import spaces import gradio as gr import torch from PIL import Image from diffusers import DiffusionPipeline import random import uuid from typing import Tuple import numpy as np def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed MAX_SEED = np.iinfo(np.int32).max if not torch.cuda.is_available(): DESCRIPTIONz += "\n

⚠️Running on CPU, This may not work on CPU.

" base_model = "black-forest-labs/FLUX.1-dev" pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) lora_repo = "strangerzonehf/Flux-Midjourney-Mix-LoRA" trigger_word = "midjourney mix" # Leave trigger_word blank if not used. pipe.load_lora_weights(lora_repo) pipe.to("cuda") style_list = [ { "name": "3840 x 2160", "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", }, { "name": "2560 x 1440", "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", }, { "name": "HD+", "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", }, { "name": "Style Zero", "prompt": "{prompt}", }, ] styles = {k["name"]: k["prompt"] for k in style_list} DEFAULT_STYLE_NAME = "3840 x 2160" STYLE_NAMES = list(styles.keys()) def apply_style(style_name: str, positive: str) -> str: return styles.get(style_name, styles[DEFAULT_STYLE_NAME]).replace("{prompt}", positive) @spaces.GPU(duration=60, enable_queue=True) def generate( prompt: str, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 3, randomize_seed: bool = False, style_name: str = DEFAULT_STYLE_NAME, progress=gr.Progress(track_tqdm=True), ): seed = int(randomize_seed_fn(seed, randomize_seed)) positive_prompt = apply_style(style_name, prompt) if trigger_word: positive_prompt = f"{trigger_word} {positive_prompt}" images = pipe( prompt=positive_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=28, num_images_per_prompt=1, output_type="pil", ).images image_paths = [save_image(img) for img in images] print(image_paths) return image_paths, seed examples = [ "midjourney mix, a tiny astronaut hatching from an egg on the moon", "midjourney mix, intense Red, a black cat is facing the left side of the frame. The cats head is tilted upward, with its eyes closed. Its whiskers are protruding from its mouth, adding a touch of warmth to the scene. The background is a vibrant red, creating a striking contrast with the cats fur.", "midjourney mix, a close-up shot of a womans face, the womans hair is wet, and she is wearing a cream-colored sweater. The background is blurred, and there are red and white signs visible in the background. The womans eyebrows are wet, adding a touch of color to her face. Her lips are a vibrant shade of pink, and her eyes are a darker shade of brown.", "midjourney mix, woman in a red jacket, snowy, in the style of hyper-realistic portraiture, caninecore, mountainous vistas, timeless beauty, palewave, iconic, distinctive noses --ar 72:101 --stylize 750 --v 6", "midjourney mix, an anime-style illustration of a delicious, golden-brown wiener schnitzel on a plate, served with fresh lemon slices, parsley --style raw5" ] css = ''' .gradio-container{max-width: 888px !important} h1{text-align:center} footer { visibility: hidden } .submit-btn { background-color: #2980b9 !important; color: white !important; } .submit-btn:hover { background-color: #43d4ff !important; } ''' with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: with gr.Row(): with gr.Column(scale=1): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Generate as ( 768 x 1024 )🤗", scale=0, elem_classes="submit-btn") with gr.Accordion("Advanced options", open=True, visible=True): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, visible=True ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(visible=True): width = gr.Slider( label="Width", minimum=512, maximum=2048, step=64, value=768, ) height = gr.Slider( label="Height", minimum=512, maximum=2048, step=64, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=3.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=40, step=1, value=28, ) style_selection = gr.Radio( show_label=True, container=True, interactive=True, choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, label="Quality Style", ) with gr.Column(scale=2): result = gr.Gallery(label="Result", columns=1, show_label=False) gr.Examples( examples=examples, inputs=prompt, outputs=[result, seed], fn=generate, cache_examples=False, ) gr.on( triggers=[ prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, seed, width, height, guidance_scale, randomize_seed, style_selection, ], outputs=[result, seed], api_name="run", ) if __name__ == "__main__": demo.queue(max_size=40).launch()