|
import gradio as gr |
|
from fastai.vision.all import * |
|
import skimage |
|
import pathlib |
|
|
|
plt = platform.system() |
|
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath |
|
|
|
learn = load_learner('export.pkl') |
|
|
|
labels = learn.dls.vocab |
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred,pred_idx,probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
title = "Face condition Analyzer" |
|
description = "A face condition detector trained on the custom dataset with fastai. Created using Gradio and HuggingFace Spaces." |
|
examples = [['harmonal_acne.jpg'],['forehead_wrinkles.jpg'],['oily_skin.jpg']] |
|
enable_queue=True |
|
|
|
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title, |
|
description=description,examples=examples,enable_queue=enable_queue).launch(share=True) |