Spaces:
Sleeping
Sleeping
prithivMLmods
commited on
Commit
β’
ad773e5
1
Parent(s):
19bf7a8
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from openai import OpenAI
|
3 |
+
import os
|
4 |
+
from fpdf import FPDF # For PDF conversion
|
5 |
+
from docx import Document # For DOCX conversion
|
6 |
+
|
7 |
+
css = '''
|
8 |
+
.gradio-container{max-width: 1000px !important}
|
9 |
+
h1{text-align:center}
|
10 |
+
footer {
|
11 |
+
visibility: hidden
|
12 |
+
}
|
13 |
+
'''
|
14 |
+
|
15 |
+
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
16 |
+
|
17 |
+
client = OpenAI(
|
18 |
+
base_url="https://api-inference.huggingface.co/v1/",
|
19 |
+
api_key=ACCESS_TOKEN,
|
20 |
+
)
|
21 |
+
|
22 |
+
def respond(
|
23 |
+
message,
|
24 |
+
history: list[tuple[str, str]],
|
25 |
+
system_message,
|
26 |
+
max_tokens,
|
27 |
+
temperature,
|
28 |
+
top_p,
|
29 |
+
):
|
30 |
+
messages = [{"role": "system", "content": system_message}]
|
31 |
+
|
32 |
+
for val in history:
|
33 |
+
if val[0]:
|
34 |
+
messages.append({"role": "user", "content": val[0]})
|
35 |
+
if val[1]:
|
36 |
+
messages.append({"role": "assistant", "content": val[1]})
|
37 |
+
|
38 |
+
messages.append({"role": "user", "content": message})
|
39 |
+
|
40 |
+
response = ""
|
41 |
+
|
42 |
+
for message in client.chat.completions.create(
|
43 |
+
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
|
44 |
+
max_tokens=max_tokens,
|
45 |
+
stream=True,
|
46 |
+
temperature=temperature,
|
47 |
+
top_p=top_p,
|
48 |
+
messages=messages,
|
49 |
+
):
|
50 |
+
token = message.choices[0].delta.content
|
51 |
+
|
52 |
+
response += token
|
53 |
+
yield response
|
54 |
+
|
55 |
+
def save_as_file(input_text, output_text, conversion_type):
|
56 |
+
if conversion_type == "PDF":
|
57 |
+
pdf = FPDF()
|
58 |
+
pdf.add_page()
|
59 |
+
pdf.set_font("Arial", size=12)
|
60 |
+
pdf.multi_cell(0, 10, f"User Query: {input_text}\n\nResponse: {output_text}")
|
61 |
+
file_name = "output.pdf"
|
62 |
+
pdf.output(file_name)
|
63 |
+
elif conversion_type == "DOCX":
|
64 |
+
doc = Document()
|
65 |
+
doc.add_heading('Conversation', 0)
|
66 |
+
doc.add_paragraph(f"User Query: {input_text}\n\nResponse: {output_text}")
|
67 |
+
file_name = "output.docx"
|
68 |
+
doc.save(file_name)
|
69 |
+
elif conversion_type == "TXT":
|
70 |
+
file_name = "output.txt"
|
71 |
+
with open(file_name, "w") as f:
|
72 |
+
f.write(f"User Query: {input_text}\n\nResponse: {output_text}")
|
73 |
+
else:
|
74 |
+
return None
|
75 |
+
|
76 |
+
return file_name
|
77 |
+
|
78 |
+
def convert_and_download(history, conversion_type):
|
79 |
+
if not history:
|
80 |
+
return None
|
81 |
+
|
82 |
+
input_text = "\n".join([f"User: {h[0]}" for h in history if h[0]])
|
83 |
+
output_text = "\n".join([f"Assistant: {h[1]}" for h in history if h[1]])
|
84 |
+
|
85 |
+
file_path = save_as_file(input_text, output_text, conversion_type)
|
86 |
+
return file_path
|
87 |
+
|
88 |
+
demo = gr.ChatInterface(
|
89 |
+
respond,
|
90 |
+
additional_inputs=[
|
91 |
+
gr.Textbox(value="", label="System message"),
|
92 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
93 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
94 |
+
gr.Slider(
|
95 |
+
minimum=0.1,
|
96 |
+
maximum=1.0,
|
97 |
+
value=0.95,
|
98 |
+
step=0.05,
|
99 |
+
label="Top-P",
|
100 |
+
),
|
101 |
+
gr.Dropdown(choices=["PDF", "DOCX", "TXT"], label="Conversion Type"),
|
102 |
+
gr.Button("Convert and Download"),
|
103 |
+
],
|
104 |
+
css=css,
|
105 |
+
theme="allenai/gradio-theme",
|
106 |
+
)
|
107 |
+
|
108 |
+
def on_convert_and_download(history, conversion_type):
|
109 |
+
file_path = convert_and_download(history, conversion_type)
|
110 |
+
return file_path
|
111 |
+
|
112 |
+
demo.launch(on_event={"Convert and Download": on_convert_and_download})
|
113 |
+
|
114 |
+
if __name__ == "__main__":
|
115 |
+
demo.launch()
|