import os from dotenv import load_dotenv from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import Settings # Load environment variables load_dotenv() # Configure the Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name="meta-llama/Meta-Llama-3-8B-Instruct", tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", context_window=3900, token=os.getenv("HF_TOKEN"), max_new_tokens=1000, generate_kwargs={"temperature": 0.5}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) # Define the directory for persistent storage and data PERSIST_DIR = "./db" DATA_DIR = "data" # Ensure data directory exists os.makedirs(DATA_DIR, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) def data_ingestion(): documents = SimpleDirectoryReader(DATA_DIR).load_data() storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents) index.storage_context.persist(persist_dir=PERSIST_DIR) def handle_query(query): storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) chat_text_qa_msgs = [ ( "user", """You are Q&A assistant named CHAT-DOC. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document. Context: {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) query_engine = index.as_query_engine(text_qa_template=text_qa_template) answer = query_engine.query(query) if hasattr(answer, 'response'): return answer.response elif isinstance(answer, dict) and 'response' in answer: return answer['response'] else: return "Sorry, I couldn't find an answer."