pratham0011 commited on
Commit
a3062f4
·
verified ·
1 Parent(s): 634e07b

Update huggingface_space.py

Browse files
Files changed (1) hide show
  1. huggingface_space.py +158 -158
huggingface_space.py CHANGED
@@ -1,159 +1,159 @@
1
- import os
2
- from dotenv import load_dotenv
3
- import shutil
4
- import uvicorn
5
- import streamlit as st
6
- import requests
7
- import threading
8
-
9
- from fastapi import FastAPI, UploadFile, File, HTTPException
10
- from pydantic import BaseModel, ConfigDict
11
-
12
- from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
13
- from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
14
- from llama_index.embeddings.huggingface import HuggingFaceEmbedding
15
- from llama_index.core import Settings
16
-
17
-
18
- # Load environment variables
19
- load_dotenv()
20
-
21
- app = FastAPI()
22
-
23
- # Configure the Llama index settings
24
- Settings.llm = HuggingFaceInferenceAPI(
25
- model_name="meta-llama/Meta-Llama-3-8B-Instruct",
26
- tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
27
- context_window=3900,
28
- token=os.getenv("HF_TOKEN"),
29
- max_new_tokens=1000,
30
- generate_kwargs={"temperature": 0.5},
31
- )
32
- Settings.embed_model = HuggingFaceEmbedding(
33
- model_name="BAAI/bge-small-en-v1.5"
34
- )
35
-
36
- # Define the directory for persistent storage and data
37
- PERSIST_DIR = "./db"
38
- DATA_DIR = "data"
39
-
40
- # Ensure data directory exists
41
- os.makedirs(DATA_DIR, exist_ok=True)
42
- os.makedirs(PERSIST_DIR, exist_ok=True)
43
-
44
- class Query(BaseModel):
45
- question: str
46
-
47
- class DeployedModel(BaseModel):
48
- model_id: str
49
- model_name: str
50
-
51
- class Config:
52
- model_config = ConfigDict(protected_namespaces=())
53
-
54
- def data_ingestion():
55
- documents = SimpleDirectoryReader(DATA_DIR).load_data()
56
- storage_context = StorageContext.from_defaults()
57
- index = VectorStoreIndex.from_documents(documents)
58
- index.storage_context.persist(persist_dir=PERSIST_DIR)
59
-
60
- def handle_query(query):
61
- storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
62
- index = load_index_from_storage(storage_context)
63
- chat_text_qa_msgs = [
64
- (
65
- "user",
66
- """You are Q&A assistant named CHAT-DOC. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document.
67
- Context:
68
- {context_str}
69
- Question:
70
- {query_str}
71
- """
72
- )
73
- ]
74
- text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
75
- query_engine = index.as_query_engine(text_qa_template=text_qa_template)
76
- answer = query_engine.query(query)
77
-
78
- if hasattr(answer, 'response'):
79
- return answer.response
80
- elif isinstance(answer, dict) and 'response' in answer:
81
- return answer['response']
82
- else:
83
- return "Sorry, I couldn't find an answer."
84
-
85
- @app.post("/upload")
86
- async def upload_file(file: UploadFile = File(...)):
87
- file_extension = os.path.splitext(file.filename)[1].lower()
88
- if file_extension not in [".pdf", ".docx", ".txt"]:
89
- raise HTTPException(status_code=400, detail="Invalid file type. Only PDF, DOCX, and TXT are allowed.")
90
-
91
- file_path = os.path.join(DATA_DIR, file.filename)
92
- with open(file_path, "wb") as buffer:
93
- shutil.copyfileobj(file.file, buffer)
94
-
95
- data_ingestion()
96
- return {"message": "File uploaded and processed successfully"}
97
-
98
- @app.post("/query")
99
- async def query_document(query: Query):
100
- if not os.listdir(DATA_DIR):
101
- raise HTTPException(status_code=400, detail="No document has been uploaded yet.")
102
-
103
- response = handle_query(query.question)
104
- return {"response": response}
105
-
106
- # Streamlit UI
107
- def streamlit_ui():
108
- st.title("Chat with your Document 📄")
109
- st.markdown("Chat here👇")
110
-
111
- icons = {"assistant": "🤖", "user": "👤"}
112
-
113
- if 'messages' not in st.session_state:
114
- st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF, DOCX, or TXT file and ask me anything about its content.'}]
115
-
116
- for message in st.session_state.messages:
117
- with st.chat_message(message['role'], avatar=icons[message['role']]):
118
- st.write(message['content'])
119
-
120
- with st.sidebar:
121
- st.title("Menu:")
122
- uploaded_file = st.file_uploader("Upload your document (PDF, DOCX, TXT)", type=["pdf", "docx", "txt"])
123
- if st.button("Submit & Process") and uploaded_file:
124
- with st.spinner("Processing..."):
125
- files = {"file": (uploaded_file.name, uploaded_file.getvalue(), uploaded_file.type)}
126
- response = requests.post("http://localhost:8000/upload", files=files)
127
- if response.status_code == 200:
128
- st.success("File uploaded and processed successfully")
129
- else:
130
- st.error("Error uploading file")
131
-
132
- user_prompt = st.chat_input("Ask me anything about the content of the document:")
133
-
134
- if user_prompt:
135
- st.session_state.messages.append({'role': 'user', "content": user_prompt})
136
- with st.chat_message("user", avatar=icons["user"]):
137
- st.write(user_prompt)
138
-
139
- # Trigger assistant's response retrieval and update UI
140
- with st.spinner("Thinking..."):
141
- response = requests.post("http://localhost:8000/query", json={"question": user_prompt})
142
- if response.status_code == 200:
143
- assistant_response = response.json()["response"]
144
- with st.chat_message("assistant", avatar=icons["assistant"]):
145
- st.write(assistant_response)
146
- st.session_state.messages.append({'role': 'assistant', "content": assistant_response})
147
- else:
148
- st.error("Error querying document")
149
-
150
- def run_fastapi():
151
- uvicorn.run(app, host="0.0.0.0", port=8000)
152
-
153
- if __name__ == "__main__":
154
- # Start FastAPI in a separate thread
155
- fastapi_thread = threading.Thread(target=run_fastapi)
156
- fastapi_thread.start()
157
-
158
- # Run Streamlit (this will run in the main thread)
159
  streamlit_ui()
 
1
+ import os
2
+ from dotenv import load_dotenv
3
+ import shutil
4
+ import uvicorn
5
+ import streamlit as st
6
+ import requests
7
+ import threading
8
+
9
+ from fastapi import FastAPI, UploadFile, File, HTTPException
10
+ from pydantic import BaseModel, ConfigDict
11
+
12
+ from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
13
+ from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
14
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
15
+ from llama_index.core import Settings
16
+
17
+
18
+ # Load environment variables
19
+ load_dotenv()
20
+
21
+ app = FastAPI()
22
+
23
+ # Configure the Llama index settings
24
+ Settings.llm = HuggingFaceInferenceAPI(
25
+ model_name="meta-llama/Meta-Llama-3-8B-Instruct",
26
+ tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
27
+ context_window=3900,
28
+ token=os.getenv("HF_TOKEN"),
29
+ max_new_tokens=1000,
30
+ generate_kwargs={"temperature": 0.5},
31
+ )
32
+ Settings.embed_model = HuggingFaceEmbedding(
33
+ model_name="BAAI/bge-small-en-v1.5"
34
+ )
35
+
36
+ # Define the directory for persistent storage and data
37
+ PERSIST_DIR = "./db"
38
+ DATA_DIR = "data"
39
+
40
+ # Ensure data directory exists
41
+ os.makedirs(DATA_DIR, exist_ok=True)
42
+ os.makedirs(PERSIST_DIR, exist_ok=True)
43
+
44
+ class Query(BaseModel):
45
+ question: str
46
+
47
+ # class DeployedModel(BaseModel):
48
+ # model_id: str
49
+ # model_name: str
50
+
51
+ # class Config:
52
+ # model_config = ConfigDict(protected_namespaces=())
53
+
54
+ def data_ingestion():
55
+ documents = SimpleDirectoryReader(DATA_DIR).load_data()
56
+ storage_context = StorageContext.from_defaults()
57
+ index = VectorStoreIndex.from_documents(documents)
58
+ index.storage_context.persist(persist_dir=PERSIST_DIR)
59
+
60
+ def handle_query(query):
61
+ storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
62
+ index = load_index_from_storage(storage_context)
63
+ chat_text_qa_msgs = [
64
+ (
65
+ "user",
66
+ """You are Q&A assistant named CHAT-DOC. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document.
67
+ Context:
68
+ {context_str}
69
+ Question:
70
+ {query_str}
71
+ """
72
+ )
73
+ ]
74
+ text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
75
+ query_engine = index.as_query_engine(text_qa_template=text_qa_template)
76
+ answer = query_engine.query(query)
77
+
78
+ if hasattr(answer, 'response'):
79
+ return answer.response
80
+ elif isinstance(answer, dict) and 'response' in answer:
81
+ return answer['response']
82
+ else:
83
+ return "Sorry, I couldn't find an answer."
84
+
85
+ @app.post("/upload")
86
+ async def upload_file(file: UploadFile = File(...)):
87
+ file_extension = os.path.splitext(file.filename)[1].lower()
88
+ if file_extension not in [".pdf", ".docx", ".txt"]:
89
+ raise HTTPException(status_code=400, detail="Invalid file type. Only PDF, DOCX, and TXT are allowed.")
90
+
91
+ file_path = os.path.join(DATA_DIR, file.filename)
92
+ with open(file_path, "wb") as buffer:
93
+ shutil.copyfileobj(file.file, buffer)
94
+
95
+ data_ingestion()
96
+ return {"message": "File uploaded and processed successfully"}
97
+
98
+ @app.post("/query")
99
+ async def query_document(query: Query):
100
+ if not os.listdir(DATA_DIR):
101
+ raise HTTPException(status_code=400, detail="No document has been uploaded yet.")
102
+
103
+ response = handle_query(query.question)
104
+ return {"response": response}
105
+
106
+ # Streamlit UI
107
+ def streamlit_ui():
108
+ st.title("Chat with your Document 📄")
109
+ st.markdown("Chat here👇")
110
+
111
+ icons = {"assistant": "🤖", "user": "👤"}
112
+
113
+ if 'messages' not in st.session_state:
114
+ st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF, DOCX, or TXT file and ask me anything about its content.'}]
115
+
116
+ for message in st.session_state.messages:
117
+ with st.chat_message(message['role'], avatar=icons[message['role']]):
118
+ st.write(message['content'])
119
+
120
+ with st.sidebar:
121
+ st.title("Menu:")
122
+ uploaded_file = st.file_uploader("Upload your document (PDF, DOCX, TXT)", type=["pdf", "docx", "txt"])
123
+ if st.button("Submit & Process") and uploaded_file:
124
+ with st.spinner("Processing..."):
125
+ files = {"file": (uploaded_file.name, uploaded_file.getvalue(), uploaded_file.type)}
126
+ response = requests.post("http://localhost:8000/upload", files=files)
127
+ if response.status_code == 200:
128
+ st.success("File uploaded and processed successfully")
129
+ else:
130
+ st.error("Error uploading file")
131
+
132
+ user_prompt = st.chat_input("Ask me anything about the content of the document:")
133
+
134
+ if user_prompt:
135
+ st.session_state.messages.append({'role': 'user', "content": user_prompt})
136
+ with st.chat_message("user", avatar=icons["user"]):
137
+ st.write(user_prompt)
138
+
139
+ # Trigger assistant's response retrieval and update UI
140
+ with st.spinner("Thinking..."):
141
+ response = requests.post("http://localhost:8000/query", json={"question": user_prompt})
142
+ if response.status_code == 200:
143
+ assistant_response = response.json()["response"]
144
+ with st.chat_message("assistant", avatar=icons["assistant"]):
145
+ st.write(assistant_response)
146
+ st.session_state.messages.append({'role': 'assistant', "content": assistant_response})
147
+ else:
148
+ st.error("Error querying document")
149
+
150
+ def run_fastapi():
151
+ uvicorn.run(app, host="0.0.0.0", port=8000)
152
+
153
+ if __name__ == "__main__":
154
+ # Start FastAPI in a separate thread
155
+ fastapi_thread = threading.Thread(target=run_fastapi)
156
+ fastapi_thread.start()
157
+
158
+ # Run Streamlit (this will run in the main thread)
159
  streamlit_ui()