pratham0011 commited on
Commit
62f8d39
1 Parent(s): a83a57d

Upload 5 files

Browse files
Files changed (5) hide show
  1. index.py +94 -0
  2. main.py +152 -0
  3. static/app.py +126 -0
  4. static/man-kddi.png +0 -0
  5. static/robot.png +0 -0
index.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, UploadFile, File, HTTPException
2
+ from pydantic import BaseModel
3
+ from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
4
+ from llama_index.llms.huggingface import HuggingFaceInferenceAPI
5
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
6
+ from llama_index.core import Settings
7
+ import os
8
+ from dotenv import load_dotenv
9
+ import shutil
10
+
11
+ # Load environment variables
12
+ load_dotenv()
13
+
14
+ app = FastAPI()
15
+
16
+ # Configure the Llama index settings
17
+ Settings.llm = HuggingFaceInferenceAPI(
18
+ model_name="meta-llama/Meta-Llama-3-8B-Instruct",
19
+ tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
20
+ context_window=3900,
21
+ token=os.getenv("HF_TOKEN"),
22
+ max_new_tokens=1000,
23
+ generate_kwargs={"temperature": 0.5},
24
+ )
25
+ Settings.embed_model = HuggingFaceEmbedding(
26
+ model_name="BAAI/bge-small-en-v1.5"
27
+ )
28
+
29
+ # Define the directory for persistent storage and data
30
+ PERSIST_DIR = "./db"
31
+ DATA_DIR = "data"
32
+
33
+ # Ensure data directory exists
34
+ os.makedirs(DATA_DIR, exist_ok=True)
35
+ os.makedirs(PERSIST_DIR, exist_ok=True)
36
+
37
+ class Query(BaseModel):
38
+ question: str
39
+
40
+ def data_ingestion():
41
+ documents = SimpleDirectoryReader(DATA_DIR).load_data()
42
+ storage_context = StorageContext.from_defaults()
43
+ index = VectorStoreIndex.from_documents(documents)
44
+ index.storage_context.persist(persist_dir=PERSIST_DIR)
45
+
46
+ def handle_query(query):
47
+ storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
48
+ index = load_index_from_storage(storage_context)
49
+ chat_text_qa_msgs = [
50
+ (
51
+ "user",
52
+ """You are Q&A assistant named CHAT-DOC. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document.
53
+ Context:
54
+ {context_str}
55
+ Question:
56
+ {query_str}
57
+ """
58
+ )
59
+ ]
60
+ text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
61
+ query_engine = index.as_query_engine(text_qa_template=text_qa_template)
62
+ answer = query_engine.query(query)
63
+
64
+ if hasattr(answer, 'response'):
65
+ return answer.response
66
+ elif isinstance(answer, dict) and 'response' in answer:
67
+ return answer['response']
68
+ else:
69
+ return "Sorry, I couldn't find an answer."
70
+
71
+ @app.post("/upload")
72
+ async def upload_file(file: UploadFile = File(...)):
73
+ file_extension = os.path.splitext(file.filename)[1].lower()
74
+ if file_extension not in [".pdf", ".docx", ".txt"]:
75
+ raise HTTPException(status_code=400, detail="Invalid file type. Only PDF, DOCX, and TXT are allowed.")
76
+
77
+ file_path = os.path.join(DATA_DIR, file.filename)
78
+ with open(file_path, "wb") as buffer:
79
+ shutil.copyfileobj(file.file, buffer)
80
+
81
+ data_ingestion()
82
+ return {"message": "File uploaded and processed successfully"}
83
+
84
+ @app.post("/query")
85
+ async def query_document(query: Query):
86
+ if not os.listdir(DATA_DIR):
87
+ raise HTTPException(status_code=400, detail="No document has been uploaded yet.")
88
+
89
+ response = handle_query(query.question)
90
+ return {"response": response}
91
+
92
+ if __name__ == "__main__":
93
+ import uvicorn
94
+ uvicorn.run(app, host="0.0.0.0", port=8000)
main.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File: main.py
2
+ from fastapi import FastAPI, UploadFile, File, HTTPException
3
+ from pydantic import BaseModel
4
+ from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
5
+ from llama_index.llms.huggingface import HuggingFaceInferenceAPI
6
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
7
+ from llama_index.core import Settings
8
+ import os
9
+ from dotenv import load_dotenv
10
+ import shutil
11
+ import uvicorn
12
+ import streamlit as st
13
+ import requests
14
+ import base64
15
+ import docx2txt
16
+ import threading
17
+
18
+ # Load environment variables
19
+ load_dotenv()
20
+
21
+ app = FastAPI()
22
+
23
+ # Configure the Llama index settings
24
+ Settings.llm = HuggingFaceInferenceAPI(
25
+ model_name="meta-llama/Meta-Llama-3-8B-Instruct",
26
+ tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
27
+ context_window=3900,
28
+ token=os.getenv("HF_TOKEN"),
29
+ max_new_tokens=1000,
30
+ generate_kwargs={"temperature": 0.5},
31
+ )
32
+ Settings.embed_model = HuggingFaceEmbedding(
33
+ model_name="BAAI/bge-small-en-v1.5"
34
+ )
35
+
36
+ # Define the directory for persistent storage and data
37
+ PERSIST_DIR = "./db"
38
+ DATA_DIR = "data"
39
+
40
+ # Ensure data directory exists
41
+ os.makedirs(DATA_DIR, exist_ok=True)
42
+ os.makedirs(PERSIST_DIR, exist_ok=True)
43
+
44
+ class Query(BaseModel):
45
+ question: str
46
+
47
+ def data_ingestion():
48
+ documents = SimpleDirectoryReader(DATA_DIR).load_data()
49
+ storage_context = StorageContext.from_defaults()
50
+ index = VectorStoreIndex.from_documents(documents)
51
+ index.storage_context.persist(persist_dir=PERSIST_DIR)
52
+
53
+ def handle_query(query):
54
+ storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
55
+ index = load_index_from_storage(storage_context)
56
+ chat_text_qa_msgs = [
57
+ (
58
+ "user",
59
+ """You are Q&A assistant named CHAT-DOC. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document.
60
+ Context:
61
+ {context_str}
62
+ Question:
63
+ {query_str}
64
+ """
65
+ )
66
+ ]
67
+ text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
68
+ query_engine = index.as_query_engine(text_qa_template=text_qa_template)
69
+ answer = query_engine.query(query)
70
+
71
+ if hasattr(answer, 'response'):
72
+ return answer.response
73
+ elif isinstance(answer, dict) and 'response' in answer:
74
+ return answer['response']
75
+ else:
76
+ return "Sorry, I couldn't find an answer."
77
+
78
+ @app.post("/upload")
79
+ async def upload_file(file: UploadFile = File(...)):
80
+ file_extension = os.path.splitext(file.filename)[1].lower()
81
+ if file_extension not in [".pdf", ".docx", ".txt"]:
82
+ raise HTTPException(status_code=400, detail="Invalid file type. Only PDF, DOCX, and TXT are allowed.")
83
+
84
+ file_path = os.path.join(DATA_DIR, file.filename)
85
+ with open(file_path, "wb") as buffer:
86
+ shutil.copyfileobj(file.file, buffer)
87
+
88
+ data_ingestion()
89
+ return {"message": "File uploaded and processed successfully"}
90
+
91
+ @app.post("/query")
92
+ async def query_document(query: Query):
93
+ if not os.listdir(DATA_DIR):
94
+ raise HTTPException(status_code=400, detail="No document has been uploaded yet.")
95
+
96
+ response = handle_query(query.question)
97
+ return {"response": response}
98
+
99
+ # Streamlit UI
100
+ def streamlit_ui():
101
+ st.title("Chat with your Document 📄")
102
+ st.markdown("Chat here👇")
103
+
104
+ icons = {"assistant": "🤖", "user": "👤"}
105
+
106
+ if 'messages' not in st.session_state:
107
+ st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF, DOCX, or TXT file and ask me anything about its content.'}]
108
+
109
+ for message in st.session_state.messages:
110
+ with st.chat_message(message['role'], avatar=icons[message['role']]):
111
+ st.write(message['content'])
112
+
113
+ with st.sidebar:
114
+ st.title("Menu:")
115
+ uploaded_file = st.file_uploader("Upload your document (PDF, DOCX, TXT)", type=["pdf", "docx", "txt"])
116
+ if st.button("Submit & Process") and uploaded_file:
117
+ with st.spinner("Processing..."):
118
+ files = {"file": (uploaded_file.name, uploaded_file.getvalue(), uploaded_file.type)}
119
+ response = requests.post("http://localhost:8000/upload", files=files)
120
+ if response.status_code == 200:
121
+ st.success("File uploaded and processed successfully")
122
+ else:
123
+ st.error("Error uploading file")
124
+
125
+ user_prompt = st.chat_input("Ask me anything about the content of the document:")
126
+
127
+ if user_prompt:
128
+ st.session_state.messages.append({'role': 'user', "content": user_prompt})
129
+ with st.chat_message("user", avatar=icons["user"]):
130
+ st.write(user_prompt)
131
+
132
+ # Trigger assistant's response retrieval and update UI
133
+ with st.spinner("Thinking..."):
134
+ response = requests.post("http://localhost:8000/query", json={"question": user_prompt})
135
+ if response.status_code == 200:
136
+ assistant_response = response.json()["response"]
137
+ with st.chat_message("assistant", avatar=icons["assistant"]):
138
+ st.write(assistant_response)
139
+ st.session_state.messages.append({'role': 'assistant', "content": assistant_response})
140
+ else:
141
+ st.error("Error querying document")
142
+
143
+ def run_fastapi():
144
+ uvicorn.run(app, host="0.0.0.0", port=8000)
145
+
146
+ if __name__ == "__main__":
147
+ # Start FastAPI in a separate thread
148
+ fastapi_thread = threading.Thread(target=run_fastapi)
149
+ fastapi_thread.start()
150
+
151
+ # Run Streamlit (this will run in the main thread)
152
+ streamlit_ui()
static/app.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
3
+ from llama_index.llms.huggingface import HuggingFaceInferenceAPI
4
+ from dotenv import load_dotenv
5
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
6
+ from llama_index.core import Settings
7
+ import os
8
+ import base64
9
+ import docx2txt
10
+
11
+ # Load environment variables
12
+ load_dotenv()
13
+
14
+ icons = {"assistant": "robot.png", "user": "man-kddi.png"}
15
+
16
+ # Configure the Llama index settings
17
+ Settings.llm = HuggingFaceInferenceAPI(
18
+ model_name="meta-llama/Meta-Llama-3-8B-Instruct",
19
+ tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
20
+ context_window=3900,
21
+ token=os.getenv("HF_TOKEN"),
22
+ max_new_tokens=1000,
23
+ generate_kwargs={"temperature": 0.5},
24
+ )
25
+ Settings.embed_model = HuggingFaceEmbedding(
26
+ model_name="BAAI/bge-small-en-v1.5"
27
+ )
28
+
29
+ # Define the directory for persistent storage and data
30
+ PERSIST_DIR = "./db"
31
+ DATA_DIR = "data"
32
+
33
+ # Ensure data directory exists
34
+ os.makedirs(DATA_DIR, exist_ok=True)
35
+ os.makedirs(PERSIST_DIR, exist_ok=True)
36
+
37
+ def displayPDF(file):
38
+ with open(file, "rb") as f:
39
+ base64_pdf = base64.b64encode(f.read()).decode('utf-8')
40
+ pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
41
+ st.markdown(pdf_display, unsafe_allow_html=True)
42
+
43
+ def displayDOCX(file):
44
+ text = docx2txt.process(file)
45
+ st.text_area("Document Content", text, height=400)
46
+
47
+ def displayTXT(file):
48
+ with open(file, "r") as f:
49
+ text = f.read()
50
+ st.text_area("Document Content", text, height=400)
51
+
52
+ def data_ingestion():
53
+ documents = SimpleDirectoryReader(DATA_DIR).load_data()
54
+ storage_context = StorageContext.from_defaults()
55
+ index = VectorStoreIndex.from_documents(documents)
56
+ index.storage_context.persist(persist_dir=PERSIST_DIR)
57
+
58
+ def handle_query(query):
59
+ storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
60
+ index = load_index_from_storage(storage_context)
61
+ chat_text_qa_msgs = [
62
+ (
63
+ "user",
64
+ """You are Q&A assistant named CHAT-DOC. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document.
65
+ Context:
66
+ {context_str}
67
+ Question:
68
+ {query_str}
69
+ """
70
+ )
71
+ ]
72
+ text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
73
+ query_engine = index.as_query_engine(text_qa_template=text_qa_template)
74
+ answer = query_engine.query(query)
75
+
76
+ if hasattr(answer, 'response'):
77
+ return answer.response
78
+ elif isinstance(answer, dict) and 'response' in answer:
79
+ return answer['response']
80
+ else:
81
+ return "Sorry, I couldn't find an answer."
82
+
83
+ # Streamlit app initialization
84
+ st.title("Chat with your Document 📄")
85
+ st.markdown("Chat here👇")
86
+
87
+ if 'messages' not in st.session_state:
88
+ st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF, DOCX, or TXT file and ask me anything about its content.'}]
89
+
90
+ for message in st.session_state.messages:
91
+ with st.chat_message(message['role'], avatar=icons[message['role']]):
92
+ st.write(message['content'])
93
+
94
+ with st.sidebar:
95
+ st.title("Menu:")
96
+ uploaded_file = st.file_uploader("Upload your document (PDF, DOCX, TXT)", type=["pdf", "docx", "txt"])
97
+ if st.button("Submit & Process") and uploaded_file:
98
+ with st.spinner("Processing..."):
99
+ file_extension = os.path.splitext(uploaded_file.name)[1].lower()
100
+ filepath = os.path.join(DATA_DIR, "uploaded_file" + file_extension)
101
+ with open(filepath, "wb") as f:
102
+ f.write(uploaded_file.getbuffer())
103
+
104
+ if file_extension == ".pdf":
105
+ displayPDF(filepath)
106
+ elif file_extension == ".docx":
107
+ displayDOCX(filepath)
108
+ elif file_extension == ".txt":
109
+ displayTXT(filepath)
110
+
111
+ data_ingestion() # Process file every time a new file is uploaded
112
+ st.success("Done")
113
+
114
+ user_prompt = st.chat_input("Ask me anything about the content of the document:")
115
+
116
+ if user_prompt and uploaded_file:
117
+ st.session_state.messages.append({'role': 'user', "content": user_prompt})
118
+ with st.chat_message("user", avatar=icons["user"]):
119
+ st.write(user_prompt)
120
+
121
+ # Trigger assistant's response retrieval and update UI
122
+ with st.spinner("Thinking..."):
123
+ response = handle_query(user_prompt)
124
+ with st.chat_message("assistant", avatar=icons["assistant"]):
125
+ st.write(response)
126
+ st.session_state.messages.append({'role': 'assistant', "content": response})
static/man-kddi.png ADDED
static/robot.png ADDED