pratikshahp's picture
Update app.py
c8bf552 verified
import os
import io
from PIL import Image,ImageDraw
from transformers import AutoImageProcessor, AutoModelForObjectDetection
import streamlit as st
import torch
import requests
def input_image_setup(uploaded_file):
if uploaded_file is not None:
bytes_data = uploaded_file.getvalue()
image = Image.open(io.BytesIO(bytes_data)) # Convert bytes data to PIL image
return image
else:
raise FileNotFoundError("No file uploaded")
#Streamlit App
st.set_page_config(page_title="Image Detection")
st.header("Object Detection Application")
#Select your model
models = ["facebook/detr-resnet-50","ciasimbaya/ObjectDetection","hustvl/yolos-tiny","microsoft/table-transformer-detection","valentinafeve/yolos-fashionpedia"] # List of supported models
model_name = st.selectbox("Select model", models)
processor = AutoImageProcessor.from_pretrained(model_name)
model = AutoModelForObjectDetection.from_pretrained(model_name)
#Upload an image
uploaded_file = st.file_uploader("choose an image...", type=["jpg","jpeg","png"])
image=""
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image.", use_column_width=True)
submit = st.button("Detect Objects ")
if submit:
image_data = input_image_setup(uploaded_file)
st.subheader("The response is..")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
bboxes = outputs.pred_boxes
target_sizes = torch.tensor([image.size[::-1]])
results = processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0]
# Draw bounding boxes on the image
drawn_image = image.copy()
draw = ImageDraw.Draw(drawn_image)
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [int(i) for i in box.tolist()]
draw.rectangle(box, outline="red", width=2)
label_text = f"{model.config.id2label[label.item()]} ({round(score.item(), 2)})"
draw.text((box[0], box[1]), label_text, fill="red")
st.image(drawn_image, caption="Detected Objects", use_column_width=True)
st.subheader("List of Objects:")
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [round(i, 2) for i in box.tolist()]
st.write(
f"Detected :orange[{model.config.id2label[label.item()]}] with confidence "
f":green[{round(score.item(), 3)}] at location :violet[{box}]"
)