pratham0011 commited on
Commit
e615de1
1 Parent(s): 64d3bf0

Upload 4 files

Browse files
Files changed (4) hide show
  1. app_.py +111 -0
  2. man-kddi.png +0 -0
  3. requirements.txt +5 -0
  4. robot.png +0 -0
app_.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
3
+ from llama_index.llms.huggingface import HuggingFaceInferenceAPI
4
+ from dotenv import load_dotenv
5
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
6
+ from llama_index.core import Settings
7
+ import os
8
+ import base64
9
+
10
+ # Load environment variables
11
+ load_dotenv()
12
+
13
+ icons = {"assistant": "robot.png", "user": "man-kddi.png"}
14
+
15
+ # Configure the Llama index settings
16
+ Settings.llm = HuggingFaceInferenceAPI(
17
+ model_name="meta-llama/Meta-Llama-3-8B-Instruct",
18
+ tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
19
+ context_window=3900,
20
+ # token=os.getenv("HF_TOKEN"),
21
+ max_new_tokens=1000,
22
+ generate_kwargs={"temperature": 0.1},
23
+ )
24
+ Settings.embed_model = HuggingFaceEmbedding(
25
+ model_name="BAAI/bge-small-en-v1.5"
26
+ )
27
+
28
+ # Define the directory for persistent storage and data
29
+ PERSIST_DIR = "./db"
30
+ DATA_DIR = "data"
31
+
32
+ # Ensure data directory exists
33
+ os.makedirs(DATA_DIR, exist_ok=True)
34
+ os.makedirs(PERSIST_DIR, exist_ok=True)
35
+
36
+ def displayPDF(file):
37
+ with open(file, "rb") as f:
38
+ base64_pdf = base64.b64encode(f.read()).decode('utf-8')
39
+ pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
40
+ st.markdown(pdf_display, unsafe_allow_html=True)
41
+
42
+ def data_ingestion():
43
+ documents = SimpleDirectoryReader(DATA_DIR).load_data()
44
+ storage_context = StorageContext.from_defaults()
45
+ index = VectorStoreIndex.from_documents(documents)
46
+ index.storage_context.persist(persist_dir=PERSIST_DIR)
47
+
48
+ def handle_query(query):
49
+ storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
50
+ index = load_index_from_storage(storage_context)
51
+ chat_text_qa_msgs = [
52
+ (
53
+ "user",
54
+ """You are Q&A assistant named CHATTO, created by Pachaiappan an AI Specialist. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document.
55
+ Context:
56
+ {context_str}
57
+ Question:
58
+ {query_str}
59
+ """
60
+ )
61
+ ]
62
+ text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
63
+ query_engine = index.as_query_engine(text_qa_template=text_qa_template)
64
+ answer = query_engine.query(query)
65
+
66
+
67
+ if hasattr(answer, 'response'):
68
+ return answer.response
69
+ elif isinstance(answer, dict) and 'response' in answer:
70
+ return answer['response']
71
+ else:
72
+ return "Sorry, I couldn't find an answer."
73
+
74
+
75
+ # Streamlit app initialization
76
+ st.title("Chat with your PDF 📄")
77
+ st.markdown("chat here👇")
78
+
79
+ if 'messages' not in st.session_state:
80
+ st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}]
81
+
82
+ for message in st.session_state.messages:
83
+ with st.chat_message(message['role'], avatar=icons[message['role']]):
84
+ st.write(message['content'])
85
+
86
+ with st.sidebar:
87
+ st.title("Menu:")
88
+ uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button")
89
+ if st.button("Submit & Process"):
90
+ with st.spinner("Processing..."):
91
+ filepath = "data/saved_pdf.pdf"
92
+ with open(filepath, "wb") as f:
93
+ f.write(uploaded_file.getbuffer())
94
+ # displayPDF(filepath) # Display the uploaded PDF
95
+ data_ingestion() # Process PDF every time new file is uploaded
96
+ st.success("Done")
97
+
98
+ user_prompt = st.chat_input("Ask me anything about the content of the PDF:")
99
+
100
+ if user_prompt and uploaded_file:
101
+ st.session_state.messages.append({'role': 'user', "content": user_prompt})
102
+ with st.chat_message("user", avatar="man-kddi.png"):
103
+ st.write(user_prompt)
104
+
105
+ # Trigger assistant's response retrieval and update UI
106
+ with st.spinner("Thinking..."):
107
+ response = handle_query(user_prompt)
108
+ with st.chat_message("user", avatar="robot.png"):
109
+ st.write(response)
110
+ st.session_state.messages.append({'role': 'assistant', "content": response})
111
+
man-kddi.png ADDED
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ streamlit
2
+ python-dotenv
3
+ llama-index
4
+ llama-index-embeddings-huggingface
5
+ llama-index-llms-huggingface
robot.png ADDED