import gradio as gr from openai import OpenAI import os from fpdf import FPDF # For PDF conversion from docx import Document # For DOCX conversion import tempfile css = ''' .gradio-container{max-width: 1000px !important} h1{text-align:center} footer { visibility: hidden } ''' ACCESS_TOKEN = os.getenv("HF_TOKEN") client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=ACCESS_TOKEN, ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat.completions.create( model="meta-llama/Meta-Llama-3.1-8B-Instruct", max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, messages=messages, ): token = message.choices[0].delta.content response += token yield response def save_as_file(input_text, output_text, conversion_type): file_name = None if conversion_type == "PDF": pdf = FPDF() pdf.add_page() pdf.set_font("Arial", size=12) pdf.multi_cell(0, 10, f"User Query: {input_text}\n\nResponse: {output_text}") file_name = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf").name pdf.output(file_name) elif conversion_type == "DOCX": doc = Document() doc.add_heading('Conversation', 0) doc.add_paragraph(f"User Query: {input_text}\n\nResponse: {output_text}") file_name = tempfile.NamedTemporaryFile(delete=False, suffix=".docx").name doc.save(file_name) elif conversion_type == "TXT": file_name = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name with open(file_name, "w") as f: f.write(f"User Query: {input_text}\n\nResponse: {output_text}") return file_name def convert_and_download(history, conversion_type): if not history: return None input_text = "\n".join([f"User: {h[0]}" for h in history if h[0]]) output_text = "\n".join([f"Assistant: {h[1]}" for h in history if h[1]]) file_path = save_as_file(input_text, output_text, conversion_type) return file_path demo = gr.Blocks(css=css) with demo: with gr.Row(): system_message = gr.Textbox(value="", label="System message") max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P") chatbot = gr.ChatInterface( fn=respond, additional_inputs=[system_message, max_tokens, temperature, top_p], ) with gr.Row(): conversion_type = gr.Dropdown(choices=["PDF", "DOCX", "TXT"], label="Conversion Type") download_button = gr.Button("Convert and Download") file_output = gr.File() download_button.click( convert_and_download, inputs=[chatbot.history, conversion_type], outputs=file_output ) if __name__ == "__main__": demo.launch()