pritamdeka commited on
Commit
cbefb6b
·
1 Parent(s): 1336bb0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -11
app.py CHANGED
@@ -66,9 +66,13 @@ def keyphrase_generator(article_link, model_1, model_2, max_num_keywords):
66
  corpus_embeddings = model_1.encode(clean_sentences_new)
67
  sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
68
  for i in range(len(clean_sentences_new)):
 
69
  for j in range(len(clean_sentences_new)):
70
- if i != j:
71
- sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,768), corpus_embeddings[j].reshape(1,768))[0,0]
 
 
 
72
  nx_graph = nx.from_numpy_array(sim_mat)
73
  scores = nx.pagerank(nx_graph)
74
  sentences=((scores[i],s) for i,s in enumerate(corpus))
@@ -108,20 +112,21 @@ def keyphrase_generator(article_link, model_1, model_2, max_num_keywords):
108
  igen=gr.Interface(keyphrase_generator,
109
  inputs=[gr.inputs.Textbox(lines=1, placeholder="Provide an online health article web link here",default="", label="Article web link"),
110
  gr.inputs.Dropdown(choices=['sentence-transformers/all-mpnet-base-v2',
111
- 'sentence-transformers/all-mpnet-base-v1',
112
- 'sentence-transformers/all-distilroberta-v1',
 
113
  'pritamdeka/S-Bluebert-snli-multinli-stsb',
114
- 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
115
  'sentence-transformers/stsb-mpnet-base-v2',
116
  'sentence-transformers/stsb-roberta-base-v2',
117
  'sentence-transformers/stsb-distilroberta-base-v2',
118
- 'sentence-transformers/nli-roberta-base-v2',
119
- 'sentence-transformers/nli-mpnet-base-v2',
120
- 'sentence-transformers/nli-distilroberta-base-v2'],
121
  type="value",
122
  default='pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
123
- label="Select any model for TextRank from the list below"),
124
  gr.inputs.Dropdown(choices=['sentence-transformers/paraphrase-mpnet-base-v2',
 
125
  'sentence-transformers/paraphrase-distilroberta-base-v1',
126
  'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
127
  'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
@@ -135,8 +140,8 @@ igen=gr.Interface(keyphrase_generator,
135
  'sentence-transformers/paraphrase-MiniLM-L3-v2',
136
  'sentence-transformers/all-MiniLM-L6-v2'],
137
  type="value",
138
- default='sentence-transformers/paraphrase-distilroberta-base-v1',
139
- label="Select any model for keyphrases from the list below"),
140
  gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")],
141
  outputs=gr.outputs.Textbox(type="auto", label="Output"), theme="peach",
142
  title="Health Article Keyphrase Generator",
 
66
  corpus_embeddings = model_1.encode(clean_sentences_new)
67
  sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
68
  for i in range(len(clean_sentences_new)):
69
+ len_embeddings=(len(corpus_embeddings[i]))
70
  for j in range(len(clean_sentences_new)):
71
+ if i != j:
72
+ if(len_embeddings == 1024):
73
+ sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,1024), corpus_embeddings[j].reshape(1,1024))[0,0]
74
+ elif(len_embeddings == 768):
75
+ sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,768), corpus_embeddings[j].reshape(1,768))[0,0]
76
  nx_graph = nx.from_numpy_array(sim_mat)
77
  scores = nx.pagerank(nx_graph)
78
  sentences=((scores[i],s) for i,s in enumerate(corpus))
 
112
  igen=gr.Interface(keyphrase_generator,
113
  inputs=[gr.inputs.Textbox(lines=1, placeholder="Provide an online health article web link here",default="", label="Article web link"),
114
  gr.inputs.Dropdown(choices=['sentence-transformers/all-mpnet-base-v2',
115
+ 'sentence-transformers/all-mpnet-base-v1',
116
+ 'sentence-transformers/all-distilroberta-v1',
117
+ 'sentence-transformers/gtr-t5-large',
118
  'pritamdeka/S-Bluebert-snli-multinli-stsb',
119
+ 'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
120
  'sentence-transformers/stsb-mpnet-base-v2',
121
  'sentence-transformers/stsb-roberta-base-v2',
122
  'sentence-transformers/stsb-distilroberta-base-v2',
123
+ 'sentence-transformers/sentence-t5-large',
124
+ 'sentence-transformers/sentence-t5-base'],
 
125
  type="value",
126
  default='pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
127
+ label="Select any SBERT model for TextRank from the list below"),
128
  gr.inputs.Dropdown(choices=['sentence-transformers/paraphrase-mpnet-base-v2',
129
+ 'sentence-transformers/all-mpnet-base-v1',
130
  'sentence-transformers/paraphrase-distilroberta-base-v1',
131
  'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
132
  'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
 
140
  'sentence-transformers/paraphrase-MiniLM-L3-v2',
141
  'sentence-transformers/all-MiniLM-L6-v2'],
142
  type="value",
143
+ default='sentence-transformers/all-mpnet-base-v1',
144
+ label="Select any SBERT model for keyphrases from the list below"),
145
  gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")],
146
  outputs=gr.outputs.Textbox(type="auto", label="Output"), theme="peach",
147
  title="Health Article Keyphrase Generator",