import streamlit as st from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate from llama_index.llms.huggingface import HuggingFaceInferenceAPI from dotenv import load_dotenv from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import Settings import os import base64 import docx2txt # Load environment variables load_dotenv() icons = {"assistant": "robot.png", "user": "man-kddi.png"} # Configure the Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name="meta-llama/Meta-Llama-3-8B-Instruct", tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", context_window=3900, token=os.getenv("HF_TOKEN"), max_new_tokens=1000, generate_kwargs={"temperature": 0.5}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) # Define the directory for persistent storage and data PERSIST_DIR = "./db" DATA_DIR = "data" # Ensure data directory exists os.makedirs(DATA_DIR, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) def displayPDF(file): with open(file, "rb") as f: base64_pdf = base64.b64encode(f.read()).decode('utf-8') pdf_display = f'' st.markdown(pdf_display, unsafe_allow_html=True) def displayDOCX(file): text = docx2txt.process(file) st.text_area("Document Content", text, height=400) def displayTXT(file): with open(file, "r") as f: text = f.read() st.text_area("Document Content", text, height=400) def data_ingestion(): documents = SimpleDirectoryReader(DATA_DIR).load_data() storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents) index.storage_context.persist(persist_dir=PERSIST_DIR) def handle_query(query): storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) chat_text_qa_msgs = [ ( "user", """You are Q&A assistant named CHAT-DOC. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document. Context: {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) query_engine = index.as_query_engine(text_qa_template=text_qa_template) answer = query_engine.query(query) if hasattr(answer, 'response'): return answer.response elif isinstance(answer, dict) and 'response' in answer: return answer['response'] else: return "Sorry, I couldn't find an answer." # Streamlit app initialization st.title("Chat with your Document ๐Ÿ“„") st.markdown("Chat here๐Ÿ‘‡") if 'messages' not in st.session_state: st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF, DOCX, or TXT file and ask me anything about its content.'}] for message in st.session_state.messages: with st.chat_message(message['role'], avatar=icons[message['role']]): st.write(message['content']) with st.sidebar: st.title("Menu:") uploaded_file = st.file_uploader("Upload your document (PDF, DOCX, TXT)", type=["pdf", "docx", "txt"]) if st.button("Submit & Process") and uploaded_file: with st.spinner("Processing..."): file_extension = os.path.splitext(uploaded_file.name)[1].lower() filepath = os.path.join(DATA_DIR, "uploaded_file" + file_extension) with open(filepath, "wb") as f: f.write(uploaded_file.getbuffer()) if file_extension == ".pdf": displayPDF(filepath) elif file_extension == ".docx": displayDOCX(filepath) elif file_extension == ".txt": displayTXT(filepath) data_ingestion() # Process file every time a new file is uploaded st.success("Done") user_prompt = st.chat_input("Ask me anything about the content of the document:") if user_prompt and uploaded_file: st.session_state.messages.append({'role': 'user', "content": user_prompt}) with st.chat_message("user", avatar=icons["user"]): st.write(user_prompt) # Trigger assistant's response retrieval and update UI with st.spinner("Thinking..."): response = handle_query(user_prompt) with st.chat_message("assistant", avatar=icons["assistant"]): st.write(response) st.session_state.messages.append({'role': 'assistant', "content": response})