import gradio as gr from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer from transformers.image_utils import load_image from threading import Thread import time import torch import spaces import cv2 import numpy as np from PIL import Image def progress_bar_html(label: str) -> str: """ Returns an HTML snippet for a thin progress bar with a label. The progress bar is styled as a dark animated bar. """ return f'''
{label}
''' def downsample_video(video_path): """ Downsamples the video to 10 evenly spaced frames. Each frame is converted to a PIL Image along with its timestamp. """ vidcap = cv2.VideoCapture(video_path) total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) fps = vidcap.get(cv2.CAP_PROP_FPS) frames = [] if total_frames <= 0 or fps <= 0: vidcap.release() return frames # Sample 10 evenly spaced frames. frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) for i in frame_indices: vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) success, image = vidcap.read() if success: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) pil_image = Image.fromarray(image) timestamp = round(i / fps, 2) frames.append((pil_image, timestamp)) vidcap.release() return frames MODEL_ID = "Qwen/Qwen2.5-VL-7B-Instruct" # Alternatively: "Qwen/Qwen2.5-VL-3B-Instruct" processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) model = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID, trust_remote_code=True, torch_dtype=torch.bfloat16 ).to("cuda").eval() @spaces.GPU def model_inference(input_dict, history): text = input_dict["text"] files = input_dict["files"] if text.strip().lower().startswith("@video-infer"): # Remove the tag from the query. text = text[len("@video-infer"):].strip() if not files: gr.Error("Please upload a video file along with your @video-infer query.") return # Assume the first file is a video. video_path = files[0] frames = downsample_video(video_path) if not frames: gr.Error("Could not process video.") return # Build messages: start with the text prompt. messages = [ { "role": "user", "content": [{"type": "text", "text": text}] } ] # Append each frame with a timestamp label. for image, timestamp in frames: messages[0]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) messages[0]["content"].append({"type": "image", "image": image}) # Collect only the images from the frames. video_images = [image for image, _ in frames] # Prepare the prompt. prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor( text=[prompt], images=video_images, return_tensors="pt", padding=True, ).to("cuda") # Set up streaming generation. streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" yield progress_bar_html("Processing video with Qwen2.5VL Model") for new_text in streamer: buffer += new_text time.sleep(0.01) yield buffer return if len(files) > 1: images = [load_image(image) for image in files] elif len(files) == 1: images = [load_image(files[0])] else: images = [] if text == "" and not images: gr.Error("Please input a query and optionally image(s).") return if text == "" and images: gr.Error("Please input a text query along with the image(s).") return messages = [ { "role": "user", "content": [ *[{"type": "image", "image": image} for image in images], {"type": "text", "text": text}, ], } ] prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor( text=[prompt], images=images if images else None, return_tensors="pt", padding=True, ).to("cuda") streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" yield progress_bar_html("Processing with Qwen2.5VL Model") for new_text in streamer: buffer += new_text time.sleep(0.01) yield buffer examples = [ [{"text": "Describe the Image?", "files": ["example_images/document.jpg"]}], [{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}], [{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}], [{"text": "@video-infer Explain the content of the video.", "files": ["example_images/sky.mp4"]}], ] demo = gr.ChatInterface( fn=model_inference, description="# **Qwen2.5-VL-7B-Instruct `@video-infer for video understanding`**", examples=examples, fill_height=True, textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, cache_examples=False, ) demo.launch(debug=True)