pratikshahp
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load the tokenizer and model
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("michellejieli/emotion_text_classifier")
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained("michellejieli/emotion_text_classifier")
|
9 |
+
|
10 |
+
# Function to classify emotions
|
11 |
+
def classify_emotion(text):
|
12 |
+
inputs = tokenizer(text, return_tensors="pt")
|
13 |
+
outputs = model(**inputs)
|
14 |
+
logits = outputs.logits
|
15 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
16 |
+
probs = probabilities.detach().numpy()[0]
|
17 |
+
labels = ["anger", "happy", "sad", "afraid", "worried"]
|
18 |
+
results = {label: prob for label, prob in zip(labels, probs)}
|
19 |
+
return results
|
20 |
+
|
21 |
+
# Gradio interface setup
|
22 |
+
iface = gr.Interface(
|
23 |
+
fn=classify_emotion,
|
24 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter a sentence to analyze emotions", label="Input Text"),
|
25 |
+
outputs=gr.Label(label="Emotion Probabilities"),
|
26 |
+
title="Emotion Classifier",
|
27 |
+
description="Enter a sentence and see the probabilities of different emotions."
|
28 |
+
)
|
29 |
+
|
30 |
+
if __name__ == "__main__":
|
31 |
+
iface.launch()
|