GRAB-DOC / app.py
prithivMLmods's picture
Update app.py
1141e03 verified
raw
history blame
4.06 kB
import gradio as gr
from openai import OpenAI
import os
from fpdf import FPDF # For PDF conversion
from docx import Document # For DOCX conversion
import tempfile
css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
ACCESS_TOKEN = os.getenv("HF_TOKEN")
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
def respond(message, history, system_message, max_tokens, temperature, top_p):
if history is None:
history = []
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat.completions.create(
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
messages=messages,
):
token = message.choices[0].delta.content
response += token
yield response
history.append((message, response))
return history
def save_as_file(history, conversion_type):
input_text = "\n".join([f"User: {h[0]}" for h in history if h[0]])
output_text = "\n".join([f"Assistant: {h[1]}" for h in history if h[1]])
file_name = None
if conversion_type == "PDF":
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, f"User Query: {input_text}\n\nResponse: {output_text}")
file_name = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf").name
pdf.output(file_name)
elif conversion_type == "DOCX":
doc = Document()
doc.add_heading('Conversation', 0)
doc.add_paragraph(f"User Query: {input_text}\n\nResponse: {output_text}")
file_name = tempfile.NamedTemporaryFile(delete=False, suffix=".docx").name
doc.save(file_name)
elif conversion_type == "TXT":
file_name = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
with open(file_name, "w") as f:
f.write(f"User Query: {input_text}\n\nResponse: {output_text}")
return file_name
def convert_and_download(history, conversion_type):
if not history:
return None
file_path = save_as_file(history, conversion_type)
return file_path
demo = gr.Blocks(css=css)
with demo:
history_state = gr.State([]) # Initialize an empty list to store the conversation history
with gr.Row():
system_message = gr.Textbox(value="", label="System message")
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
with gr.Row():
conversation_input = gr.Textbox(label="Message")
chat_output = gr.Textbox(label="Response", interactive=False)
chat = gr.Button("Send")
conversion_type = gr.Dropdown(choices=["PDF", "DOCX", "TXT"], value="PDF", label="Conversion Type")
download_button = gr.Button("Convert and Download")
file_output = gr.File()
def update_history(message, history, system_message, max_tokens, temperature, top_p):
history = respond(message, history, system_message, max_tokens, temperature, top_p)
return history
chat.click(
fn=update_history,
inputs=[conversation_input, history_state, system_message, max_tokens, temperature, top_p],
outputs=[chat_output, history_state]
)
download_button.click(
fn=convert_and_download,
inputs=[history_state, conversion_type],
outputs=file_output
)
if __name__ == "__main__":
demo.launch()