File size: 6,035 Bytes
be06cc5
 
 
 
50aa2f1
 
 
 
 
 
3d827e8
50aa2f1
 
3d827e8
50aa2f1
 
be06cc5
 
 
 
 
 
deabe9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be06cc5
 
deabe9e
50aa2f1
be06cc5
50aa2f1
be06cc5
50aa2f1
 
 
 
 
 
 
 
 
be06cc5
 
 
 
 
 
 
 
 
 
 
50aa2f1
be06cc5
 
 
 
 
 
 
50aa2f1
be06cc5
 
 
 
 
 
 
50aa2f1
be06cc5
 
 
50aa2f1
be06cc5
 
 
50aa2f1
be06cc5
 
50aa2f1
 
be06cc5
50aa2f1
be06cc5
 
50aa2f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the models
model_path_1 = "ibm-granite/granite-3.0-1b-a400m-instruct"
model_path_2 = "ibm-granite/granite-3.0-1b-a400m-base"

tokenizer_1 = AutoTokenizer.from_pretrained(model_path_1)
tokenizer_2 = AutoTokenizer.from_pretrained(model_path_2)

model_1 = AutoModelForCausalLM.from_pretrained(model_path_1, device_map="auto")
model_2 = AutoModelForCausalLM.from_pretrained(model_path_2, device_map="auto")

model_1.eval()
model_2.eval()

# Mood prompts dictionary
mood_prompts = {
    "Fun": "Respond in a light-hearted, playful manner.",
    "Serious": "Respond in a thoughtful, serious tone.",
    "Professional": "Respond in a formal, professional manner.",
    "Upset": "Respond in a slightly irritated, upset tone.",
    "Empathetic": "Respond in a warm and understanding tone.",
    "Optimistic": "Respond in a positive, hopeful manner.",
    "Sarcastic": "Respond with a hint of sarcasm.",
    "Motivational": "Respond with encouragement and motivation.",
    "Curious": "Respond with a sense of wonder and curiosity.",
    "Humorous": "Respond with a touch of humor.",
    "Cautious": "Respond with careful consideration and caution.",
    "Assertive": "Respond with confidence and assertiveness.",
    "Friendly": "Respond in a warm and friendly manner.",
    "Romantic": "Respond with affection and romance.",
    "Nostalgic": "Respond with a sense of longing for the past.",
    "Grateful": "Respond with gratitude and appreciation.",
    "Inspirational": "Respond with inspiration and positivity.",
    "Casual": "Respond in a relaxed and informal tone.",
    "Formal": "Respond with a high level of formality.",
    "Pessimistic": "Respond with a focus on potential negatives.",
    "Excited": "Respond with enthusiasm and excitement.",
    "Melancholic": "Respond with a sense of sadness or longing.",
    "Confident": "Respond with self-assurance and confidence.",
    "Suspicious": "Respond with caution and doubt.",
    "Reflective": "Respond with deep thought and introspection.",
    "Joyful": "Respond with happiness and joy.",
    "Mysterious": "Respond with an air of mystery and intrigue.",
    "Aggressive": "Respond with force and intensity.",
    "Calm": "Respond with a sense of peace and tranquility.",
    "Gloomy": "Respond with a sense of sadness or pessimism.",
    "Encouraging": "Respond with words of support and encouragement.",
    "Sympathetic": "Respond with understanding and compassion.",
    "Disappointed": "Respond with a tone of disappointment.",
    "Proud": "Respond with a sense of pride and accomplishment.",
    "Playful": "Respond in a fun and playful manner.",
    "Inquisitive": "Respond with curiosity and interest.",
    "Supportive": "Respond with reassurance and support.",
    "Reluctant": "Respond with hesitation and reluctance.",
    "Confused": "Respond with uncertainty and confusion.",
    "Energetic": "Respond with high energy and enthusiasm.",
    "Relaxed": "Respond with a calm and laid-back tone.",
    "Grumpy": "Respond with a touch of irritation.",
    "Hopeful": "Respond with a sense of hope and optimism.",
    "Indifferent": "Respond with a lack of strong emotion.",
    "Surprised": "Respond with shock and astonishment.",
    "Tense": "Respond with a sense of urgency or anxiety.",
    "Enthusiastic": "Respond with eagerness and excitement.",
    "Worried": "Respond with concern and apprehension."
}


def generate_response(prompt, mood, max_new_tokens, temperature, top_p, repetition_penalty, model_choice):
    mood_prompt = mood_prompts.get(mood, "")
    full_prompt = f"{mood_prompt} {prompt}"
    
    # Choose model and tokenizer based on user selection
    if model_choice == "Granite 3.0-1B A400M Instruct":
        model = model_1
        tokenizer = tokenizer_1
    else:
        model = model_2
        tokenizer = tokenizer_2

    input_tokens = tokenizer(full_prompt, return_tensors="pt").to(model.device)
    
    output = model.generate(
        **input_tokens,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True
    )
    
    response = tokenizer.decode(output[0], skip_special_tokens=True)
    return response.strip()

with gr.Blocks(theme="prithivMLmods/Minecraft-Theme") as demo:
    
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=5)
            mood = gr.Dropdown(label="Select Mood", choices=list(mood_prompts.keys()), value="Professional")
            model_choice = gr.Radio(label="Select Model", choices=["Granite 3.0-1B A400M Instruct", "Granite 3.0-1B A400M Base"], value="Granite 3.0-1B A400M Instruct")
            generate_button = gr.Button("Generate Response")
            max_new_tokens = gr.Slider(minimum=1, maximum=500, value=100, step=1, label="Max New Tokens")
            temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
            top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top P")
            repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.1, label="Repetition Penalty")
    
        with gr.Column():
            output = gr.Textbox(label="Response", lines=15)
    
    generate_button.click(
        generate_response,
        inputs=[prompt, mood, max_new_tokens, temperature, top_p, repetition_penalty, model_choice],
        outputs=output
    )
    
    gr.Markdown("## Examples")
    examples = gr.Examples(
        examples=[
            ["Give me advice on staying motivated.", "Motivational", 100, 0.7, 0.9, 1.1, "Granite 3.0-1B A400M Instruct"],
            ["Describe a futuristic city.", "Optimistic", 200, 0.9, 0.8, 1.0, "Granite 3.0-1B A400M Base"]
        ],
        inputs=[prompt, mood, max_new_tokens, temperature, top_p, repetition_penalty, model_choice],
    )

demo.launch(share=True)