietnamese (vi_VN)**, **Chinese (zh_CN)**, **Afrikaans (af_ZA)**, **Azerbaijani (az_AZ)**, **Bengali (bn_IN)**, **Persian (fa_IR)**, **Hebrew (he_IL)**, **Croatian (hr_HR)**, **Indonesian (id_ID)**, **Georgian (ka_GE)**, **Khmer (km_KH)**, **Macedonian (mk_MK)**, **Malayalam (ml_IN)**, **Mongolian (mn_MN)**, **Marathi (mr_IN)**, **Polish (pl_PL)**, **Pashto (ps_AF)**, **Portuguese (pt_XX)**, **Swedish (sv_SE)**, **Swahili (sw_KE)**, **Tamil (ta_IN)**, **Telugu (te_IN)**, **Thai (th_TH)**, **Tagalog (tl_XX)**, **Ukrainian (uk_UA)**, **Urdu (ur_PK)**, **Xhosa (xh_ZA)**, **Galician (gl_ES)**, **Slovene (sl_SI)**.
|
128 |
-
|
129 |
-
- **Temperature Adjustment**:
|
130 |
-
- You can adjust the **temperature** of the content generation. A **higher temperature** makes the content more creative and varied, while a **lower temperature** generates more focused and deterministic responses.
|
131 |
-
|
132 |
-
- **Token Limit**:
|
133 |
-
- Set the **maximum number of tokens** for content generation. This allows you to control the length of the generated educational content.
|
134 |
-
|
135 |
-
- **Auto-Generated Image Prompts**:
|
136 |
-
- One of the unique features of FusionMind is the **auto-generated image prompts**. Even if you're not experienced in creating detailed prompts for image generation, the app will take care of this for you. It automatically converts the translated text or content into a well-defined prompt that produces more accurate and high-quality images.
|
137 |
-
|
138 |
-
---
|
139 |
-
|
140 |
-
Enjoy the multimodal experience with **FusionMind** and explore its powerful translation, content generation, and image generation features!
|
141 |
-
""")
|
142 |
-
|
143 |
-
# Main Streamlit app
|
144 |
-
def main():
|
145 |
-
# Sidebar Menu
|
146 |
-
st.sidebar.title("FusionMind Options")
|
147 |
-
page = st.sidebar.radio("Select a page:", ["Main App", "User Guide"])
|
148 |
-
|
149 |
-
if page == "User Guide":
|
150 |
-
show_user_guide()
|
151 |
-
return
|
152 |
-
|
153 |
-
st.title("🅰️ℹ️ FusionMind ➡️ Multimodal")
|
154 |
-
|
155 |
-
# Sidebar for temperature, token adjustment, and model selection
|
156 |
-
st.sidebar.header("Settings")
|
157 |
-
temperature = st.sidebar.slider("Select Temperature", 0.1, 1.0, 0.7)
|
158 |
-
max_tokens = st.sidebar.slider("Max Tokens for Content Generation", 100, 400, 200)
|
159 |
-
|
160 |
-
# Content generation model selection
|
161 |
-
content_model = st.sidebar.selectbox("Select Content Generation Model", list(content_models.keys()), index=0)
|
162 |
-
|
163 |
-
# Image generation model selection
|
164 |
-
image_model = st.sidebar.selectbox("Select Image Generation Model", list(image_generation_urls.keys()), index=0)
|
165 |
-
|
166 |
-
# Suggested inputs
|
167 |
-
st.write("## Suggested Inputs")
|
168 |
-
suggestions = ["தரவு அறிவியல்", "உளவியல்", "ராக்கெட் எப்படி வேலை செய்கிறது"]
|
169 |
-
selected_suggestion = st.selectbox("Select a suggestion or enter your own:", [""] + suggestions)
|
170 |
-
|
171 |
-
# Input box for user
|
172 |
-
tamil_input = st.text_input("Enter Tamil text (or select a suggestion):", selected_suggestion)
|
173 |
-
|
174 |
-
if st.button("Generate"):
|
175 |
-
# Step 1: Translation (Tamil to English)
|
176 |
-
if tamil_input:
|
177 |
-
st.write("### Translated English Text:")
|
178 |
-
english_text = translate_text_local(tamil_input)
|
179 |
-
if english_text:
|
180 |
-
st.success(english_text)
|
181 |
-
|
182 |
-
# Step 2: Generate Educational Content
|
183 |
-
st.write("### Generated Content:")
|
184 |
-
with st.spinner('Generating content...'):
|
185 |
-
content_output = generate_content(english_text, max_tokens, temperature, content_models[content_model])
|
186 |
-
if content_output:
|
187 |
-
st.success(content_output)
|
188 |
-
|
189 |
-
# Step 3: Generate Image from the prompt (optional)
|
190 |
-
st.write("### Generated Image:")
|
191 |
-
with st.spinner('Generating image...'):
|
192 |
-
image_prompt = generate_image_prompt(english_text)
|
193 |
-
image_data = generate_image(image_prompt, image_generation_urls[image_model])
|
194 |
-
if image_data:
|
195 |
-
st.image(image_data, caption="Generated Image")
|
196 |
-
|
197 |
-
if __name__ == "__main__":
|
198 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|