Commit
·
cbefb6b
1
Parent(s):
1336bb0
Update app.py
Browse files
app.py
CHANGED
@@ -66,9 +66,13 @@ def keyphrase_generator(article_link, model_1, model_2, max_num_keywords):
|
|
66 |
corpus_embeddings = model_1.encode(clean_sentences_new)
|
67 |
sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
|
68 |
for i in range(len(clean_sentences_new)):
|
|
|
69 |
for j in range(len(clean_sentences_new)):
|
70 |
-
if i != j:
|
71 |
-
|
|
|
|
|
|
|
72 |
nx_graph = nx.from_numpy_array(sim_mat)
|
73 |
scores = nx.pagerank(nx_graph)
|
74 |
sentences=((scores[i],s) for i,s in enumerate(corpus))
|
@@ -108,20 +112,21 @@ def keyphrase_generator(article_link, model_1, model_2, max_num_keywords):
|
|
108 |
igen=gr.Interface(keyphrase_generator,
|
109 |
inputs=[gr.inputs.Textbox(lines=1, placeholder="Provide an online health article web link here",default="", label="Article web link"),
|
110 |
gr.inputs.Dropdown(choices=['sentence-transformers/all-mpnet-base-v2',
|
111 |
-
'sentence-transformers/all-mpnet-base-v1',
|
112 |
-
'sentence-transformers/all-distilroberta-v1',
|
|
|
113 |
'pritamdeka/S-Bluebert-snli-multinli-stsb',
|
114 |
-
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
|
115 |
'sentence-transformers/stsb-mpnet-base-v2',
|
116 |
'sentence-transformers/stsb-roberta-base-v2',
|
117 |
'sentence-transformers/stsb-distilroberta-base-v2',
|
118 |
-
'sentence-transformers/
|
119 |
-
'sentence-transformers/
|
120 |
-
'sentence-transformers/nli-distilroberta-base-v2'],
|
121 |
type="value",
|
122 |
default='pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
|
123 |
-
label="Select any model for TextRank from the list below"),
|
124 |
gr.inputs.Dropdown(choices=['sentence-transformers/paraphrase-mpnet-base-v2',
|
|
|
125 |
'sentence-transformers/paraphrase-distilroberta-base-v1',
|
126 |
'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
|
127 |
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
|
@@ -135,8 +140,8 @@ igen=gr.Interface(keyphrase_generator,
|
|
135 |
'sentence-transformers/paraphrase-MiniLM-L3-v2',
|
136 |
'sentence-transformers/all-MiniLM-L6-v2'],
|
137 |
type="value",
|
138 |
-
default='sentence-transformers/
|
139 |
-
label="Select any model for keyphrases from the list below"),
|
140 |
gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")],
|
141 |
outputs=gr.outputs.Textbox(type="auto", label="Output"), theme="peach",
|
142 |
title="Health Article Keyphrase Generator",
|
|
|
66 |
corpus_embeddings = model_1.encode(clean_sentences_new)
|
67 |
sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
|
68 |
for i in range(len(clean_sentences_new)):
|
69 |
+
len_embeddings=(len(corpus_embeddings[i]))
|
70 |
for j in range(len(clean_sentences_new)):
|
71 |
+
if i != j:
|
72 |
+
if(len_embeddings == 1024):
|
73 |
+
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,1024), corpus_embeddings[j].reshape(1,1024))[0,0]
|
74 |
+
elif(len_embeddings == 768):
|
75 |
+
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,768), corpus_embeddings[j].reshape(1,768))[0,0]
|
76 |
nx_graph = nx.from_numpy_array(sim_mat)
|
77 |
scores = nx.pagerank(nx_graph)
|
78 |
sentences=((scores[i],s) for i,s in enumerate(corpus))
|
|
|
112 |
igen=gr.Interface(keyphrase_generator,
|
113 |
inputs=[gr.inputs.Textbox(lines=1, placeholder="Provide an online health article web link here",default="", label="Article web link"),
|
114 |
gr.inputs.Dropdown(choices=['sentence-transformers/all-mpnet-base-v2',
|
115 |
+
'sentence-transformers/all-mpnet-base-v1',
|
116 |
+
'sentence-transformers/all-distilroberta-v1',
|
117 |
+
'sentence-transformers/gtr-t5-large',
|
118 |
'pritamdeka/S-Bluebert-snli-multinli-stsb',
|
119 |
+
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
|
120 |
'sentence-transformers/stsb-mpnet-base-v2',
|
121 |
'sentence-transformers/stsb-roberta-base-v2',
|
122 |
'sentence-transformers/stsb-distilroberta-base-v2',
|
123 |
+
'sentence-transformers/sentence-t5-large',
|
124 |
+
'sentence-transformers/sentence-t5-base'],
|
|
|
125 |
type="value",
|
126 |
default='pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
|
127 |
+
label="Select any SBERT model for TextRank from the list below"),
|
128 |
gr.inputs.Dropdown(choices=['sentence-transformers/paraphrase-mpnet-base-v2',
|
129 |
+
'sentence-transformers/all-mpnet-base-v1',
|
130 |
'sentence-transformers/paraphrase-distilroberta-base-v1',
|
131 |
'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
|
132 |
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
|
|
|
140 |
'sentence-transformers/paraphrase-MiniLM-L3-v2',
|
141 |
'sentence-transformers/all-MiniLM-L6-v2'],
|
142 |
type="value",
|
143 |
+
default='sentence-transformers/all-mpnet-base-v1',
|
144 |
+
label="Select any SBERT model for keyphrases from the list below"),
|
145 |
gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")],
|
146 |
outputs=gr.outputs.Textbox(type="auto", label="Output"), theme="peach",
|
147 |
title="Health Article Keyphrase Generator",
|